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Abstract

Verbal communication is companied by rich

non-verbal signals. The usage of gestures,

poses, and facial expressions facilitates the

information transmission in verbal channel.

However, few computational studies have ex-

plored the non-verbal channels with finer theo-

retical lens. We extract gesture representations

from monologue video data and train neural se-

quential models, in order to study the degree

to which non-verbal signals can effectively

transmit information. We focus on examining

whether the gestures demonstrate the similar

pattern of entropy rate constancy (ERC) found

in words, as predicted by Information Theory.

Positive results are shown to support the as-

sumption, which leads to the conclusion that

speakers indeed use simple gestures to convey

information that enhances verbal communica-

tion, and the production of non-verbal informa-

tion is rationally organized.

1 Introduction

Communication is a multi-modal process, in which

information from verbal and non-verbal modalities

are mixed into one channel. It has been revealed

from a long history of empirical studies that speak-

ers’ expression in visual modality, including ges-

tures, body poses, eye contacts and other types of

non-verbal behaviors, play critical roles in face-to-

face communication, as they add subtle information

that is hard to convey in verbal language (Pease and

Pease, 2008; Krauss et al., 1996). However, it re-

mains an untested idea to view these sparse and

random non-verbal signals as a formal communica-

tion channel that transmits “serious” information,

which has seldom been validated by computational

studies. A key missing step is to explore whether

the non-verbal information can be quantified.

The questions that are worth further investigation

include: How rich is the information contained in

these non-verbal channels? What are their relation-

ships to verbal information? Can we understand the

meanings of different gestures, poses, and motions

embedded in spontaneous language in a similar

way to understanding word meanings? The goal of

this study is to take a simple yet necessary first step

approaching the above questions, by examining a

basic Information Theoretic property of gestures

that comes along with verbal language. Some pre-

liminary but prospective results are presented.

2 Related Work

2.1 Gestures as non-verbal communication

There is vast literature on the connection between

gesture and language in human communication.

Gestures, defined as “the spontaneous hand move-

ments produced in rhythm with speech” (Clough

and Duff, 2020) naturally co-occur with spoken

language. According to the thorough survey from

(Clough and Duff, 2020), the communication func-

tion of gestures is one of the main focus of

early studies. McNeill (1992) has classified ges-

tures into two categories, representative and non-

representative, in which the former has clearer se-

mantic meanings (e.g., depicting objects and de-

scribing locations), while the latter refers to the

brief, repetitive movements that has little substan-

tive meanings.

2.2 Non-verbal communication in natural

language processing

The recent advances of deep neural network-based

machine learning techniques provide new methods

to understand the non-verbal components of human

communication. Many existing works primarily fo-

cus on using multi-modal features as clues for a

variety of inference tasks, including video content

understanding and summarization (Li et al., 2020;

Bertasius et al., 2021), as well as more specific

ones such as predicting the shared attention among

speakers (Fan et al., 2018) and semantic-aware ac-

tion segmentation (Gavrilyuk et al., 2018; Xu et al.,
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2019). More recently, models that include mul-

tiple channels have been developed to character-

ize context-situated human interactions (Fan et al.,

2021). Advances in representation learning have

enabled researchers to study theoretical questions

with the tools of multi-modal language models.

2.3 Information theories

Information theory (Shannon, 1948) has been

broadly applied in computational linguistics as the

theoretic background for the probabilistic models

of language. This also provides philosophical ex-

planations to a broad spectrum of linguistic phe-

nomena. One example that interests researchers the

most is the assumption/principle of entropy rate

constancy (ERC). Under this assumption, commu-

nication in any form (written or spoken) should

optimize the rate of information transmission rate

by keeping the overall entropy rate constant.

In natural language, entropy refers to the pre-

dictability of words (tokens, syllables) estimated

with probabilistic language models. Genzel and

Charniak (2002, 2003) first formulated a method to

examine ERC for written language, by decompos-

ing the entropy term into local and global entropy:

H(s|context) = H(s|L)− I(s, C|L) (1)

in which s can be any symbol whose probability

can be estimated, such as a word, punctuation, or

sentence. C and L refer to the global and local

contexts for s, among which C is purely concep-

tual and only L can be operationally defined. By

ERC, the left term in eq. (1) should remain an in-

variant against the position of s. It results in an

expectation that the first term on the right H(s|L)
should increase with the position of s, because the

second term I(s, C|L), i.e., the mutual information

between s and itself global context should always

decrease (see Genzel and Charniak (2003)’s paper).

Xu and Reitter (2016, 2017, 2018) has confirmed

the pattern in spoken language.

Now, the goal of this study is to extend the ap-

plication scope of ERC to the non-verbal realm.

If the s in eq. (1) represents any symbol that car-

ries information, for example, a gesture, then the

same increase pattern should be observed within

a sequence of gestures. ERC can be interpreted

as a “rational” strategy for the information sender

(speaker) because it requires less predictable con-

tent (higher local entropy) to occur at a later po-

sition within the message, which maximizes the

likelihood for the receiver (listener) to successfully

decode information with the least effort. The ques-

tion here is to examine whether we “speak” ratio-

nally by gestures.

3 Question and Hypothesis

Our hypothesis is: non-verbal communication also

conforms to the principle of ERC. To test it, we

approximate the local entropy (H(s|L)) of non-

verbal “tokens” using the perplexity scores ob-

tained from neural sequential models, and correlate

it with the utterances’ relative positions within the

monologue data. If we can find that H(s|L) in-

creases with utterance position, is similar to verbal

language, then it supports the hypothesis.

4 Methods

4.1 Data collection and pre-processing

The video data that we use is collected from several

YouTube channels. All the videos are carefully

selected based on the standards that each video

must contain only one speaker who faces in front

of the camera, and whose hands must be visible.

12 videos from 5 hosts are collected, and the mean

duration is 15.0 minutes (SD = 7.0).

The pre-processing step is to extract the full-

body landmark points of the speaker, in prepara-

tion for the next gesture representation step. For

this task, we use BlazePose (Bazarevsky et al.,

2020), which is a lightweight convolutional neural

network-based pose estimation model provided in

MediaPipe1. It outputs 33 pose landmarks of the

human body detected in each frame.

4.2 Extract gesture labels

The next step is to represent gestures so that they

can be encoded by the neural sequential model.

There are various ways of creating continuous rep-

resentations for gestures/poses, such as the pose

embedding technique (Mori et al., 2015). However,

it is difficult to obtain a set of gestures that are

universal across speakers using such continuous

representations. Thus, for the purpose of this study,

we extract discrete gesture labels, by categorizing

the hands positions into grids. We divide the front

space of speaker into 3× 3 regions, i.e., indicated

by integer numbers from 1 to 9. Each hand is

assigned a number based on which region it falls

into. Next, we use the combination of both hands

1https://google.github.io/mediapipe/

https://google.github.io/mediapipe/
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to create a unique gesture label for that frame. For

example, as shown in fig. 1b, the speaker’s left and

right hands fall into region 9 and 8, which deter-

mines its gesture label as <72>. For convenience,

we use one integer ID (instead of the merged ID

connected by a hyphen) to denote each of these 81

gestures: <1>, <2>, ..., <81>. The total number

of gesture labels is 9× 9 = 81. Note that 81 is the

theoretical maximum number, and the actual count

depends on the size of data.

4.3 Prepare gesture sequences

After obtaining the discrete gesture labels for all

video frames, we prepare the gesture sequences

based on the time stamped text transcript for each

video. We use the automatically generated text

transcript in .vtt format, which contains the start

and end time stamps for each word token in the

subtitle. See the following example:

<00:00:00.510><c> let’s</c>

<00:00:00.780><c> talk</c>

<00:00:01.020><c> about</c>

in which each the start time stamp is appended

to the head, and the start time for a token is the end

time for the previous token. In this example, the

token talk elapses from 0.780 to 1.020 in seconds.

Multiplying the time stamps with frame rate (24

FPS) returns that the word elapses from the 19th

frame to the 24th. Then, for each frame within the

range of [19, 24], we extract a gesture label using

the method described in Section 4.2, resulting in a

sequence of gesture labels, [g19, g20, . . . , g24]. This

sequence represents a continuous change of ges-

tures during the articulation of the corresponding

word, which in most cases, consists of identical ges-

ture labels. Therefore, we select the median label g

among [g19, . . . , g24] as a compact representation.

For a sentence of N wordss, we obtain the me-

dian gesture label for each token, {g1, g2, . . . , gN}.

Despite the down sampling effect of using the me-

dian label, there is still large amount of repetition

in the resulted sequence. For example, in the first

row of table 1, the median gesture label is the same

<24> for the first 6 tokens, which means that the

speaker did not move his/her hands during that pe-

riod of time. It makes sense that we treat these

repeated gesture labels just as one label. By merg-

ing the 6 repeats of <24> and 2 repeats of <36>,

we get a compressed gesture sequence, {<36>,

<24>}, which means the speaker has made two

distinct gestures during the utterance. For each

median gesture sequence of length N , we obtain

its compressed version {ĝ1, ĝ2, . . . , ĝN ′}, where

N ′ ≤ N . See table 1 for examples.

5

1 2 3

7 8 9

4 6

(a) Both hands in region 5 →

label <25>.

8 9

1 2 3

7

4 65

(b) Right hand in region 9, left
in 8 → label <72>.

Figure 1: Create discrete gesture labels based on land-

mark positions of both hands.

4.4 Sequential models for gesture input

We implement two neural network-based models

for the sequential modeling tasks, using LSTM

(Hochreiter and Schmidhuber, 1997) and Trans-

former (Vaswani et al., 2017) encoders. The model

takes as input a sequence of gesture labels (median

g or compressed ĝ) and convert them to the em-

bedding space. Then the gesture embeddings are

fed to the LSTM/Transformer encoders to capture

the temporal dependency between gestures, which

compute a dense representation for gestures at each

time step. Lastly, the dense representation at the

previous time step is used to predict the gesture

label at the next time step using a softmax output.

The model architecture is shown in fig. 2.

<63> <63> <63> <36> <72> <64> <64><63> <63> <63> <72> <72> <72> <72>

… …

encoder

unit

encoder

unit

encoder

unit

encoder

unit LSTM/Transformer encoder

!𝑦 for predicting the next gesture

Gesture embedding

recommendThere is one thing that I confidenceevery

… …

… that will help theirboost

Softmax

Gesture 

sequence: 

Word 

sequence: 

Figure 2: Architecture of the sequential model for en-

coding gesture input and next time-step prediction.

The learning task is to predict the next gesture

label, i.e., minimizing the negative log probability:

NLL = −
T∑

t=1

logP (gt|g1, g2, . . . , gt−1) (2)

in which g1, . . . , gt−1 is all the gesture tokens be-

fore gt within the same utterance. An exponential

conversion of eq. (2) leads to the local entropy term,



137

Word tokens in utterance Median gesture g of each token Compressed gesture sequence ĝ

going to give you

a flatter look glossy
<24> <24> <24> <24> <24>
<24> <36> <36> (N = 8) <24> <36> (N ′

= 2)
now this is really

your preference
<40> <72> <64> <64> <40>
<40> (N = 6) <40> <72> <64> <40> (N ′

= 4)
I think most of us

can get on board
<63> <63> <63> <63> <63>
<63> <63> <63> <63> (N = 9) <63> (N ′

= 1)

Table 1: Examples of gesture sequences. Integers wrapped by “<>” are gesture labels. For each sequence, its

compressed version is shorter in length: N ′ < N
.

H(g|L) = exp(NLL), which is the target variable

of our interest. This learning task is no different

from conventional language modeling tasks, except

that the input here is non-verbal tokens. Detailed

model hyper-parameters and training procedures

are included in appendix A.1.

5 Results

5.1 Summary of data

53 videos are collected from 4 YouTube channels

(i.e., 4 distinct speakers). The average length of

videos is 723.7 seconds (SD = 438.1). There are

17.9K lines of automatically generated subtitles

consisting of 121.5K word tokens in total. 81 dis-

tinct gesture labels are extracted. The total count

of the median gesture label is the same as that of

the word tokens (121.5K). The compressed gesture

labels has a much smaller total count 26120.

The top 5 most frequent gesture labels are <63>,

<56>, <64>, <72> and <36>. The frequency

distribution of gesture labels roughly follows the

Zipf’s law, which is a common distribution pattern

in natural language data (Zipf, 2013; Piantadosi,

2014) (See fig. 3). Gesture label <63> is the domi-

nant gesture throughout the data. It is gestural po-

sition where the speaker’s right hand (from his/her

perspective) is in region 7, and left hand region 9.

5.2 Examine hypothesis: local entropy

increases with utterance position

The local entropy of each gesture sequence (median

and compressed, respectively) is plotted against the

corresponding utterance’s position in fig. 4, which

shows a visible increasing trend.

We use linear models to verify the correla-

tions between local entropy and utterance posi-

tion. It is confirmed that utterance position is a

significant predictor of local entropy with posi-

tive β coefficients. For raw gestures, the betas

are smaller: βLSTM = 1.6× 10−3 (p < .05),

βTrm = 2.3× 10−3 (p < .01); for compressed ges-

<63>
<56>

<64>
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Compressed
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Figure 3: Frequency count against the rank gesture la-

bels in logarithm transformed scales. Top three most

frequent gesture labels annotated.

tures: βLSTM = 0.097, βTrm = 0.093 (p < .001).

Therefore, the increase of local entropy is statisti-

cally significant. It supports our hypothesis.

5.3 Analysis of typical gesture

We select three highly frequent gesture labels

<63>, <56> and <72>, and show some typical

screenshots in fig. 5. In these gestures, the posi-

tions of both hands are at the mid-lower position

in front of the body. Gesture <63> has two hands

evenly distant from the center, while gesture <56>

captures a movement to the right and gesture <72>

to the left. In general, these are very commonly

seen patterns in daily communication.

6 Discussion and Conclusions

Our results confirms that the way gestures are used

as a complementary non-verbal communication

side-channel follows the principle of entropy rate

constancy (ERC) in Information Theory. It means

that the information encoded in hand gestures, al-

beit subtle, is actually organized in a rational way

that enhances the decoding/understanding of infor-

mation from a receiver’s perspective. The main

contribution is that we extend the scope of ERC to

realm of non-verbal communication.
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Figure 4: Local entropy of gesture sequences increases

with utterance position. 95% CIs are shown.

There are two explanations for what causes the

observed entropy increasing pattern: First, more

rare gestures (higher entropy) near the later stage of

communication; Second, the entropy for the same

gesture also increases during the communication.

While the latter indicates a more sophisticated and

interesting theory about gesture usage, both expla-

nations requires further investigation.

While the motivation of this study is theoretical,

but we believe the idea of extracting discrete ges-

ture labels from spontaneous monologue/dialogue

also has potentials in application. For instance, into

better analysis of speaker intensions, sentiments,

Video ID: 0iApML4l0lI Time stamp: 00:00:07.200

1 2 3

4 65

8

97
Gesture label: <63> Word token: “because”

Video ID: 7vkJqXYIbOI Time stamp: 00:01:11.850

1 2 3

4 65

8

97
Gesture label: <63> Word token: “reason”

Video ID: TgOmBWdK84k Time stamp: 00:02:04.479

1 2 3

4 65

8

97
Gesture label: <63> Word token: “enough”

Video ID: JVFbZhS40is Time stamp: 00:09:04.320

1 2 3

4 65

8

97
Gesture label: <63> Word token: “leader”

(a) Gesture label <63>
Video ID: 0iApML4l0lI Time stamp: 00:02:57.519

1 2 3

4 65

7
Gesture label: <56> Word token: “every”

8
9

Video ID: 7vkJqXYIbOI Time stamp: 00:00:37.559

1 2 3

4 65

7
Gesture label: <56> Word token: “books”

8
9

Video ID: TgOmBWdK84k Time stamp: 00:06:05.360

1 2 3

4 65

7
Gesture label: <56> Word token: “maintain”

8
9

Video ID: JVFbZhS40is Time stamp: 00:11:07.360

1 2 3

4 65

7
Gesture label: <56> Word token: “lot”

8
9

(b) Gesture label <56>
Video ID: 0iApML4l0lI Time stamp: 00:05:05.120

1 2 3

4 65

Gesture label: <72> Word token: “sending”

98
7

Video ID: FMIm8w2n7KM Time stamp: 00:07:36.540

1 2 3

4 65

Gesture label: <72> Word token: “like”

98
7

Video ID: TgOmBWdK84k Time stamp: 00:05:24.880

1 2 3

4 65

Gesture label: <72> Word token: “energy”

98
7

Video ID: JVFbZhS40is Time stamp: 00:01:09.920

1 2 3

4 65

Gesture label: <72> Word token: “well”

98
7

(c) Gesture label <72>

Figure 5: Typical screenshots for the top frequent ges-

ture labels <63>, <56> and <72>.

and other implicit messages. For future work, we

plan to use a larger dataset with a higher variety

in genres (public speech, etc.) and examine more

advanced representation method. such as continu-

ous embedding and clustering. It is also interesting

to interpret the semantic meanings of gestures and

other non-verbal features by examining their se-

mantic distance from words/utterances in vector

space. More specifically, non-parametric cluster-

ing algorithms can be used to identify distinct the

actions or poses of a person, which provides a way

to extract more general gesture/action/pose labels

for training.
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A Appendix

A.1 Hyper-parameters and training

procedures

For the LSTM-based encoder, embedding size is

300, hidden size is 200, number of layers is 2;

a fully connected layer is used as the decoder

connecting the encoder output and the softmax;

dropout layers of probability 0.2 are applied to the

outputs of both the encoder and decoder. For the

Transformer-based encoder, model size is 20, hid-

den size is 100, number of layers is 2; same fully

connected linear decoder is used; dropout layers of

probability 0.5 are used at the position encoding,

and each transformer encoder layer. To enable the

one-direction (left to right) modeling effect, a mask

matrix (of 0 and 1s) in an upper-triangular shape is

used together with each input sequence.

Model parameters are randomly initialized.

Training is done within 40 epochs, with batch size

of 20, at and initial learning rate lr = 0.05. SGD

optimizer with default momentum is used for train-

ing the LSTM model; Adam optimizer is used for

training the Transformer model. Data are split to

80% for training and 20% for testing. After each

training epoch, evaluation is done over the test

set, and the model with lowest perplexity scores is

saved as the best one.

Models are implemented with PyTorch.

torch.nn.CrossEntropyLoss module is

used as the loss function. The mathematical

meaning of the output from this function is the

negative logarithm likelihood (NLL in eq. (2)), and

thus we compute the exponential values of the

output to get the local entropy scores. The entropy

scores used in the plot and statistical analysis are

obtained from both train and test sets.
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