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Abstract

Recently, Biomedical Question Answering
(BioQA) has attracted growing attention due to its
application value and technical challenges. Most
existing works treat it as a semantic matching task
that predicts answers by computing confidence
among questions, options and evidence paragraphs,
which is insufficient for scenarios that require
complex reasoning based on a deep understanding
of biomedical evidences. We propose a novel
model termed Hierarchical Representation-based
Dynamic Reasoning Network (HDRN) to tackle
this problem. It first constructs the hierarchical
representations for biomedical evidences to
learn semantics within and among evidences.
It then performs dynamic reasoning based on
the hierarchical representations of evidences to
solve complex biomedical problems. Against
the existing state-of-the-art model, the proposed
model significantly improves more than 4.5%,
3% and 1.3% on three mainstream BioQA
datasets, PubMedQA, MedQA-USMLE and
NLPEC. The ablation study demonstrates the
superiority of each improvement of our model.
https://github.com/mikeblueskydl/HDRN

1 Introduction

Machine reading comprehension (MRC) (Ra-
jpurkar et al., 2016, 2018; Yang et al., 2018) tasks
are often used to evaluate the intelligence degree of
a system, and many recent large-scale pre-trained
language models (Lan et al., 2019; Zaheer et al.,
2020) have surpassed the human performance on
open-domain MRC. In recent years, Biomedical
Question Answering (BioQA) (Tsatsaronis et al.,
2012; Wang et al., 2018; Tang et al., 2019; Li et al.,

*Corresponding author.
†Equal contribution.
‡This work was done during internship at Baidu Inc.

Question：A 35-year-old Caucasian female presents to the hospital 
alarmed by her recent truncal weight gain, facial hair growth, and 
thinning skin. During the physical exam, the physician finds that the 
patient is hypertensive. Serum analysis reveals hyperglycemia. The 
physician suspects a pituitary adenoma. Which dexamethasone test 
result would help confirm the physician's suspicions?
Options：
A:  Low-dose, increased ACTH; high-dose, decreased ACTH
B:  Low-dose, decrease in ACTH; high-dose, no change in ACTH
C:  Low-dose, no change in ACTH; high-dose, no change in ACTH
D:  Low-dose, no change in ACTH; high-dose, decreased ACTH 

E1: If cortisol production is driven by an ACTH producing pituitary 
adenoma  dexamethasone suppression is ineffective at low doses but 
usually induces suppression at high doses. Inappropriately low ACTH 
levels in the setting of low cortisol levels are characteristic of 
diminished ACTH reserve. 
E2: High dose dexamethasone suppresses ACTH production by a 
pituitary adenoma  serum cortisol is lowered  but does not suppress 
ectopic ACTH production  serum cortisol remains high. Cortisol 
stimulates gluconeogenesis and insulin resistance  resulting in 
hyperglycemia as well as muscle cell protein breakdown and lipolysis 
to provide sub strates for hepatic gluconeogenesis.
E3: The mechanism of hypertension may be related to stimulation of 
mineralocorticoid receptors by cortisol and increased secretion of 
other adrenal steroids. High ACTH decreased negative feedback leads 
to bilateral adrenal hyperplasia.

Evidences of Option D:

✔

Figure 1: An example from MedQA-USMLE dataset.
(✓: correct answer option).

2020; Dai et al., 2022) has attracted growing atten-
tion due to its great application value and technical
challenges. As Figure 1 shows, compared with
open-domain MRC tasks, BioQA raises higher de-
mands for understanding professional biomedical
evidences and relies more on complex reasoning
based on semantics within and among evidences
to predict answers, which is also difficult for hu-
mans. The pass rate of the human examinee is less
than 14.2% in the National Licensed Pharmacist
Examination in China (Li et al., 2020). While in
open-domain MRC, the human performance can
reach 86.8% Exact Match (Rajpurkar et al., 2018).

Due to the extremely high cost of collection
and annotation of the biomedical data, BioASQ
(Tsatsaronis et al., 2012) was for a long time the
only authoritative benchmark for the development
of BioQA systems. Recently, more high-quality

https://github.com/mikeblueskydl/HDRN
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datasets have further contributed to the develop-
ment of the field, such as NLPEC (Li et al., 2020),
MedQA-USMLE (Zhang et al., 2018), and Pub-
MedQA (Jin et al., 2019). Some researchers have
explored pre-trained language models to solve this
task (Huang et al., 2019; Beltagy et al., 2019a; Lee
et al., 2020; Dai et al., 2022). Meanwhile, some
researchers have introduced external biomedical
knowledge to aid the model in answering questions.
(Zhang et al., 2018; Yue et al., 2020). Despite
the success, previous works mainly explore a bet-
ter language model or external domain knowledge,
which is insufficient to deal with BioQA in complex
scenarios which require complex reasoning based
on the semantics within and among evidences to
answer the question. Intuitively, it is essential to
explore a better representation learning method for
biomedical evidences and a better reasoning mech-
anism for complex biomedical questions.

To tackle this problem, we propose a novel
model, termed Hierarchical Representation-based
Dynamic Reasoning Network (HDRN), to achieve
this goal in two main parts. First, constructing hier-
archical representations to learn semantics within
and among the biomedical evidences needed to rea-
son the answer. To this end, we first use a shared
pre-trained language model to obtain the intra-level
representations of the question and evidences sep-
arately. Then, we construct coarse to fine-grained
inter-level representations of evidences to learn se-
mantics among them. Second, conducting multi-
step dynamic reasoning based on the hierarchical
representations to predict the answer. At each step,
it adaptively aggregates critical information from
hierarchical representations according to current
state and conducts single-step reasoning to update
the state. All intermediate reasoning results are
dynamically integrated to predict the answer.

To sum up, the contributions of our work are as
follows:

• We propose HDRN, a novel neural network
used for semantic representation learning and
reasoning for BioQA.

• We design a hierarchical representation learn-
ing method to learn semantics within and
among the biomedical evidences.

• We design a novel reasoning mechanism that
iteratively performs multi-step dynamic rea-
soning to solve complex biomedical ques-
tions.

• We achieve state-of-the-art performances on
three BioQA datasets, and the experiment re-
sults demonstrate the superiority of each com-
ponent of the proposed model.

2 Related Work

Biomedical Question Answering BioQA is an
emerging and challenging task. Given a question,
it requires intelligent systems to understand the
complex biomedical domain expertise and reason
the answers. Meanwhile, collecting and anno-
tating data requires experts with a medical back-
ground to complete, which is difficult and costly.
BioASQ (Tsatsaronis et al., 2012) is a benchmark
for biomedical semantic indexing and question an-
swering for a long time. Recently, many works
have made efforts to construct more high-quality
and challenging BioQA datasets. The datasets can
be mainly divided into two categories, the first
category is constructed based on biomedical do-
main publications or electronic medical records,
including emrQA (Pampari et al., 2018), MedQA-
USMLE (Zhang et al., 2018), and PubMedQA (Jin
et al., 2019). The second category is constructed
based on biomedical examinations from different
countries, including Head-QA (Vilares and Gómez-
Rodríguez, 2019) and NLPEC (Li et al., 2020).
To tackle this task, most of previous works have
optimized the language model by pre-training on
biomedical domain-related corpus, and obtained
great success (Peng et al., 2019; Alsentzer et al.,
2019; Jin et al., 2019; Beltagy et al., 2019b; Lee
et al., 2019; raj Kanakarajan et al., 2021; Yasunaga
et al., 2022). In addition, Yue et al. (2020) ex-
plored the external clinical domain knowledge to
enhance the generalization of the model. Yasunaga
et al. (2021) explored joint reasoning over text
and knowledge graph for BioQA. Dai et al. (2022)
solved the parameter competition problem via a
Mixture-of-Expert.

Unlike previous works, our proposed HDRN
model has two distinctive characteristics: (1) It
explores a hierarchical representation learning
method that can better learn semantics within and
among evidences. The effectiveness of the similar
idea of hierarchical representation learning method
has also been validated in the vision (Lan et al.,
2014), recommendation (Jiang et al., 2018) do-
mains, our proposed method is better adapted to
the characteristics of professional biomedical ev-
idences. (2) It explores a novel dynamic reason-
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ing mechanism that adaptively aggregates critical
information from hierarchical representations for
multi-step reasoning and dynamically integrates
intermediate reasoning results to predict answers.
Although the concept of multi-step reasoning mech-
anism has been mentioned in other natural language
processing tasks (Haug et al., 2018; Liu et al., 2020;
Zhao et al., 2021) or domains (Song et al., 2018;
Gan et al., 2019; Le et al., 2021), our proposed
mechanism has more flexible and powerful infor-
mation convergence and reasoning capabilities for
biomedical question answering.

3 Background

BioQA is a classification task that uses accuracy as
the evaluation metric. Specifically, given a natural
language question Q and evidences C, it requires
the intelligent system to predict the correct option
ô from the candidate set Ωo based on the under-
standing of the evidences C. θ is set of the model
parameters.

ô = argmax
o∈Ωo

P (o|Q,C; θ) (1)

As Figure 2 (a) shows, most previous works
treat BioQA as a semantic matching task. They
first concatenate all information together, including
questions and evidences, then encode them using
a language model, and finally predict the best op-
tion by computing the semantic matching score
with a multi-layer perceptron. The previous works
accomplish both representation learning and rea-
soning using a single model. There are two main
drawbacks: (i). Lack of deep understanding of
biomedical evidences. The hierarchical informa-
tion among evidences is easily lost when all the
information is mixed together for encoding. (ii).
Lack of strong reasoning capability. Single-step
implicit reasoning does not cope well with complex
questions and evidences. In terms of human expe-
rience, the reasoning is usually an iterative process
that requires multi-step to solve complex questions.

As Figure 2 (b) shows, to address the problem,
we propose HDRN, a network for representing
learning and reasoning for BioQA. It first con-
structs hierarchical representations to obtain a deep
understanding of the biomedical evidences, and
then performs multi-step dynamic reasoning to
solve complex questions.

4 Method

In this section, we describe the detail of the pro-
posed method. The overall architecture is shown
in Figure 3, which consists of two components: (a)
Dynamic Reasoning Mechanism, which can better
solve complex biomedical questions by conduct-
ing multi-step dynamic reasoning. (b) Hierarchical
Representation Learning, which can better under-
stand the biomedical evidences by learning the se-
mantics within and among the them.

4.1 Hierarchical Representation Learning
Each BioQA instance usually contains multiple ev-
idences related to the question, and the semantic
information within and among evidences are essen-
tial for reasoning. We propose a hierarchical repre-
sentation learning method to obtain a deep under-
standing of the evidences. Specifically, it consists
of three levels of representations, (1) Intra-level
Representations: learning the semantic informa-
tion of each evidence. (2) Coarse-grained Inter-
level Representations: learning the correlations
among evidences based on token representations of
all evidences. (3) Fine-grained Inter-level Rep-
resentations: learning more abstract correlations
among evidences based on sentence representations
of all evidences.

Intra-level Representations Given a question
Q, and the set of M evidence sentences
C = {cm}Mm=1, we use a pre-trained language
model(PLM) as the language encoder to extract
intra-level representations. E.g., given a sentence
S with T tokens, where S ∈ RT×1, we first add
a special token [cls] at the beginning as input. Af-
ter encoding by the language encoder, we obtain
the representations RS ∈ R(T+1)×dl , where dl is
the output feature dimension of language encoder.
Specifically, for the set of evidence sentences C,
we first concatenate each evidence cm with ques-
tion Q, and take the representations of all tokens as
their intra-level representations RC = {RCm}Mm=1,
where RCm ∈ R(T+1)×dl .

RCm = PLM([Q; cm]) (2)

where ; is the concatenate operation.
Question Q has only one sentence that does not

contain hierarchical information, so we choose the
representations of [cls] token as the representations
of the question RQ ∈ R1×dl , which is sufficient
to represent the semantics of the whole sentence
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Pre-trained Language Model (PLM)

Classifier

Question  +  Evidence 1  +  …  +  Evidence N

(a). Paradigm of previous works

Evidence 1Question

PLM PLMPLMPLM

… Evidence N

Dynamic Reasoning

Hierarchical 
Representation Learning

Answer

Classifier

(b). Ours

Answer

Figure 2: Comparison of the model architecture between our method and previous works. Unlike previous
works that adopt a unified model to conduct representation learning and single-step implicit reasoning, our method
constructs hierarchical representations to understand biomedical evidences and conduct multi-step dynamic reason-
ing to solve complex questions.

and makes the subsequent reasoning process more
elegant.

RQ = PLMCLS([Q]) (3)

Coarse-grained Inter-level Representations
We construct the coarse-grained inter-level rep-
resentations to learn the correlations among evi-
dences paragraphs that are important for reason-
ing. Specifically, we concatenate the intra-level
representations of M evidence paragraphs RC =
{RCm}Mm=1 into a sequence

RC
concat = [RC1 ;RC2 ; ...;RCM ] (4)

where RC
concat ∈ RM(T+1)×dl .

Then, we use Scaled Dot-Product Attention
(Vaswani et al., 2017) to update the representations
of each token according to the representations of
other tokens in all evidence paragraphs to learn the
semantic relationships among all evidences.

R
′C
concat = Attention(RC

concat, R
C
concat, R

C
concat)

(5)

Attention(Q,K, V ) = softmax(
QK⊤

dl
)V (6)

Then, we apply a linear projection layer and a
residual connection on the updated representations
R

′C
concat

R
′C
concat = RC

concat + Linear(R
′C
concat) (7)

Finally, we obtain the coarse-grained inter-level
representations RC

cInter = {RCm
cInter}Mm=1 by slic-

ing the R
′C
concat according to the length of the evi-

dence paragraphs.

Fine-grained Inter-level Representations In or-
der to learn more abstract correlations among ev-
idences, we construct the fine-grained inter-level
representations. Specifically, we concatenate the
coarse-grained inter-level representations of the
[cls] token for each evidence paragraphs into a vec-
tor sequence

RCcls

cInter = [R
Ccls

1
cInter; ...;R

Ccls
M

cInter] (8)

where R
Ccls

m
cInter ∈ R1×dl .

Then we use the same attention, linear pro-
jection layer and residual connection as learning
the coarse-grained inter-level representations to
obtain the fine-grained inter-level representations
RC

fInter ∈ RM×dl

R
′Ccls

cInter = Attention(RCcls

cInter, R
Ccls

cInter, R
Ccls

cInter)
(9)

RC
fInter = RCcls

cInter + Linear(R
′Ccls

cInter) (10)
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Figure 3: Overall architecture of the proposed HDRN. It contains two components: (a) Dynamic Reasoning
Mechanism (described in section 4.2) and (b) Hierarchical Representation Learning (described in section 4.1).

4.2 Dynamic Reasoning Mechanism

In general, reasoning is an iterative process that
requires constantly updating the current state ac-
cording to the state-related information and grad-
ually reasoning out the answer. Inspired by the
nature of human reasoning mechanism, we design
the Dynamic Reasoning Mechanism to imitate the
process. It iteratively performs multi-step dynamic
reasoning to predict the answer. At each step of rea-
soning, it adaptively aggregates hierarchical repre-
sentations (Information Convergence) according
to the current state and performs single-step reason-
ing to obtain the intermediate result and update the
state. Each intermediate reasoning result focuses
on different parts of the hierarchical information.
Thus, we integrate them dynamically to predict the
answer better. (Dynamic Integration). We set the
initial state E1 to the question representations RQ

at the first reasoning step. When performing the
jth step of reasoning, the state is Ej :

Information Convergence We get state-related
information {HC , HC

cInter, H
C
fInter} from hier-

archical representations {RC , RC
cInter, R

C
fInter}

through Scaled Dot-Product Attention according to
the current state Ej .

HC = softmax(
EjR

C⊤

dl
)RC (11)

HC
cInter = softmax(

EjR
C⊤
cInter

dl
)RC

cInter (12)

HC
fInter = softmax(

EjR
C⊤
fInter

dl
)RC

fInter (13)

Then, we apply a linear layer with softmax as the
activation function on the state-related information
to calculate the distribution of weight D and get the
weighted sum as the reasoning-related information
V .

D = softmax({HC , HC
cInter, H

C
fInter}) (14)

V = D · [HC ;HC
cInter;H

C
fInter] (15)

Reasoning We perform single-step reasoning ac-
cording to the current state Ej and the reasoning-
related information V to obtain the intermediate
reasoning results Kj .

Kj = Ej +ReLU(W1V + b1)W2 + b2 (16)

where W1 and W2 are weight matrices and b1 and
b2 are biases.
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Methods Accuracy (%)
Test

BlueBERT (Peng et al., 2019) 48.4
ClinicalBERT (Alsentzer et al., 2019) 49.0
PubMedBERT (Jin et al., 2019) 55.8
SciBERT (Beltagy et al., 2019b) 57.3
BioBERT (Lee et al., 2019) 60.2
BioELECTRA (raj Kanakarajan et al., 2021) 64.0
UNIFIEDQA-v2 (Khashabi et al., 2022) 64.2
BioLink-BERT (Yasunaga et al., 2022) 72.1

HDRN (Ours) 76.6

Table 1: Performance comparison on the Pub-
MedQA.

At the next step, we set the state Ej+1 to the
Kj . The above Information Convergence and Rea-
soning process is performed again based on the
state Ej+1. We obtain J intermediate reasoning re-
sults K = {K1, ...,KJ} after repeating the above
process J times.

Dynamic Integration After J steps of reason-
ing, we obtain all intermediate reasoning results
K = {K1, ...,KJ}. We integrate them by apply-
ing a nonlinear transformation with the softmax
function.

KI = softmax(WIK + bI)K (17)

4.3 Classifier

Given the integrated reasoning results KI , we use a
linear layer as a classifier to obtain the logits lk for
the answer options. Then we calculate the probabil-
ity distribution of each answer option by applying
a softmax function. We use cross-entropy loss as
our model loss L to update the model parameters.

lk = classifier(KI) (18)

ŷ = softmax(lk),L = CrossEntropy(ŷ) (19)

5 Experiments

5.1 Datasets

As mentioned in Section 2, there are mainly two
categories of datasets. In our work, we select three
widely used and challenging datasets in two cate-
gories to evaluate the model performance. Among
them, the MedQA-USMLE and PubMedQA are
in english, and the NLPEC is in chinese. We use
accuracy to measure the model performance.

Methods Accuracy (%)
Test

BERT (Devlin et al., 2018) 34.3
BioRoBERTa (Gururangan et al., 2020) 36.1
BioBERT (Lee et al., 2019) 36.7
PubMedBERT (Jin et al., 2019) 38.1
QAGNN (Yasunaga et al., 2021) 38.0
GreaseLM (Zhang et al., 2022) 38.5
MoE-BQA (Dai et al., 2022) 41.6
BioLink-BERT (Yasunaga et al., 2022) 44.6

HDRN (Ours) 47.6

Table 2: Performance comparison on the MedQA-
USMLE.

Methods Accuracy (%)
Test

BiDAF (Seo et al., 2016) 43.6
Co-Matching (Wang et al., 2018) 45.8
SeaReader (Zhang et al., 2018) 48.4
Multi-Matching (Tang et al., 2019) 48.7
BERT-base (Devlin et al., 2018) 52.2
ERNIE (Sun et al., 2019) 53.4
RoBERTa-wwm-ext-large (Cui et al., 2021) 57.9
KMQA (Li et al., 2020) 61.8
MoE-BQA (Dai et al., 2022) 62.2

HDRN (Ours) 63.5

Table 3: Performance comparison on the NLPEC.

PubMedQA PubMedQA is a large scale English
BioQA dataset collected from PubMed abstracts. It
contains a total of 273.5k QA examples, of which
1k expert-annotated, 211.3k artificially generated,
and 61.2k unlabeled. The number of examples
for the train/dev/test set is 272,950/50/500. Each
instance consists of a question, a context which is
the abstract from PubMed without its conclusion,
and a long answer which is the conclusion of the
context. It requires answering the question with
yes/no/maybe based on the reasoning over context.

MedQA-USMLE MedQA-USMLE is a large
scale multilingual BioQA dataset collected from
the National Medical Board Examinations in the
USA, Mainland China, and Taiwan. Most previ-
ous work only used English subset for training and
evaluation, so we also use English subset for fair
comparison. The English subset contains 12k QA
examples in total. The number of examples for
the train/dev/test set is 10,178/1,272/1,273. Each
example consists of a question, four candidate op-
tions with the correct one annotated. It requires
predicting the correct option corresponding to the
given question.



1486

NLPEC NLPEC is a large scale Chinese BioQA
dataset containing 21.7k multiple-choice ques-
tions with human-annotated answers collected
from the National Licensed Pharmacist Examina-
tion in China. The number of examples for the
train/dev/test set is 18,703/2,500/547. Each ques-
tion has five candidate options and evidences re-
trieved from the official exam guidebook that con-
tains the information needed to answer the question.
It requires predicting the correct option correspond-
ing to the given question.

5.2 Implementation Details

For all three datasets, we use the official dataset
splits to train and test our model. We set the num-
ber of evidences to 3. The feature dimension of
language encoder is set to 1024. We conduct our
experiments on NVIDIA A100 GPUs with 40GB
memroy.

PubMedQA We use BioLink-BERT’s (Yasunaga
et al., 2022) parameters as initialization parameters
for the language model. We use 450 annotated
examples and 10k randomly selected artificially
generated QA examples for model training. Our
model does not use long answers, which is more
challenging. The number of reasoning steps is set
to 3. We set the batch size to 32, and use AdamW
with β1=0.9 and β2=0.999 as the optimizer. We set
the learning rate to 3e-5. The maximum number of
epochs is set to 23.

MedQA-USMLE We use BioLink-BERT’s (Ya-
sunaga et al., 2022) parameters as initialization
parameters for the language model. We use BM25
to retrieve six sentences with highest scores for
each option from official guided books provided by
the datasets as evidences. The number of reasoning
steps is set to 2. We set the batch size to 32, and use
AdamW with β1=0.9 and β2=0.98 as the optimizer.
We set the learning rate to 3e-5. The maximum
number of epochs is set to 6.

NLPEC We use RoBERTa-wwm-ext-large’s
(Cui et al., 2021) parameters as initialization pa-
rameters for the language model. The number of
reasoning steps is set to 3. We set the batch size to
16, and use AdamW with β1=0.9 and β2=0.999 as
the optimizer. We set the learning rate to 3e-5. The
maximum number of epochs is set to 35.

5.3 Comparison with State-of-the-Arts
As shown in Table 1, 2 and 3, the proposed
method achieves the new state-of-the-art and
reaches 76.6% / 47.6%/ 63.5% accuracy on Pub-
MedQA / MedQA-USMLE/ NLPEC datasets with
4.5% / 3.0%/ 1.3% improvement over the previous
state-of-the-art method.

PubMedQA Table 1 shows the results on Pub-
MedQA dataset. The first to eighth lines show the
accuracy of the previous state-of-the-art methods
on the test set. These methods follow a semantic
matching paradigm to solve this task and achieve
competitive results. They first use language mod-
els to encode questions, options, and evidences,
and then perform single-step implicit reasoning to
predict the answer. Most of the previous works op-
timize the performance of the pre-trained language
models on BioQA by pre-training with biomedical
domain-related corpus. These pre-trained language
models can all benefit from the better semantic
representation and reasoning capabilities of our
method. Specifically, our method gains 4.5% im-
provement compared with the baseline BioLink-
BERT (Yasunaga et al., 2022) on test set.

MedQA-USMLE Table 2 shows the results on
MedQA-USMLE dataset. The first to eighth lines
shows the accuracy of the previous state-of-the-art
methods on the test set. These models also follow
the semantic matching paradigm to solve this task.
Furthermore, by introducing external knowledge
and conducting joint reasoning over text and graph
(Yasunaga et al., 2021), the performance is further
improved. Our method gains 3.0% improvement on
test set compared with the baseline BioLink-BERT.

NLPEC Table 3 shows the results on NLPEC
dataset. The first to ninth lines show the accu-
racy of the previous state-of-the-art methods on the
test set. These models also follow the semantic
matching paradigm to solve this task. Furthermore,
by retrieving external biomedical knowledge (Li
et al., 2020), the semantic matching capability of
the model can be enhanced. By introducing a mix-
ture of experts (Dai et al., 2022) to alleviate the
parameter competition problem, where each expert
handles a specific type of question, providing better
single-step reasoning capabilities. Our method ben-
efits from the proposed better semantic representa-
tion learning method and more powerful dynamic
reasoning mechanisms. Specifically, our method
gains 5.6% improvement compared with the base-
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Models Test Accuracy (%)
PubMedQA MedQA NLPEC

HDRN (Ours) 76.6 47.6 63.5
w/o Hierarchical Representation Learning 75.2 (1.4 ↓) 46.9 (0.7 ↓) 62.4 (1.1 ↓)
w/o Dynamic Reasoning Mechanism 75.0 (1.6 ↓) 46.8 (0.8 ↓) 62.3 (1.2 ↓)

Hierarchical Representation Learning
w/o Fine-grained Inter-level 75.6 (1.0 ↓) 46.7 (0.9 ↓) 63.3 (0.2 ↓)
w/o Coarse-grained Inter-level 75.6 (1.0 ↓) 46.9 (0.7 ↓) 62.6 (0.9 ↓)
w/o Intra-level 75.8 (0.8 ↓) 46.4 (1.2 ↓) 62.8 (0.7 ↓)

Dynamic Reasoning Mechanism
w/o Information Convergence 75.7 (0.9 ↓) 46.9 (0.7 ↓) 62.9 (0.6 ↓)
w/o Dynamic Integration 75.6 (1.0 ↓) 46.8 (0.8 ↓) 62.5 (1.0 ↓)

Table 4: Ablation study on three BioQA datasets.

1 2 3 4 5
Number of Reasoning Steps

74.8
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75.2
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NLPEC

Figure 4: Effect of the Number of Reasoning Steps. The optimal number of reasoning steps for the PubMedQA,
MedQA-USMLE, and NLPEC are 3, 2, and 3 respectively.

line RoBERTa-wwm-ext-large (Cui et al., 2021)
on test set and gains 1.3% improvement compared
with the latest work Moe-BQA (Dai et al., 2022).

5.4 Ablation Study

Table 4 shows the results of the ablation study on
three BioQA datasets, which demonstrate the supe-
riority of each component. From the experimental
results, if there is no Dynamic Reasoning Mech-
anism, the model performs single-step reasoning
based on the output of the language model as in
most existing works, and the model performance
decreases. If there is no Hierarchical Represen-
tation Learning, all information is concatenated
together for representation learning, which is the
same as the previous works shown in Figure 2 (a),
and the model performance further decreases. In
addition, we conduct further ablation experiments
to analyze the effectiveness and superiority of two
key improvements. For Dynamic Reasoning, if
there is no Information Convergence, the model
cannot dynamically select hierarchical representa-
tions for reasoning according to the current state,
and the model performance decreases, if there is
no Dynamic Integration, the model only uses the

result of the last step of reasoning to predict the
answer, losing the key information in the reason-
ing process, and the performance decreases. For
Hierarchical Representations, we remove different
levels of representations separately to explore the
effectiveness of each level representation, and the
experimental results show that removing different
levels of representation degrades the performance
to different degrees.

Effect of the Number of Reasoning Steps Fig-
ure 4 shows the effect of the number of reasoning
steps. When the number of steps is 1, the pro-
cess is the same as the classical single-step implicit
reasoning paradigm. Empirically, the number of
reasoning steps is related to the problem complex-
ity, and the performance gradually increases as we
gradually increase the number of reasoning steps.
However, when the number of reasoning steps is
too large, the performance degrades due to the mis-
match between the reasoning process and the prob-
lem complexity. The optimal number of reasoning
steps varies slightly for different data distributions.
The optimal number of reasoning steps for the Pub-
MedQA, MedQA-USMLE, and NLPEC are 3, 2,
and 3 respectively.
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6 Conclusion

This paper proposes HDRN, a novel model for rep-
resentation learning and reasoning for biomedical
question answering. First, we construct hierarchi-
cal representations to obtain a deep understanding
of the biomedical evidences. Then, we perform
multi-step dynamic reasoning to solve complex
biomedical questions. We evaluate our model on
three BioQA datasets and achieve new state-of-the-
art performances.
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