
CogALex-VII

The Workshop on Cognitive Aspects of the Lexicon

Proceedings of the Workshop

November 20, 2022



©2022 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-959429-01-2

ii



Preface

Being ubiquitous and versatile, words are important for many tasks: sharing, storing, processing
and accessing information. They are vital not only for communication, the acquisition, structuring
(categorization), maintenance and access of knowledge, but also for thinking: problem-solving, link
discovery, detection of similarities, metaphors and analogies. This being so, one may wonder
how to build tools supporting the learning of words (memorization) and the various types of usage
(access/navigation). Alas, the answer is not easy, as it depends on many factors: the task or
goal (production/reception), the user’s background (age, expertise), the momentary cognitive state
(information available at the onset of the search), the material support (book, computer), etc. Obviously,
words in books, computers, and the human brain are not the same. Being aware of this, different
communities (linguists, lexicographers, psychologists) have focused on different aspects: representation
and organization of words in dictionaries, creation of tools supporting navigation or conceptual search
(thesauri), time course of word access, etc. The situation is complex, as the respective views, methods
and research goals are not quite the same, all the more as they have changed considerably over time.

For example, rather than considering the lexicon as a static entity, where discrete units (words) are
organized alphabetically (database view), dictionaries are now viewed dynamically, i.e., as lexical graphs,
whose entities are linked in various ways (topical relations; associations) and whose link weights may
vary over time. Also, lexicographers view words as products, i.e., holistic entities, while psychologists
and neuroscientists view them as processes. Words are decomposed, and their synthesis requires
activation of various parts of our brain, each one of them being dedicated to a specific part (meaning,
form, sound) of the final form. The normal time course starts with some input (concrete object in the real
world, or, more or less clear ideas, abstract concepts) leading then, ’little by little’, to an output (word
form). All this is achieved in milliseconds, as normal discourse consists in the production of two to three
words per second.

Computational linguists have their own ways to look at words, which also have changed quite a bit
over time. Discrete count-based vector representations have successively been replaced by continuous
vectors (i.e., word embeddings), and then by language-model-based contextualized representations
which outperform the static models (including word-embeddings) in a broad range of tasks.

As one can see, different communities look at words from different angles, which can be an asset and a
problem. It is an asset, as complementary views may help us to broaden and deepen our understanding
of this fundamental cognitive resource. Yet, this diversity of perspectives can also be a problem, in
particular in a dynamic field like ours that is so rapidly moving on. Hence, it becomes harder and harder
for everyone, including experts, to remain fully informed about the latest changes (state of the art). This
is one of the reasons why we organize this workshop. More precisely, our goal is not only to keep people
informed without getting them crushed by the information glut, but also to help them to perceive clearly
what is new, relevant, and hence important. Last, but not least, we would like to connect people from
different communities in the hope that this may help them to gain new insights or inspiration.

This is the 7th edition of CogALex, the first one not to be associated with COLING, as CogALex-VII is
part of AACL-IJCNLP 2022. We have received 14 submissions, out of which we have selected 4 for oral
presentation, and 6 for posters. This amounts to a submission rate of 71% (28,5% for the papers, 42,5%
for the posters). In addition, we have an invited speaker, Massimo Stella from the CogNosco Lab of
the University of Exeter (UK). His talk — Multiplex networks and AI unveil the influence of the mental
lexicon on picture naming and its failures by people struck with aphasia.— fits our goal perfectly well,
as it demonstrates the potential of graph theory to shed some light on the structure and evolution of the
mental lexicon. We would like to express our thanks to him for having accepted to be our invited speaker.
Also, sincerest thanks to all the members of the Programme Committee. Their expertise was invaluable
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to ensure a good selection of papers despite the tight schedule. Their reviews were helpful not only for
us to make the decisions, but also for the authors, helping them to strengthen their work. We hope that
the work presented here will inspire you, generate fruitful discussions, and possibly lead to new ideas,
insights, and collaborations.

The CogALex-VII Workshop Chairs
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Abstract

It has been shown that multilingual transformer
models are able to predict human reading be-
havior when fine-tuned on small amounts of
eye tracking data. As the cumulated predic-
tion results do not provide insights into the lin-
guistic cues that the model acquires to predict
reading behavior, we conduct a deeper analy-
sis of the predictions from the perspective of
readability. We try to disentangle the three-fold
relationship between human eye movements,
the capability of language models to predict
these eye movement patterns, and sentence-
level readability measures for English. We
compare a range of model configurations to
multiple baselines. We show that the models
exhibit difficulties with function words and that
pre-training only provides limited advantages
for linguistic generalization.

1 Introduction

Eye movement data of reading provides rich in-
sights into cognitive processes of language under-
standing. The signal can be used to modulate the
inductive bias of machine learning models towards
more cognitively plausible processing which can
increase model performance (Mathias et al., 2020;
Hollenstein et al., 2019). It has been shown that
large multilingual pre-trained language models are
able to accurately predict eye tracking patterns
when fine-tuned on small amounts of eye track-
ing data (Hollenstein et al., 2021; Takmaz, 2022;
Salicchi et al., 2022).

Generally, transformer-based language models
seem to be better at predicting cognitive signals of
human language comprehension (e.g., self-paced
reading times, eye movements, or brain activity)
than language models based on other architec-
tures (Merkx and Frank, 2021; Schrimpf et al.,
2020). However, as prediction is not explanation
(Demberg and Keller, 2019; Hale et al., 2022), we
aim to dissect the predicted reading patterns and

analyze them in more detail to gain clearer insights
into the underlying representation of processing
complexity. Eye tracking data can be very
informative to evaluate sentence comprehension
strategies, however, the interdependencies between
the eye tracking measures need to be taken into
account (Vasishth et al., 2013). We propose to use
the relation between eye movements in reading and
text readability in terms of linguistic complexity to
better understand procedural patterns of English
sentence comprehension in language models. We
provide interpretable insights into the prediction
errors to investigate the following two questions:
(1) What is the impact of pre-training on the
performance of language models predicting human
eye movements?
(2) Is the relationship between human reading
patterns and English text readability preserved in
the reading patterns predicted by the investigated
language models?

We focus on multilingual pre-trained language
models (mBERT and XLM), fine-tuned on a range
of eye tracking features from reading in multiple
languages (English, German, Dutch, and Russian).
We build upon the approach by Hollenstein et al.
(2021) and provide strong baselines and a series of
model configurations to answer the first question
in Section 2. Subsequently, we address the second
question in Section 3, by performing an extensive
readability analysis based on various aspects of En-
glish text complexity. We propose to evaluate the
predicted gaze features by analyzing whether their
correlation with a range of readability measures is
similar to the correlation observed in human eye
movement data.1 These two contributions allow us
to better interpret the ability of language models to
predict human reading behaviour.

1Our code is available here: https://github.com/
norahollenstein/readability-patterns
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Models EN NL DE RU ALL

RANDOM BL 78.66 (0.06) 84.30 (0.11) 74.11 (4.6) 65.83 (2.55) 86.15 (0.43)
MEAN BL 89.94 90.15 84.98 85.35 92.54

MBERT

M☆ 90.95 (0.11) 90.51 (0.31) 75.68 (3.99) 70.64 (2.38) 92.93 (0.13)
M♡ 93.73 (0.08) 91.91 (0.23) 77.41 (3.65) 77.30 (4.17) 94.68 (0.05)
M☇ 93.30 (0.03) 91.60 (0.36) 77.85 (2.85) 77.38 (1.85) 94.35 (0.13)

XLM-100

M☆ 92.94 (0.05) 91.80 (0.40) 77.31 (2.75) 76.54 (1.92) 94.19 (0.10)
M♡ 93.92 (0.07) 92.26 (0.33) 86.38 (0.27) 94.65 (0.88) 94.89 (0.12)
M☇ 93.92 (0.16) 92.32 (0.36) 86.04 (0.28) 94.62 (0.84) 94.15 (1.20)

Table 1: Prediction accuracy aggregated across all eight eye tracking features (with standard deviation across three
runs in parentheses). Fine-tuned models: last layer (M☆), all layers (M♡), all layers without pre-training (M☇).

2 Multilingual Prediction of Eye
Movements in Reading

Hollenstein et al. (2021) showed that language mod-
els can predict a range of eye tracking features in
multiple languages. The prediction setup has been
made widely available as a shared task to facilitate
comparisons between models and the analysis of
their inner workings (Hollenstein et al., 2022). In
this work, we use a similar setup which we summa-
rize below before we present the results of the eye
tracking prediction.

2.1 Data

We use eye tracking corpora for sentences in four
languages: English, Dutch, German, and Russian.
Full sentences or longer naturally occurring text
spans were read by multiple native speakers (see
Appendix A.1 for detailed statistics) and tracked
by high-precision eye trackers. The datasets re-
port the following eye tracking features for each
token of the stimulus text: (NFIX), mean fixation
duration (MFD), fixation proportion (FPROP), first
fixation duration (FFD), first pass duration (FPD),
total reading time (TRT), number of re-fixations
(NREFIX), and re-read proportion (REPROP). All
features are first computed for each subject sepa-
rately by aggregating over the fixations, and then
averaged over all subjects.

These features arguably reflect the complete
reading process at the various stages of linguis-
tic integration, from early lexical access for word
recognition (e.g., FFD) up to subsequent syntactic
integration taking into account regression move-

ments (e.g., NREFIX). For a review of which eye
movement feature reflects which linguistic level,
see Clifton et al. (2007).

For more detailed information about the data
and the training procedure, see Hollenstein et al.
(2021).

2.2 Model Configurations

The model is optimized to predict eye tracking fea-
tures from reading as accurately as possible. For
each token w in the input text, we predict a vec-
tor containing the eight eye tracking features listed
above. We focus on the transformer-based models
multilingual BERT (Devlin et al., 2019) and cross-
lingual XLM-100 (Lample and Conneau, 2019).
We use pre-trained checkpoints from the Hugging-
Face repository.2

We propose the following baselines to bench-
mark model performance. First, we compare with
a random baseline (RANDOM BL), which presents
model predictions made from a randomly initial-
ized regression layer. Second, we use a mean
baseline averaged across all eye tracking features
(MEAN BL), which calculates the mean value for
each eye tracking feature from the training data and
uses it as a prediction for all words in the test data.

Since one of our goals is to evaluate the gains
from fine-tuning a pre-trained LM on eye tracking
data, we also compare fine-tuning all layers (we
call these models M♡), to fine-tuning only the final
regression layer (M☆). Finally, we investigate the
benefits of pre-training on large language corpora

2xlm-mlm-100-1280 and bert-base-multilingual-cased
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by comparing the fully fine-tuned pre-trained lan-
guage models (M♡) to a model trained from scratch
on randomly initialized weights (M☇).
2.3 Results
Since we scale all gaze features to values between
0–100, we evaluate the models using the mean
absolute error (MAE). For better readability, we
report the results as prediction accuracy, defined
as 100−MAE. The results are presented in Table 1.

Baseline comparison The performance of the
random baseline (RANDOM BL) is much lower than
that of the mean baseline (MEAN BL), and there-
fore is not suitable for comparison. XLM-100 out-
performs the mean baseline for all languages, but
mBERT does not reach it for German (DE) and
Russian (RU).

The impact of pre-training The results of the
pre-trained and fine-tuned language models (M♡)
and the transformer models trained from scratch
(M☇) show a very similar performance. This
demonstrates that the advantage of pre-training lan-
guage models on large text corpora is only minimal
for the task of predicting human eye movements.
When fine-tuning only the regression layer (M☆),
the models yield only modest (if any) improve-
ments over the MEAN BL. However, when all layers
of a model are fine-tuned (M♡), the differences be-
come more notable, especially for languages where
less eye tracking data is available (DE and RU).

Generally, XLM-100 yields better results than
mBERT for all languages, and especially for the
ones with smaller datasets (DE and RU). Our re-
sults are in line with previous work showing that
XLM models perform better at zero-shot eye track-
ing prediction for an unseen language than mBERT
(Srivastava, 2022). Similarly, Hollenstein et al.
(2021) find that mBERT is outperformed by mono-
lingual models for languages with small eye track-
ing training datasets.

This indicates that the architecture and training
objective of a model might be more important for
eye tracking prediction than pre-training on large
amounts of text. Transformer architectures are
promising for predicting reading times, but the ex-
tensive pre-training on text input might be superflu-
ous, as the models learn more from the fine-tuning
on psychometric features. This could mean that
not much linguistic knowledge is required for eye
tracking prediction. Alternately, the choice of met-
ric (MAE) might not be the most appropriate to

capture the subtleties of the task. However, as we
will see in Section 3, the pre-trained models show
an advantage over randomly initialized models in
their correlation with text readability measures.

Evaluation of individual eye tracking features
The aggregated mean baseline across all eye track-
ing features can be misleading because it conceals
the model’s prediction performance for individual
features. A model that yields a superior perfor-
mance on the aggregated level does not necessar-
ily outperform the mean baseline for all features.
Therefore, we zoom in on individual eye track-
ing features and compare the performance of the
fine-tuned mBERT and XLM-100 with the mean
baseline in Figure 2. The results show that mBERT
fails to predict MFD, FPROP and REPROP for Ger-
man and Russian, while XLM-100 outperforms the
aggregate mean baseline for all languages. Some
features are more strongly affected by the large
degree of individual variability in human eye move-
ments (Kidd et al., 2018). We additionally visual-
ize the feature ranges of the predicted eye tracking
features compared to the real eye tracking data in
Figure 1.

3 Readability Analysis

Eye movement patterns during reading are known
to be influenced by the readability of texts (Rayner
et al., 2006). Singh et al. (2016) assess text read-
ability with automatically predicted eye tracking
features. Although their readability assessment
model was based only on predicted reading times,
it yielded results comparable to models that use
extensive syntactic features to compute linguistic
complexity. Wiechmann et al. (2022) find that, for
English, the accuracy of eye tracking prediction is
systematically linked to sentence-level text features
that approximate readability.

We try to disentangle the three-fold relation-
ship between human eye movements, the capabil-
ity of language models to predict these eye move-
ment patterns, and sentence-level readability mea-
sures for English. We analyze the correlation be-
tween model predictions and readability measures
to better understand the processing patterns that the
model picks up.

3.1 Measuring Readability
The readability of a text is affected by variation at
all levels of linguistic processing (Beinborn et al.,
2012). Feng et al. (2009) introduce a large range of

3
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Figure 1: Feature ranges of the true eye tracking values for MFD and FPROP compared to the predicted eye tracking
data (mBERT and XLM-100) for English and all four languages together.
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Figure 2: Improvements on prediction accuracy of the fine-tuned models mBERT and XLM-100 compared to the
mean baseline across all four languages.

cognitively motivated readability measures that can
be extracted using a standard natural language pro-
cessing pipeline. Machine learning models trained
on these measures can reliably predict the readabil-
ity of texts in multiple languages (Vajjala Balakr-
ishna, 2015). We explore a subset of 11 measures
that are likely to affect eye movement patterns.

Flesch score (FLESCH): Flesch (1948) intro-
duced the most renowned readability formula that
takes the surface structure of a text into account,
which is measured by the number of syllables,
words and sentences. The Flesch reading ease score
has been found to provide only a shallow readabil-
ity estimation for English texts because it ignores
deeper linguistic levels of text processing (Collins-
Thompson, 2014; Bengoetxea and Gonzalez-Dios,
2021). Nahatame (2021) show that readability mea-
sures that quantify lexical and syntactic character-
istics provide better approximations for predicting
eye movement patterns than the Flesch score. We
include it in our analysis mainly for the sake of
comparison and completeness.

Word frequency (WF, ZIPF): The influence of
lexical frequency on fixation duration is one of
the most studied phenomena in psycholinguistic
reading research. It is well established that readers
tend to look longer at infrequent words (Rayner,

1977). We use the lexical frequency values pro-
vided by the wordfreq Python library (Speer
et al., 2018) and its Zipfian variant on a logarithmic
scale (Van Heuven et al., 2014).

Word length (WL): Longer words (measured in
terms of number of characters) are generally fixed
for longer periods. Nearly 70% of the variance in
mean fixation duration can be explained by word
length and word frequency (Just and Carpenter,
1980).

Sentence length (SL): We include sentence
length, calculated as the number of tokens of
each sentence, since the readability measures high-
lighted in our analysis are strongly related to the
length of a sentence. Sarti et al. (2021) confirm
that for all text complexity metrics, sentence length
exhibits the highest correlation.

Distance to head (D2H): Sarti et al. (2021) find
a strong correlation between readability measures
related to dependency parsing (e.g., parse depth)
and perceived complexity. Dependency features
also correlate well with eye tracking patterns and
can predict regressive eye movements (Lopopolo
et al., 2019). In the opposite direction, Strzyz et al.
(2019) show that eye tracking information can im-
prove dependency parsing. We therefore measure

4



Feature FLESCH WL WF ZIPF SL D2H AMB AOA FAM CONC IMAG

NFIX -0.55 0.94 -0.54 -0.82 0.96 -0.29 -0.28 0.29 -0.46 0.45 0.43
NREFIX -0.58 0.92 -0.55 -0.82 0.81 -0.23 -0.25 0.26 -0.35 0.33 0.32
MFD -0.47 0.84 -0.44 -0.68 0.96 -0.26 -0.19 0.18 -0.42 0.42 0.40
FFD -0.47 0.82 -0.43 -0.63 0.96 -0.26 -0.19 0.18 -0.42 0.42 0.41
FPD -0.50 0.91 -0.50 -0.78 0.96 -0.28 -0.25 0.25 -0.44 0.43 0.42
TRT -0.52 0.95 -0.54 -0.82 0.95 -0.28 -0.26 0.25 -0.44 0.44 0.42
FPROP -0.52 0.98 -0.48 -0.72 0.99 -0.30 -0.25 0.24 -0.45 0.45 0.44
REPROP -0.58 0.96 -0.52 -0.83 0.86 -0.23 -0.25 0.26 -0.36 0.33 0.32

Table 2: Spearman correlation coefficients of observed eye tracking features and readability measures. All
correlations are significant (p < 0.01).

the distance to head as the number of words be-
tween the current word and its head according to
the dependency tree. For example, in the sentence
She reads a mistery novel, the distance from the
word novel to its head reads is 2. We use the parser
Stanza (Qi et al., 2020) for the dependency anal-
ysis.

Ambiguity level (AMB): The meaning of poly-
semous words can usually be disambiguated by
processing the context. The effect of a high am-
biguity level on eye movement patterns is there-
fore usually more pronounced for later processing
measures such as NREFIX than for early gaze met-
rics reflecting lexical access (Foraker and Murphy,
2012; Shen and Li, 2016). We calculate the ambi-
guity level for each open class word (nouns, adjec-
tives, adverbs, and verbs) as the number of possible
senses (synsets) that can be found in the NLTK
implementation (Bird and Loper, 2004) of Word-
Net (Fellbaum). The minimum ambiguity level is
1, which means that there is only one sense for a
given wordform. For example, the noun car has an
ambiguity level of five because it appears in 5 nom-
inal synsets. For this analysis, we exclude words
that do not appear in WordNet.

Age of acquisition (AOA), familiarity (FAM),
concreteness (CONC), and imageability (IMAG):
We include four cognitively motivated features of
word complexity that are likely to affect fixation
durations in reading (Juhasz and Rayner, 2006).
Ratings for age of acquisition, familiarity, concrete-
ness, and imageability (the intensity with which a
word evokes a clear mental image) in the MRC Psy-
cholinguistic Database (Wilson, 1988) are strongly
associated with each other and with other read-

ability metrics.3 Paetzold and Specia (2016) find
that word frequencies correlate with familiarity and
AOA, while the depth of a word in a thesaurus hier-
archy correlates with both its concreteness and its
imageability. We exclude words that do not appear
in the database when calculating the correlations.

3.2 Readability and Eye Movement Patterns

We calculate the Spearman correlation coefficients
between the recorded eye tracking data and the
readability measures for English (Table 2). The
strongest correlations can be found for sentence
length, word length, and lexical frequency, which
confirms three widely studied effects in reading
research (Sarti et al., 2021).

Predictive Power In a second step, we analyze
the correlations between four of the readability
measures (FLESCH, WL, ZIPF frequency, SL) and
the predictions of the different models for fixation
proportion and mean fixation duration for English
(see Table 3).4 The results show that for fine-tuned
mBERT, while yielding lower overall prediction
accuracy when aggregating across all features, the
correlation of the predicted eye movement values
to word frequency and length is generally more
similar to the correlation of real gaze features with
word frequency and length than for the XLM-100
models. When comparing fine-tuned pre-trained
models (M♡) to models trained from scratch on eye
tracking data (M☇), the results presented in Table
3 also show that the correlation with word length
and frequency is stronger in the predictions of the

3https://websites.psychology.uwa.edu.
au/school/mrcdatabase/uwa_mrc.htm

4Correlations to other gaze features show the same trends.
We analyze FPROP because the models yield low prediction
performance on this feature, compared to MFD, which yields
high prediction results.
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fine-tuned models and closer to the correlation of
the real eye tracking features, showing that while
pre-training might not strictly be needed for a high
prediction accuracy, it does help the model to pre-
dict eye tracking features that are closer to human
reading behavior in terms of text readability.

3.3 Prediction Errors
To systematically analyze the relationship between
readability of the input and predictive power of
the model, we focus on the prediction errors. We
analyze a sample of 6,396 instances of the test
set (20%) and calculate the percentage error (PE;
Eq. 1) of the predictions compared to the observed
scaled features.

PE = ∣Prediction −Observed∣∣Observed∣ ∗ 100 (1)

In Table 4, we present the correlations of the
readability measures with the prediction errors for
eye tracking features. Imageability, familiarity,
concreteness, function words, and Zipf scale fre-
quency values show a moderate correlation to all
eye tracking features, which is slightly more no-
table in the case of the mBERT model. Interest-
ingly, the strongest correlation can be found to fix-
ation proportion. This indicates that the prediction
of whether a word will be fixated or not is strongly
linked to its imageability and concreteness. Sim-
ilar tendencies are observed for the correlations
between all investigated eye tracking measures and
readability measures.

4 Word-Level Analysis

As lexical aspects seem to be highly relevant, we
additionally analyze the influence of the word class
on prediction errors. We focus on words that cause
a prediction error ≥ the third quartile value for that
feature. Figure 3 shows the aggregated results for
all predicted eye movement features.

4.1 Word Classes
It can be seen that the large majority of prediction
errors can be attributed to function words. This
tendency is consistent across all eight gaze fea-
tures.5 Function words such as determiners, pro-
nouns, prepositions and conjunctions, usually trig-
ger low fixation duration and high skipping proba-
bility. It has been shown that distributional models

5Detailed results per feature can be found in the Appendix
in Table 7.
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Figure 3: Percentage error per part-of-speech class, ag-
gregated across all predicted gaze features.

are generally not well suited for representing func-
tion words (Bernardi et al., 2015) and that their
representation in transformer-based models such
as BERT is highly context-sensitive (Ethayarajh,
2019; Kim et al., 2019; Atanasova et al., 2020).
Of the content words, nouns are most often mis-
predicted and responsible for around 10% of the
errors. This is in line with Furtner et al. (2009),
who indicated in a reading study that the noun is
the most influential word class for facilitating the
comprehension of other words.

4.2 A Closer Look at Function Words

We have seen that most prediction errors are caused
by function words. Function or closed category
words are words that are short, frequent, ambigu-
ous, and subject to pragmatic effects in English.
They are critical for language understanding.

Reading research has shown that short function
words can be identified in reading without a direct
fixation (Rayner et al., 1989). Similarly, Barrett
and Søgaard (2015) show a negative correlation be-
tween function word frequency and fixation prob-
ability. Schmauder et al. (2000) found increased
processing times in phrases immediately follow-
ing a low-frequency function word. Function and
content words are likely stored and accessed simi-
larly (Diaz and McCarthy, 2009), but have different
roles in text processing and constructing discourse
representations. Function words show frequency
effects in first fixation and first pass duration that
are similar to those seen for content words. How-
ever, clear differences in reading patterns in the
online processing of function and content words
emerged in later processing measures (Schmauder
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FPROP MFD

Eye tracking FLESCH ZIPF WL SL FLESCH ZIPF WL SL

Human -0.52* -0.72* 0.98* 0.99* -0.47* -0.68* 0.84* 0.96*

RANDOM BL -0.03 -0.07 0.36 -0.16* 0.12* -0.48 -0.20 -0.12*
MEAN BL -0.61* 0.14* -0.31 0.99* -0.41* -0.01 0.23 0.91*

M☇ mBERT -0.50* -0.53* 0.72* 0.99* -0.49* -0.52* 0.61* 0.98*
M☇ XLM-100 -0.52* -0.68* 0.67* 0.99* -0.49* -0.65* 0.68* 0.97*

M♡ mBERT -0.52* -0.73* 0.78* 0.99* -0.48* -0.68* 0.80* 0.97*
M♡ XLM-100 -0.53* -0.72* 0.68* 0.99* -0.49* -0.62* 0.62* 0.98*

Table 3: Spearman correlation coefficients between real human eye tracking features or model predictions and word
length, word frequency, and sentence length for fixation proportion (FPROP) on the left side and for mean fixation
duration (MFD) on the right side. M☇ stands for models trained from scratch and M♡ for fine-tuned pre-trained
models. Significant results are marked with * (p < 0.01) and results in bold are closest to human eye tracking
features.

IMAG FAM CONC ZIPF FUNCT

Feature BERT XLM BERT XLM BERT XLM BERT XLM BERT XLM

NFIX -0.18 -0.17 0.19 0.14 -0.19 -0.17 0.22 0.18 0.20 0.19
MFD -0.18 -0.09 0.16 0.10 -0.19 -0.09 0.24 0.13 0.23 0.10
FPROP -0.21 -0.17 0.24 0.20 -0.21 -0.17 0.34 0.26 0.29 0.22
FFD -0.17 -0.08 0.16 0.09 -0.18 -0.09 0.23 0.12 0.22 0.10
FPD -0.16 -0.06 0.15 0.07 -0.17 -0.06 0.19 0.07 0.18 0.06
TRT -0.18 -0.13 0.16 0.12 -0.19 -0.14 0.21 0.16 0.19 0.16
NREFIX -0.19 -0.14 0.22 0.16 -0.21 -0.15 0.27 0.17 0.23 0.16
REPROP -0.14 -0.14 0.15 0.16 -0.16 -0.16 0.19 0.20 0.16 0.18

Table 4: Correlations between percentage error of the eye tracking predictions and the readability measures
(imageability, familiarity, concreteness, function words and Zipf frequencies of words).

et al., 2000). These findings can be taken as evi-
dence of the different roles the two word types have
in sentence processing beyond the lexical level.

We analyze the variance in the observed eye
tracking features for prepositions, determiners, and
conjunctions. We calculate the standard deviation
of each eye tracking feature for the six most fre-
quent words of each category. Generally, there is
a high variation in the data across all of the gaze
features, and the highest deviation can be observed
for mean fixation duration. To illustrate this, in
Figure 4 we show the graphics of the six most com-
mon prepositions. Determiners and conjunctions
are shown in Figures 5 and 6 in the Appendix (stan-
dard deviation values can also be found in Table 8
in the Appendix).

The lower fixation proportion on shorter words,
together with the immense variation on the fixation
duration of function words, is likely the cause for

the difficulty in predicting reading times on this
class accurately. The differences in skipping rate
(that is, the ratio of words that are not fixated) have
various origins. Skipping rate is regulated by word
length (Drieghe et al., 2004), which therefore leads
to differences across languages (see Fig. 1), and by
proficiency, since highly proficient readers show
a higher skipping rate (Eskenazi and Folk, 2015).
We discuss these challenges in more detail in the
next section.

5 Methodological Limitations

In this work, we make a few simplifying assump-
tions that are common in the field, but severely
affect the interpretation of the results. We want
to discuss these limitations explicitly and encour-
age methodological research to better address these
open challenges.
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Figure 4: Standard deviations of the eye tracking features of the most frequent English prepositions. Note that the
y-axis scales change in each subplot.

Token-level alignment Stimuli for eye tracking
are usually pre-processed with high linguistic qual-
ity. Neural language models, on the other hand,
are optimized for engineering objectives that some-
times compete with linguistic and cognitive plausi-
bility. This discrepancy becomes obvious when
inspecting the tokenization. The HuggingFace
transformer-based models that we apply expect
the use of subword tokenizers. Words such as
close-knit! that are interpreted as a single unit in

the eye tracking data are split into subword tokens
([‘close’, ‘##-’, ‘##knit’]) and it remains an open
challenge how to align the different units. In our
implementation, we assign the same gaze features
to all subtokens and choose to compute the loss
only with respect to the first subtoken. It is unclear,
however, if this is the best strategy as it complicates
fine-grained error analyses. For example, in the eye
tracking data, punctuation is not separated from the
preceding token as they are usually fixated jointly.
If we apply part-of-speech tagging on words with
attached punctuation signs they might get assigned
incorrect tags leading to skewed results. In this
work, we resolved this by manually aligning tok-
enized text with the eye tracking stimuli for the
readability analysis. However, this is laborious and
limits the size of the analyzed data.

Aggregating over participants The second mat-
ter we address is the variability between readers.
The negligence of individual differences is a well-
known issue in cognitive science, leading to a pic-
ture of an idealized human that is largely invariant
across individuals (Levinson, 2012), and the re-
sulting insights underestimate the extent to which
human sentence processing is affected by individ-
ual differences (Kidd et al., 2018). Currently, the
captured individual differences are merely treated
as a source of variance that is controlled for through
aggregation. As in this work, most often NLP re-
searchers aggregate across all readers due to evi-

dence showing that this leads to more robust results
regarding model performance (Klerke and Plank,
2019). However, the high variability found in some
features, such as FPROP, calls for more careful data
preprocessing, possibly by considering additional
cognitive tests performed during data collection
and performing proper outlier detection. Alterna-
tively, single-subject and cross-subject approaches
should also be considered in eye tracking predic-
tion for more practical applications.

Cross-lingual differences Finally, eye move-
ments depend on the stimulus and therefore contain
language-specific information (Liversedge et al.,
2016). Reading patterns can be related to linguistic
factors of the reader’s native language. Berzak et al.
(2017) found evidence that similar languages have
more similar reading patterns. Siegelman et al.
(2022) found that readers of different languages
vary considerably in their skipping rate and that
this variability is explained by cross-lingual differ-
ences in word length distributions. It is unclear yet
to what extent these differences affect the predic-
tions of pre-trained language models. Therefore,
more research is required on multilingual models
that predict eye tracking in typologically more di-
verse languages.

6 Conclusion

Our results show that transformer models yield
high accuracy in predicting cognitive language
processing signals which confirms tendencies ob-
served in previous work (e.g., Schrimpf et al., 2020;
Michaelov et al., 2021). We go beyond aggregated
performance metrics and provide a detailed anal-
ysis of the linguistic text complexity factors that
underlie the prediction of eye movement patterns.

In a detailed analysis of fine-tuned language
models that predict eye tracking features from read-
ing, we found that the models learn more from the
fine-tuning on psychometric features than from pre-
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training on textual input. However, the pre-trained
models show an advantage over the randomly ini-
tialized models in their correlation to text read-
ability measures. Although pre-training of large
language models is not required to obtain high accu-
racy in predicting eye tracking feature from reading,
it does contribute to a stronger correlation to text
readability measures, making the predictions more
similar to human reading behavior. The models
struggle most to predict accurate eye tracking val-
ues for function words, which are exactly the class
of words that exhibits large ranges in reading times
and skipping rates, together with extreme variabil-
ity between readers. The next step will be to extend
the readability analysis to the other languages and
to discern further between syntactic and semantic
text difficulty and purely structural complexity.

This line of work does not only advance our un-
derstanding of language models and allows to com-
pare their output to human language (Tuckute et al.,
2022), but it also furthers research on new readabil-
ity formulas supported by eye tracking data and ma-
chine learning methods (e.g., González-Garduño
and Søgaard, 2018; Baazeem et al., 2021). We hope
this work can serve as a stepping stone towards a
more detailed evaluation setup for eye movement
prediction from reading.
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A Appendix

A.1 Eye Tracking Corpora
The details of the datasets used in this work are presented in Table 5.

Language Corpus Subjs. Sents. Sent. length Tokens Types Word length Flesch

English
Dundee 10 2,379 21.7 (1–87) 51,497 9,488 4.9 (1–20) 53.3
GECO 14 5,373 10.5 (1–69) 56,410 5,916 4.6 (1–33) 77.4
ZuCo 30 1,053 19.5 (1–68) 20,545 5,560 5.0 (1–29) 50.6

Dutch GECO 19 5,190 11.64 (1–60) 59,716 5,575 4.5 (1–22) 57.5
German PoTeC 30 97 19.5 (5–51) 1,895 847 6.5 (2–33) 36.4
Russian RSC 103 144 9.4 (5–13) 1,357 993 5.7 (1–18) 64.7

Table 5: Descriptive statistics of all eye tracking datasets. Sentence length and word length are expressed as the
mean with the min-max range in parentheses. The last column shows the Flesch Reading Ease score (Flesch, 1948)
which ranges from 0 to 100 (higher score indicates easier to read). Adaptations of the Flesch score were used for
Dutch (NL), German (DE) and Russian (RU).

A.2 Eye Movement Features
The values of the eye tracking features vary over different ranges (see Figure 1, left-most subplots). FFD,
for example, is measured in milliseconds, and average values are around 200 ms, whereas REPROP is a
proportional measure, and therefore assumes floating-point values between 0 and 1. We standardize all
eye tracking features independently (range: 0–100), so that the loss can be calculated uniformly over all
feature dimensions.

A.3 Additional Correlation Results
In Table 6, we present additional correlations of the readability measures in relation to the eye tracking
prediction errors.

AOA D2H AMB

Feature BERT XLM BERT XLM BERT XLM

NFIX 0.00 0.02 -0.03 -0.05 0.04 0.01
MFD -0.09 -0.04 0.00 -0.03 0.04 0.00
FPROP -0.18 -0.12 -0.03 -0.04 0.13 0.05
FFD -0.09 -0.04 -0.01 -0.03 0.02 -0.01
FPD -0.06 -0.01 0.00 -0.02 0.00 -0.04
TRT 0.02 -0.05 -0.02 -0.04 0.01 0.01
NREFIX -0.01 0.01 0.00 -0.03 0.14 0.09
REPROP 0.05 0.01 0.01 -0.01 0.13 0.12

Table 6: Correlations between percentage error and readability measures (age of acquisition, distance to head, and
ambiguity level).

A.4 Error Rate by Part-of-Speech
Table 7 shows the percentage error for each part-of-speech class and each eye tracking feature.

13



FUNC ADJ ADV NOUN PROPN VERB
Feature BERT XLM BERT XLM BERT XLM BERT XLM BERT XLM BERT XLM

NFIX 68.54 66.10 4.69 5.44 4.63 4.82 9.38 15.76 6.38 8.26 6.38 7.88
MFD 68.86 62.16 5.32 6.32 4.57 5.94 9.63 17.39 4.69 7.50 6.94 8.19
FPROP 72.17 69.17 4.57 4.75 4.50 4.44 8.13 14.82 4.38 6.82 6.25 6.82
FFD 67.98 62.48 5.25 6.25 4.63 5.88 10.44 16.89 4.75 7.13 6.94 8.51
FPD 68.36 58.91 5.25 7.32 4.44 6.19 9.82 18.89 5.19 8.51 6.94 8.69
TRT 68.36 66.60 16.60 6.57 14.03 5.19 31.03 13.07 16.40 6.94 21.94 8.57
NREFIX 75.88 78.70 3.71 3.71 3.61 3.61 7.46 7.46 2.82 2.82 6.52 6.52
REPROP 75.88 78.70 3.71 3.71 3.61 3.61 7.46 7.46 2.82 2.82 6.52 6.52

Table 7: Percentage error for each part-of-speech class and each eye tracking feature.

A.5 Standard Deviations of Function Words
Table 8 shows the standard deviations of the predictions of the most frequent function word classes,
namely prepositions (PREP), determiners (DET), and conjunctions (CONJ).

Lemma NFIX FFD FPD TRT MFD FPROP NREFIX REPROP

PR
E

P

at 0.20 33.87 35.96 42.79 4562.23 0.15 10.10 10.10
by 0.25 43.47 44.57 51.42 5109.68 0.19 0.09 0.07
for 0.26 8365.60 42.11 14199.50 6347.25 0.19 0.13 27.87

from 0.25 39.08 40.07 12828.73 38.53 0.18 0.11 35.43
in 23.15 1859.10 1859.05 41.57 2782.60 23.15 0.07 0.06
of 12.92 4158.18 4158.11 3839.08 5614.73 12.92 4.31 4.31
on 41.64 35.31 36.95 8120.68 6406.01 0.16 8.33 8.33
to 7.07 35.79 37.38 2073.26 3562.01 7.07 0.08 0.07
up 0.23 46.17 48.59 52.53 46.42 0.20 0.07 0.06

with 0.31 43.47 47.71 62.36 18589.94 0.18 0.19 0.13

D
E

T

a 12.48 1168.31 1168.30 1168.27 6726.54 17.64 0.07 0.05
all 0.24 43.44 47.06 57.88 11703.01 0.18 0.12 0.08

another 0.44 56.89 70.55 98.66 54.99 0.23 0.29 0.18
any 0.23 40.18 42.81 50.25 39.31 0.17 0.12 0.11

every 0.33 40.36 46.56 48.93 36800.71 0.15 0.25 0.14
no 0.25 39.11 40.87 50.50 38.53 0.18 0.10 0.08

some 0.31 46.57 49.31 60.57 26367.42 0.18 0.20 0.11
that 0.26 41.07 45.10 53.25 40.90 0.18 0.15 0.11
the 9.06 2060.29 919.18 2349.22 5173.09 9.06 0.11 0.08
this 0.32 47.54 53.64 67.83 26854.66 0.19 0.18 0.12

C
O

N
J

and 0.27 37.11 41.45 48.52 5318.58 32.99 0.11 0.08
as 0.22 38.20 39.10 44.08 10602.03 0.17 0.08 0.06

because 0.32 38.95 42.76 53.55 38.80 0.15 0.24 0.12
but 0.31 44.79 50.00 63.22 5564.67 0.20 0.15 0.09
if 0.25 47.90 49.16 56.45 47.71 0.21 0.09 0.07
of 0.25 44.95 51.17 56.85 45.99 0.20 0.07 0.07
or 0.22 44.45 48.68 50.86 44.59 0.18 0.08 0.07

that 0.26 41.08 44.46 56.21 21359.14 0.18 0.13 0.10
when 113.83 35.28 44.65 63.01 18228.19 0.17 0.21 0.14
where 0.39 48.09 57.04 68.93 47.88 0.19 0.25 0.16

Table 8: Standard deviation of the most frequent function words.
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Figure 5: Standard deviations of the eye tracking features of the most frequent English determiners. Note that the
y-axis scales change in each subplot.

Figure 6: Standard deviations of the eye tracking features of the most frequent English conjunctions. Note that the
y-axis scales change in each subplot.
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Abstract

Inalienable possession differs from alienable
possession in that, in the former – e.g., kin-
ships and part-whole relations – there is an in-
trinsic semantic dependency between the pos-
sessor and possessum. This paper reports
two studies that used acceptability-judgment
tasks to investigate whether native Mandarin
speakers experienced different levels of in-
terpretational costs while resolving different
types of possessive relations, i.e., inalienable
possessions (kinship terms and body parts)
and alienable ones, expressed within relative
clauses. The results show that sentences re-
ceived higher acceptability ratings when body
parts were the possessum as compared to sen-
tences with alienable possessum, indicating
that the inherent semantic dependency facili-
tates the resolution. However, inalienable kin-
ship terms received the lowest acceptability
ratings. We argue that this was because the
kinship terms, which had the [+human] feature
and appeared at the beginning of the experi-
mental sentences, tended to be interpreted as
the subject in shallow processing; these fea-
tures contradicted the semantic-syntactic re-
quirements of the experimental sentences.

1 Introduction

Possessive relations are fundamental in human lan-
guages because they associate nouns to express
specific relationships. Questions around the alien-
ability between the possessor and the possessum
in possessive relations has garnered considerable
attention in linguistics (Vergnaud and Zubizarreta,
1992). Such alienability can be categorized in sev-
eral ways. Semantically, when a possessive rela-
tion is inalienable, there is an inherent dependency
between the possessor and possessum, which does
not exist in the case of alienable possessions
(Vergnaud and Zubizarreta, 1992). Typical exam-
ples of inalienably possessed nouns include kin-
ship terms and body parts; for example, Mary’s

brother and Mary’s hand, respectively. The fam-
ily relation and whole-part relation are often con-
sidered intrinsic and cannot be transferred. In con-
trast, an alienable possession, such as Mary’s desk,
does not present such an inherent semantic depen-
dency between the two nouns, and this type of pos-
sessive relation needs to be acquired, and can be
transferred (Seiler, 1983). Several languages have
distinct morphological markings of alienable and
inalienable possessions (Dixon, 2000; Meyerhoff,
2002; Gebregziabher, 2012), and various syntac-
tic structures have been proposed for them (Alex-
iadou, 2003). While Mandarin does not make
such distinctions through morphology, some syn-
tactic and pragmatic distinctions between these
two classes of possessions exist in it (Hsu and
Ting, 2006).

Normally, in Mandarin, the possessor precedes
the possessed noun, and they are linearly close
to each other; for example, in laoban de gebo
(‘boss’s arm’), laoban (‘boss’) is the possessor,
and the next noun to appear, gebo (‘arm’), is the
possessum. However, in Mandarin possessive rel-
ative clauses (PRCs), as shown in (1), the posses-
sum and possessor are not adjacent. PRCs there-
fore provide us with a useful opportunity to exam-
ine the processing cost of resolving different types
of possessions, because readers must resolve such
a long-distance association to arrive at the posses-
sive relationship between the two nouns.

(1) Fangzi/Fuqin/Gebo
house/father/arm

bei
PASS

daitu
criminal

jizhong
shot

de
DE

laoban
boss

hen
very

shengqi.
angry

‘The boss whose house/father/arm was shot
by the criminal was angry.’

Moreover, the possessor-possessum position is
reversed in (1); i.e., the possessum appears before
the possessor. It is expected that when readers en-
counter a kinship term or a body part, they may
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expect a possessor later in the sentence, and there-
fore, the inherent semantic dependency should fa-
cilitate the resolution of inalienable possessions.
In contrast, an alienable possessum may not enjoy
this facilitation, because the association between
the possessor and the alienable possessum is not
inherently salient, and this may result in a greater
processing load when resolving the possessive re-
lation becomes necessary in a later phase of sen-
tence comprehension.

Following a review on previous studies about
possessive relations and possessive structures in
Mandarin (Section 2), we present two experiments
(Section 3) in which an acceptability-judgment
task (AJT) is used to measure the acceptability
of Mandarin PRCs with three different types of
possessums: alienable possessums, kinship terms,
and body parts. Our results partially support the
hypothesis that the inherent semantic dependency
of the inalienable possessions facilitate the inte-
gration of the possessor-possessum relations, re-
flected by the higher acceptability of the body
parts as the possessum than the alienable noun
as the possessum. However, the other inalien-
able condition, kinship terms as the possessum, re-
ceived unexpected low ratings. Section 4 briefly
concludes this paper, and includes some possible
explanations of its unexpected findings.

2 Alienable and Inalienable Possessions
in Mandarin

While Mandarin does not require overt morpho-
logical markings on (in)alienability, contrasts be-
tween alienable and inalienable possessions are re-
flected at the syntactic, semantic, and discourse
levels (Landau, 1999; Hsu and Ting, 2006). In
this section, three examples are used to illustrate
some of such differences: de omission, semantics
in the ba-construction, and discourse-contextual
demands.

Mandarin uses a particle, de, to link two nouns
to form certain semantic associations, and posses-
sive relation is one of them (Li and Thompson,
1989; Hsu, 2009; Li, 2012). Example (2) is an
alienable possessive phrase, and (3) is an inalien-
able one. When two nouns express a family rela-
tion and the possessor is a pronoun, the particle
de can be omitted, e.g., (2). However, omitting
the particle de may be ungrammatical if the rela-
tion is alienable and when the phrase is presented
in isolation, as shown in (3). While kinship rela-

tions seem to consistently allow the de omission
and to enjoy a special status in possessive phrases
in the literature, the above-mentioned contrast be-
tween (2) and (3) does not always hold. For exam-
ple, when the inalienable possession is evaluated
within context, as shown in example (4), the omis-
sion vs. non-omission of de does not influence its
acceptability.

(2) wo
I

(de)
DE

baba
father

‘my father’

(3) wo
I

*(de)
DE

zhuozi
desk

‘my desk’

(4) Wo
I

(de)
DE

xuexiao
school

zhengzai
currently

juxing
hold

yanjiang
speech

bisai.
contest

‘My school is holding a speech contest.’

The term alienability implies a property or entity
that can be conveyed from one individual to an-
other. Putting alienable and inalienable posses-
sions in the ba-construction, which often involves
a meaning related to disposal, highlights these dif-
ferences around transferring possession, as well as
how such differences of (in)alienability affect sen-
tence acceptability. In (5), the wallet originally be-
longed to Zhangsan, establishing an alienable pos-
sessive relation, and after a giving event, the pos-
session of the wallet is transferred to Lisi. In con-
trast, inalienable possessive phrases exhibit more
resistance to transferring possession via the ba-
construction. For example, sentence (6) is gram-
matical, only in specific circumstances whereby
Zhangsan’s sending of his brother to Lisi makes
sense. Importantly, in this case, the kinship is
not actually transferred; that is, the brother is still
Zhangsan’s. Body parts, on the other hand, can-
not be accepted under normal conditions, leading
to the unacceptability of (7). 1

(5) Zhangsan
Zhangsan

ba
BA

qianbao
wallet

songgeile
give-ASP

Lisi.
Lisi

‘Zhangsan has given (his) wallet to Lisi (as a
gift).’

1"?" indicates that a sentence sounds odd, and "*" indi-
cates that a sentence is ungrammatical.
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(6) Zhangsan
Zhangsan

ba
BA

didi
brother

songgeile
give-ASP

Lisi.
Lisi

‘Zhangsan has given (his) brother to Lisi.’

(7) *Zhangsan
Zhangsan

ba
BA

gebo
arm

songgeile
give-ASP

Lisi.
Lisi

‘Zhangsan has given (his) arm to Lisi.’

The effect of (in)alienability on sentence accept-
ability can also be observed at the discourse level.
The semantic distinction between inalienable and
alienable possessive nouns is that the former im-
plies a specific possessor in the interlocutors’ com-
mon ground, whereas the latter does not necessar-
ily trigger such a possessive association, and can
stand alone. For example, (8) is acceptable even
though it is not specified whose plant it is. In con-
trast, (9) and (10) are less acceptable if the posses-
sors are not indicated in the discourse.2

(8) Zhiwu
plant

bei
PASS

taiyang
sun

shaisile。
burn-die-ASP

‘The plant was killed by the sun.’

(9) ?Sunnv
granddaughter

bei
PASS

taiyang
sun

shaishangle。
burn-hurt-ASP

‘(Someone’s) granddaughter was sunburnt.’

(10) ?Gebo
arm

bei
PASS

taiyang
sun

shaishangle。
burn-hurt-ASP

‘(Someone’s) arm was sun-burnt.’

To summarize, inalienable and alienable posses-
sions trigger different syntactic, semantic, and dis-
course requirements and these can affect the ac-
ceptability of sentences. Nouns related to kin-
ship terms and body parts often trigger a posses-
sive dependency and increase contextual demands,
whereas typical nouns allowing alienable posses-
sions behave differently. The following section
presents two AJT experiments using Mandarin
PRCs to test the effects of (in)alienability on sen-
tences’ acceptability.

2An anonymous reviewer pointed out that if sentence (9)
is used in a conversation, it sounds acceptable because a ra-
tional/cooperative listener will assume the speaker to be the
possessor. We agree with this observation, and with the same
reviewer’s observation that in future research, it would there-
fore be worthwhile to design dialogues with multiple agents
expressing sentences like (8) to (10), and use them to inves-
tigate people’s understandings of them. Here, we originally
intended to argue that sentences like (9) and (10) are less ac-
ceptable when no possessor can be associated with the sub-
ject.

3 Experiments

3.1 Experiment 1

3.1.1 Participants and Procedure

Our participants in Experiment 1 were Mainland
Chinese college students studying in Hong Kong,
all of whom were native speakers of Mandarin.
Their average self-rated Mandarin proficiency on
a scale of 1 to 7 (with 1 = ‘not fluent at all’, and 7 =
‘extremely fluent’) was 6.75. Attention filters were
included in the experiment to ensure that the partic-
ipants understood the task and finished it conscien-
tiously. Of the initial pool of 114 participants, 17
failed the attention filters, leaving 97 participants’
data for analysis.

The participants rated the acceptability of the
sentences on a 5-point Likert scale, ranging from
1 as ‘totally unacceptable’ to 5 as ‘totally accept-
able’. The data were collected using an online
questionnaire platform.

3.1.2 Materials

Mandarin PRCs were adopted as the basis for
our investigation of the cost of the possessor-
possessum integration among three different pos-
sessive conditions. In the PRCs used in Exper-
iment 1, the possessum was at the beginning of
the realtive clause, and the possessor – immedi-
ately following the relativizer particle de – was
the head noun of the relative clause, locating at
the end of the relative clause. The possessor also
served as the matrix subject of the experimental
sentence. Because the possessor and the posses-
sum were not adjacent, the participants reading
these sentences needed to form long-distance as-
sociations. Example (11) consists of one set of the
experimental conditions, in which Condition A is
the alienable condition, and Conditions B and C
are inalienable ones, for kinship terms and body
parts, respectively. In addition, a short context sen-
tence was provided before each of the PRC target
sentences, to help them read more naturally. In
all, Twenty-four sets were constructed and were
distributed into four lists 3; each participant only
read one condition from each set.

3Because filler items from other studies were included,
there were four lists instead of three.
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(11) (Context) In this extremely hot weather,

a. Zhiwu
plant

bei
PASS

taiyang
sun

shaisi
burn-die

de
DE

A-Yong
A-Yong

gandao
feel

shifen
very

shangxin.
sad

‘A-Yong, whose plant was killed by the
sun, felt very sad.’

b. Sunnv
granddaughter

bei
PASS

taiyang
sun

shaishang
burn-hurt

de
DE

A-Yong
A-Yong

gandao
feel

shifen
very

shangxin.
sad

‘A-Yong, whose granddaughter was
sunburnt, felt very sad.’

c. Gebo
arm

bei
PASS

taiyang
sun

shaishang
burn-hurt

de
DE

A-Yong
A-Yong

gandao
feel

shifen
very

shangxin.
sad

‘A-Yong, whose arms were sunburnt,
felt very sad.’

It has been argued that sentences with higher
complexity are likely be harder to process, and
consequently, readers tend to rate their acceptabil-
ity as lower (Chomsky and Miller, 1968; Fanselow
and Frisch, 2006). Our items were designed to
be completely uniform in their structural complex-
ity. Yet, as compared to inalienable possessions,
alienable ones may be more costly to integrate,
as doing so calls for the possessor to acquire the
possessor-possessum relations (Alexiadou, 2003).
Therefore, we predicted that the inalienable condi-
tions (Conditions B and C) would receive higher
AJT ratings than the alienable one (Condition A).

3.1.3 Results
The mean rating and standard deviation (SD) for
each condition are listed in Table 1. Condition
C, in which the body parts were the possessed
nouns, received the highest mean acceptability rat-
ing. Condition A, the alienable condition, was
rated as less acceptably on average than Condi-
tion C was. But surprisingly, the other inalienable
condition, Condition B, received the lowest accept-
ability rating. The results of the three conditions
are visualized in Figure 1, in which the box repre-
sents 50% of the central data, and the line inside
it representing the median. The whiskers are the
range of the data excluding outliers, which are in-
dicated by the small black dots. The three large

Condition Mean SD
A(alienable nouns) 4.07 1.22
B(kinship terms) 3.36 1.44
C(body parts) 4.43 0.87

Table 1: Average ratings and standard deviations for
each condition.

Figure 1: Ratings for different conditions, Experiment
1.

black dots are the average ratings of each condi-
tion. The colored dots are the average ratings by
item. The lines connecting the colored dots indi-
cate that items are from the same sentence set.

To test whether the differences among the con-
ditions were significant, a cumulative link mixed
model was fit using the clmm() function in the
ordinal package in R. The outcome variable was
RATING, and the predictor was CONDITION,
which had three levels: Condition A, Condition
B, and Condition C. The random variables were
PARTICIPANT and ITEM, including varying in-
tercepts. A pairwise post hoc analysis showed that
the differences among the conditions were signifi-
cant (Table 2).

To summarize, the inalienable condition in
which body parts were the possessed nouns being
rated highest, and was significantly higher than the
alienable condition.

However, the kinship-terms condition’s rating

Contrast Estimate SE z.ratio p.value
A – B -1.397 0.125 -11.166 <.0001
A – C 0.837 0.133 6.297 <.0001
B – C 2.235 0.136 16.395 <.0001

Table 2: Contrasts among conditions; Model: Rating
C̃ondition + (1|Participant) + (1|Item)
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was significantly lower than that of the other two
conditions. We wonder whether this was because
some kinship terms used in the materials, such
as, zhier (‘brother’s son’), and waisun (‘daughter’s
son’), are not as frequently encountered in day-to-
day Madnarin speech as the other kinship terms.
Specifically, the occurrence of the kinship terms
in the BCC corpus (http://bcc.blcu.edu.
cn/; Mean: 34086, Range: 2555-144007) was
also markedly lower than those of the alienable
nouns (Mean: 584435, Range: 3067-172563), and
body parts (Mean: 45939, Range: 10875-232015).
Hence, we balanced both the frequencies of words
across the three conditions, and then conducted an-
other round of AJT, as reported below.

3.2 Experiment 2

3.2.1 Participants and Procedure
Sixty-six college students from Mainland China
who had not participated in Experiment 1 were re-
cruited for Experiment 2. All self-reported Man-
darin as their native language. The procedure of
this AJT experiment was the same for Experiment
1, except that, after the participants finished the
experiment per se, we interviewed some of them
who had given low ratings to most of the Condi-
tion B items (kinship terms).

3.2.2 Materials
Experiment 2’s materials were similar to those
of Experiment 1, except in the following two re-
spects. First, some of the critical words (i.e., the
possessum) were changed to maintain a balance
counts of strokes across conditions (Range and
Mean for each condition: A: 9-22, 14.63; B: 5-
26, 14.54; C: 8-28 16.67) and the frequencies of
words (Range and Mean for each condition: A:
3067-172563, 51034; B: 4331-144007, 38814; C:
10152-232015, 61621; frequency is according to
the BCC corpus). Second, to lower processing
demand, the predicate of each experimental sen-
tence was shortened, from 16 characters (as in Ex-
periment 1), to 14 characters (the separate context
sentences were unaffected). For example, gandao
(‘feel’) in (11) was dropped, and the sentence re-
mained grammatical.

3.2.3 Results
The results of Experiment 2 closely replicated the
findings in Experiment 1. That is, body parts as the
possessed nouns (Condition C) received the high-
est rating (Mean = 4.15, SD = 1.03), the alienable

possession (Condition A) was rated lower (Mean =
3.85, SD = 1.13); and the kinship terms as the pos-
sessum (Condition B) once more received the low-
est rating (Mean = 3.16, SD = 1.27). The clmm()
model and pairwise comparisons again showed the
differences among conditions were significant (ps
< .0001).

Importantly, the group variance of the kinship-
terms condition was also the largest, which is an-
other repetition of the findings of Experiment 1.
To ensure that this unexpected result did not arise
because a few items received extremely low rat-
ings while others were acceptable, we looked for
systematic differences among the average ratings
for each item.4 However, this item-by-item anal-
ysis revealed no such differences. Indeed, among
the 24 kinship terms we tested, 21 received aver-
age ratings lower than 3.5, as against overall aver-
age ratings for the alienable-nouns and body-parts
conditions of 3.85 and 4.15, respectively. Specif-
ically, the majority of kinship terms used as the
possessum were rated as ‘probably unacceptable’
or ‘not sure’.

We also conducted individual-level analysis,
which revealed that not all participants assigned
low ratings to Condition B. That is, a subset of
them consistently rejected Condition B, while an-
other tended to find its items acceptable. There-
fore, we decided to reexamine the results in terms
of the participants’ tendency to accept items in
each condition. In Experiment 2, all participants
read eight sentences from each condition, and we
deemed them to have rejected a given condition if
they rated at least six out of the eight as ‘1-totally
unacceptable’ or ‘2-probably unacceptable’. Con-
versely, if a participant rated six out of the eight
sentences in a condition as ‘4-probably accept-
able’ or ‘5-totally acceptable’, they were counted
as accepting that condition. Other cases were clas-
sified as ‘not sure’. Table 3 summarizes the
numbers and percentages of participants who re-
jected, accepted, or were unsure about each con-
dition. No participants consistently rejected Con-
dition A or Condition C, and indeed, the major-
ity of them consistently accepted these two condi-
tions. But twelve participants consistently rejected
Condition B. For that reason, we conducted a post-
experiment interviews with these 12 participants.
Data from the interviews will be presented and dis-

4This was done at the suggestion of an anonymous re-
viewer. We appreciate this advice.
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Condition Rejecting Accepting Not Sure
A 0 (0.00） 34 (51.52) 32 (48.48)
B 12 (18.18) 20 (30.30) 34 (51.52)
C 0 (0.00) 50 (75.76) 16 (24.24)

Table 3: Numbers and percentages (in parentheses) of
participants rejecting and accepting each condition.

cussed in the next section.

4 Discussion and Concluding Remarks

Our study sought to explore whether different
types of possessive relations affect the integration
of long-distance dependency in Mandarin relative
clauses. This study supports the (in)alienablity ef-
fect in some respects. The fact that our partic-
ipants gave their highest acceptability ratings to
PRCs with body parts as their possessed nouns
suggests that inherent part-whole association facil-
itates the resolution of the possessor-possessum re-
lations inside of relative clauses. In other words,
when readers encounter a term for a body part,
they expect to find a possessor in the sentence to
fulfill the semantic dependency. Thus, Condition
C of body parts being rated more acceptable than
the inalienable Condition A was consistent with
our prediction, and supports the idea that inher-
ent semantic association facilitates the resolution
of long-distance dependency.

When we consider subtypes of alienable pos-
sessive relationships, however, we found some
unexpected results. Given the operation of
(in)alienability effects in the resolution of long-
distance dependency, it would be reasonable to
predict that kinship terms as the possessed nouns
should also receive ratings higher than those in the
alienable condition, just as we found with nouns
in the condition of body parts. However, our re-
sults contradicted this prediction: Condition B re-
ceived the lowest ratings. This may be related
to an essential characteristic of Condition B: that
both the possessor and possessum are humans, un-
like in the other two conditions in which the pos-
sessum is inanimate. The same [+human] feature
may interfere with the resolution of ‘who did what
to whom’ in a relative clause that contains mul-
tiple animate references (Mak et al., 2002; Gor-
don et al., 2001, 2002). Moreover, kinship terms
in our experimental items appear at the beginning
of the clause, which tends to be regarded as the
subject in shallow processing (Christianson et al.,

2001; Qian et al., 2018; Ferreira et al., 2002). Cou-
pled with the [+human] feature, the clause’s ini-
tial position gives the kinship term great salience,
but as the sentence unfolds, it turns out that it is
possessed by the head noun and is not the sub-
ject of the sentence. This contradiction requires
a proper reanalysis of thematic roles, resulting in
a demand of additional processing demand, and
therefore lower ratings of acceptability ratings.

Interview comments made by those Experiment
2 participants who rated Condition B as having
low acceptability supported these views. As Ta-
ble 3 shows, twelve participants consistently rated
PRCs with kinship terms as the possessum as un-
acceptable. When we asked them why, one partici-
pant commented that she rated sentences like (12)
low because their meanings did not correspond to
her expectations: since it was the qinqi (‘relative’)
who was hit, it should be that qinqi rather than
the other person (Laofeng) should be sympathized
with. Another participant reported that she found
such sentences illogical because they mixed im-
portant information from the insignificant nouns.
These comments support our conjecture that the
two human nouns in Condition B require read-
ers to decide whether the main event is expressed
by the possessum or the possessor, complicating
the comprehension process for the sentence as a
whole. It is important to note that these concerns
could not arise in the other two conditions because
the possessed nouns were inanimate, and thus did
not fit the descriptions of the predicate.

(12) Qinqi
relative

bei
PASS

meiti
press

dashang
hit-hurt

de
DE

Laofeng
Laofeng

shiren
evoke

tongqing.
sympathy

‘Laofeng, whose relatives were hit and hurt
by the press, evoked sympathy.’

Some participants seemed to adopt the ‘good-
enough’ processing strategy (Qian et al., 2018)
when they rated the sentences;5 therefore, the ad-
ditional processing efforts required by items in
Condition B rendered them unable to comprehend
such sentences. One participant reported that

5One anonymous reviewer suggested that we conduct a
follow-up study in which the level of processing (shallow
or deep) is manipulated by including a secondary task. We
appreciated this suggestion very much, and plan to conduct
an eye-tracking experiment in which the participants answer
comprehension questions, designed to trigger different levels
of processing, after reading the sentences.
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PRCs with kinship terms as the possessum were
too challenging for him to process, so he just rated
them as ‘unacceptable’ and admitted that if he had
spent more time reading such sentences, he would
have understood them. We did not ask our partic-
ipants to answer comprehension questions in this
AJT paradigm, but it is possible that their process-
ing was shallow (Sanford and Graesser, 2006). It
would be intriguing to examine if, when a deep
comprehension processing is forced, participants’
ratings for the PRCs with kinship terms as the pos-
sessums would be higher. Further studies could ex-
plore this possible phenomenon by modifying our
tasks, e.g., by including comprehension questions
or asking the participants to ‘think aloud’ while
making the judgements.

Notably, our findings that the body-parts condi-
tion was rated the highest, then the alienable pos-
sessions, and then the kinships, are consistent with
the frequency results of a corpus study on the Man-
darin passive construction with retained objects
(PCRO) (Yue and Wu, 2019). PCROs with body
parts, alienable possessions, and kinship terms as
the retained objects are illustrated in (13-15):

(13) Ta
he

bei
PASS

daduanle
hit-broken-ASP

biliang.
nose

‘His nose was broken (by someone).’

(14) Ta
He

bei
PASS

ren
someone

touzoule
steel-away-ASP

qianbao.
wallet

‘His wallet was stolen by someone.’

(15) Ta
she

bei
PASS

ren
people

qiangle
rob-ASP

laogong.
husband

‘Her husband was taken away from her by
someone else.’

In a PCRO, the subject and the retained object
formed a possessive relationship, and like the PRC
structure in our study, the possessor and posses-
sum are not adjacent to each other. The results
of corpus analyses (Yue and Wu, 2019) show that
body parts are the most common retained objects,
accounting for 41.7% of all 422 instances, whereas
typical nouns as the alienable possessums made up
29.8% of the data. Although kinship terms are al-
lowed in possessive phrases, there were only nine
instances found in the corpus, making up 1.9%
of the PCROs found in the corpus. Yue and Wu

(2019) argued from a cognitive perspective that
the possessive relationship needs to have inferen-
tial accessibility, and that retained objects should
be included in the semantic framework of the sub-
ject. The animacy and the cognitive prominence of
the kinship terms both make it difficult for them to
be the objects of PCROs. This idea echoes our sug-
gestions that the [+human] feature and the clause-
initial position of kinship terms seem to increase
PRCs’ processing loads.

This leaves one to wonder if the (in)alienability
effect would come into force for kinship terms if
the [+human] feature were controlled in the alien-
able and inalienable conditions. Lin (2007) de-
veloped a self-paced reading experiment using hu-
man nouns as the possessums for both the inalien-
able condition (16a) and the alienable condition
(16b), and showed that the reading time for the
head nouns of the inalienable condition (16a) was
significantly faster than that for the alienable con-
dition (16b). This finding supports the facilitation
by inherent inalienable semantics.

(16) a. Fuqin
father

bei
PASS

jingcha
police

zhuazou
take

de
DE

zongcai
boss

xiande
appear

shifen
very

huangzhang.
nervous

‘The boss whose father was taken by
the police appeared very nervous.’

b. Yuangong
employee

bei
PASS

jingcha
police

zhuazou
take

de
DE

zongcai
boss

xiande
appear

shifen
very

huangzhang.
nervous

‘The boss whose father was taken by
the police appeared very nervous.’

It is important to bear in mind that our findings
were based on two AJT experiments. Although
people’s explicit judgments can reflect the process-
ing difficulties of sentences to some extent (Chom-
sky and Miller, 1968; Fanselow and Frisch, 2006),
it would be worthwhile in the future to use online
methods, such as the self-paced reading paradigm
and eye-tracking technology, to measure readers’
reaction times and eye-gaze patterns when process-
ing PRCs. We also assumed that readers would
search for a possessor when they found the inalien-
able possessum at the beginning of the sentence.
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That means a gap would be detected as long as
readers encountered the first noun in the two in-
alienable conditions. Several following-up ques-
tions could usefully be asked about this presum-
ably detected gap. For instance, do readers start
searching for potential fillers for this gap as soon
as they detected it? Would this gap results in a tem-
porary slowdown in reading times, due to the unit
being unresolved and needing to be held in mind?
Does early preparation for a filler-gap dependency
facilitate the processing of the latter part of the sen-
tence? Because answering them will require fine-
grained and region-specific data, we leave these
questions to our future research.

To conclude, our results demonstrate the fol-
lowing effects of (in)alienability on sentence ac-
ceptability. First, semantically inherent whole-
part relationships facilitate the resolution of the
long-distance dependency between the possessor
and possessum in PRCs. Second, the fact that
the kinship terms, despite also forming alienable
possessions, received the lowest acceptability rat-
ings in both our AJT experiments suggests that
the [+human] feature and/or the salient syntactic
position led to considerable confusions when the
readers only adopted shallow processing. Previ-
ous research has found that when the possessed
nouns are human nouns for both the inalienable
and alienable conditions, the former has a process-
ing advantage (Lin, 2007). Thus, future studies
could explore more types of possessive relation-
ships in different syntactic structures, as well as
using different experimental paradigms to test the
(in)alienability effects on sentence comprehension
and processing.
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Abstract 

This paper is intended to study the effects 
of age of acquisition (AoA) and 
orthographic transparency on word 
retrieval in Persian, which is an 
understudied language. A naming task 
(both pictures and words) and a recall task 
(both pictures and words) were used to 
explore how lexical retrieval and verbal 
memory are affected by AoA and 
transparency. Seventy two native speakers 
of Persian were recruited to participate in 
two experiments. The results showed that 
early acquired words are processed faster 
than late acquired words only when 
pictures were used as stimuli. Transparency 
of the words was not an influential factor. 
However, in the recall experiment a three-
way interaction was observed: early 
acquired pictures and words were 
processed faster than late acquired stimuli 
except the words in the transparent 
condition. The findings speak to the fact 
that language-specific properties of 
languages are very important.  

1 Introduction 

The majority of research on word retrieval and 
recall are done only on few languages of the word 
such as English (Cycowicz et al.,1997; Snodgrass 
& Vanderwart,1980), Dutch (Shao & Stiegert, 
2016), French (Alario & Ferrand,1999; Bonin et 
al.,2003), Spanish (Cuetos et al.,1999; Manoiloff et 
al.,2010) and Italian (Dell’Acqua et al., 2000; 
Navarrete et al., 2019). There are only few reports 
available in other languages of the world such as 
Persian.  
   Age of acquisition (AoA) is known to have a 
strong effect on word retrieval. Words which are 
learned earlier are usually processed faster than late 
acquired words (Alario et al.,2004). This finding 
has been replicated across several languages in 
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Fixed effects                   Estimate  Std. 
Error 

t 
value 

(Intercept)                      915.32  31.44 29.11 
Condition 265.35  -37.34 -7.10 
AoA 169.14  17.16 9.86 
Condition*AoA   -147.16  15.59 -9.44 
 

Random  
effects 

Variance Standard  
Deviation 

Items         2833 53.22 
Subjects           10540 102.66 
Residual 31399 177.20 
      
Table 1: Summary of significant effects in the  
reaction time experiment      
 

Figure 1: Interaction between Condition and AoA 
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picture naming. However, when it comes to word 
recall, the findings are mixed. For example, 
Cortese et al. (2010, 2015) showed that later 
acquired stimuli were recalled better than early 
acquired ones. Raman et al., (2018) found no 
effects of AoA.  
   Where AoA effect interacts with orthographic 
transparency is another question. Orthographic 
transparency refers to the level of consistency in 
grapheme to morpheme correspondence. For 
instance, the word car is orthographically 
transparent, while the word night is not. Arbitrary 
Mapping Hypothesis (AMH) (Ellis & Lambon  
Ralph, 2000) posits that AoA effect is only 
observable in words where print to sound 
correspondence is inconsistent (opaque). They 
believe that AoA effects is diminished in the 
transparent orthographies. Findings from highly 
transparent orthographies in other languages such 
as Turkish failed to replicate the predictions of 
AMH (Raman, 2006).  
   The aim of this paper is to see if previous findings 
could be replicated in Persian which is an 
understudied language. Persian orthography is both 
opaque and transparent thus allowing researchers 
to test AoA effects within one single language. This 
report is intended to see if AoA interacts with 
transparency similarly across both naming and 
recall tasks.  
   If predictions of ARH are correct, it is 
hypothesized that in both modalities (words vs. 
picture) of naming and recall tasks AoA should 
only show an effect in the opaque condition. In the 
transparent condition, AoA effect should disappear 
based on ARH predictions. 

2 Methods 

2. 1 Participants 
Number of participants in this study included 72 
native speakers of Farsi. Thirty six people 
participated in the naming experiment (mean 
age: 23.27, gender: 22 male) and 36 in the recall 
experiment (mean age: 21.56, gender: 17 male). 
They were all undergraduate university students. 
The participants had normal or corrected to 
normal visual acuity, and reported no history of 
neurological or psychiatric disorders. They 
received course credit and gave informed consent 
before their participation.  

 

2. 2 Materials 

Sixty words and their pictures were selected 
from Farsi Snodgrass and Vanderwart naming 
battery (Bakhtiar, Nilipour, & Weekes, 2013). 
These words and pictures were divided, on the 
basis of a 3.8 cut-off point, into two categories: 
early acquired and late acquired words. Each 
category of words was then divided into 15 
opaque and 15 transparent ones. The stimuli 
included both tools and animals. Orthographic 
transparency was defined based on how well the 
letters in a word were matched with the sounds 
in the same words. For instance, the word ‘car’ 
in English is transparent, but ‘psychology’ is not 
as transparent because not all the letters have a 
phonological representation in the production 
stage of the word. 

2.3 Procedure 

Recall experiment: in this experiment the 
participants were required to recall the words and 
pictures that were just presented to them. Half of 
the participants recalled the words and the other 
half recalled the pictures. It should be noted that 
a distractor task was performed by the 
participants for about two minutes after the 
presentation of the words or pictures was 
finished in order to create a delay in the recall 
process. After this, the participants were required 
to write down as many names as possible they 
could remember. There was no time limit on 
finishing the task.  

   Reaction time experiment: This experiment 
follows the same procedure adopted in the recall 
one.  Using DMDX software, half of the 
participants named the pictures. In the same 
session, the other half of the participants read 
words for the same pictures. Ten words or 
pictures were used as practice items so that the 
participants would get familiar with the type of 
the task. Each word was shown to the 
participants for 1500ms and each picture was 
presented for 2000ms. If participants could not 
answer in the time provided, the software moved 
on to the next item automatically. Participants 
were instructed not to cough or make any 
unnecessary noises during this task particularly 
at the beginning of each picture. Any response 
which did not match with the correct most 

26



 
 

dominant name of the picture was considered 
incorrect. 

3 Results 

Linear Mixed Effect (LME) Modeling is gaining 
popularity in psycholinguistic research. LME 
modeling offers several advantages over the 
classic statistical analyses. LME modeling takes 
into account item and subject random effects 
which leads to higher generalizability of findings 
to the larger population and stimuli (Baayen, 
Davidson, & Bates, 2008). In this study, lme4 
package (https://cran.r-
project.org/web/packages/lme4/) was used in R 
software (R Development Core Team, 2012) in 
order to analyze the data in both experiments.  

3. 1 Reaction time experiment 

Our dependent variable was transformed reaction 
time (RT) using common log trans-formation. 
The model tested included all fixed variables 
such as AoA (early vs. late), transparency 
(transparent vs. opaque), and condition (picture 
vs. print) and their interactions along with the 
random effects for subjects and items. Random 
intercepts were not included because the 
variables had less than 5 levels which could 
result in singularity. To test the collinearity 
among the variables, a variance inflation factor 
(VIF) was used. Variables with a VIF above 5 
should be removed from the analysis based on 
the recommendation by Craney and Surles 
(2002). In order to find which variables and 
interaction had significant effects, conditional F-
tests were adopted because doing Lilehood Ratio 
Tests (LRT) on the fixed effects is anti-
conservative and could result in misleading 
findings (Pinheiro & Bates,2000). Kenward-
Roger approximations were used to calculate 
denominator degrees of freedom which have 
shown more acceptable type 1 error rates in com-
parison with LRT and Wald tests (Kuznetsova, 
Brockhoff, &Christensen,2017).  

   The results of the analysis for this section are 
presented in Table 1. Since the interaction 
between Condition and AoA is significant, it 
doesn’t make sense to look into main effects. See 
Figure 1 for the interaction patterns. 

3. 2 Recall experiment 

Since the response variable in this experiment 
was a binomial variable, a generalized linear 
mixed effect model (GLMER) was used. First, a 
full model was created including AoA, 
transparency, and condition as main effects, 
AoA*transparency*condition as the interaction 
effect, and random effects of subjects and items. 
Conditional F-tests were used to find the 
significant effects just like the reaction time 
experiment. 

   The results of the analysis for the recall 
experiment are presented in Table 2. For the 
interactions, see Figure 2.  

4 Discussion and Conclusion 
Regardless of the interaction patterns, the 
significant effect of AoA in this report is in line 
with many previous picture naming studies in other 
languages (Alario et al., 2004) and Persian 
(Nilipour, Bakhtiar, Momenian, & Weekes, 2017). 
Words and pictures which were learned earlier 
were processed faster and recalled more accurately 
than the late acquired stimuli regardless of the 
modality. However, the existence of interactions in 
both the reaction time and recall analyses reveals 
that AoA effect is more complicated than a simple 
main effect.  
   The results of the reaction time experiment are 
not consistent with previous studies. First, there 
was no interaction between AoA and 
transparency predicted by AMH (Morrison & 
Ellis, 2000). Second, AoA had a significant 
effect only in the picture naming modality, while 
the effect disappeared in the word reading 
modality. It is believed that AoA is a 
fundamental property of lexical retrieval and is 
independent of the modality. In other words, no 
matter whether the stimuli are presented as print 
or picture, the effect should be there. This is a 
counterintuitive finding which needs further 
investigation in the future studies.  

   The results from the recall experiment are 
partially consistent with AHM. Although, 
transparency and AoA did not have any 
interaction in the picture recall, the interaction 
observed in the word recall is consistent with 
AHM predictions. Based on AHM predictions, 
the AoA effect disappeared in the transparent 
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condition. What is still counterintuitive is that 
why this effect is only observed in word recall 
and not in picture recall. If AoA effect is  
 independent of modality, a similar effect should 
have been witnessed in both modalities. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   We did not control for other variables such as 
imageability, visual complexity, familiarity, and 
frequency. It’s possible that the effects observed in 
this study could be attributed to lack of control over 
these variables. The number of items was not too 
many limiting the power of the study and hence 
generalizability of the findings. Moreover, the 
participants in the reaction time and recall 
experiments were different which could be another 
limitation due to lack of control over inter-
individual variability. For these reasons, we believe 

our findings should be interpreted with caution. 
However, the counterintuitive findings could pave 
the way for future studies in other languages. We 
need more studies with null or counterintuitive 
effects indeed.  
   The data and codes for this manuscript are 
available at the following DOI 
10.17605/OSF.IO/RTPH6. 
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Fixed effects Estimate Std. 
Error 

z 
value 

(Intercept)                     -1.11 0.10 -10.2 
AoA -0.62 0.17 -3.66 
Condition*AoA 
*Transparency 

1.02 0.40 2.49 

 
Random  
effects 

Variance Standard  
Deviation 

Items          0.27 0.52 
Subjects         0.15 0.39 

Table 2: Summary of significant effects in the 
recall experiment 

Figure 2: The interactions in the recall experiment 
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Abstract

Object Naming is an important task within the
field of Language and Vision that consists of
generating a correct and appropriate name for
an object given an image. The ManyNames
dataset uses real-world human annotated im-
ages with multiple labels, instead of just one.
In this work, we describe the adaptation of this
dataset (originally in English) to Catalan, by
(i) machine-translating the English labels and
(ii) collecting human annotations for a subset
of the original corpus and comparing both re-
sources. Analyses reveal divergences in the lex-
ical variation of the two sets showing potential
problems of directly translated resources, par-
ticularly when there is no resource to a proper
context, which in this case is conveyed by the
image. The analysis also points to the impact
of cultural factors in the naming task, which
should be accounted for in future cross-lingual
naming tasks.

1 Introduction

Most NLP resources are only available for a small
percentage of languages (Joshi et al., 2020), be-
ing the rest of the languages spoken in the world
left behind. This affects also Catalan, which can
be considered a moderately under-resourced lan-
guage (Armengol-Estapé et al., 2021). In the Lan-
guage and Vision area, although significantly large
datasets of annotated images have been created for
a variety of tasks for English, to date no resources
of this kind exist for Catalan. In this work we
present CAT ManyNames1, the Catalan version of
the ManyNames dataset, which is the first available
resource for the task of Object Naming in Catalan.
The dataset has been translated from the English
version and its test set has been human annotated
to assess the quality of the translation. We also pro-
vide analyses of the sources of variation between

1Available at https://huggingface.co/datasets/projecte-
aina/cat_manynames

the human annotated dataset and its translated coun-
terpart.

2 Background

2.1 Object Naming: an Interdisciplinary Task

Naming an object accounts for picking out a nom-
inal to refer to it (Silberer et al., 2020a), and is a
linguistic phenomenon that can show lexical vari-
ation. On the one hand, objects can belong to dif-
ferent semantic categories at the same time (i.e.,
a baby boy belongs to the categories PERSON,
CHILD, BOY, HUMAN, etc.), which, according
to Brown (Brown, 1958) could all be valid alter-
natives for naming that object. On the other hand,
the three different levels within semantic catego-
rization2 identified by Rosch et al. (Rosch et al.,
1976) can all be valid alternatives for naming the
same object as well. Although the basic-level cate-
gories are considered to be the most natural terms
for speakers when referring to objects (Hajibayova,
2013; Jolicoeur et al., 1984; Rosch et al., 1976),
these are not universal categories since they are re-
stricted by perceptive, cognitive and environmental
factors that can result in lexical variation (Berlin,
2014; Graf et al., 2016; Malt, 1995; Wierzbicka,
1996).

While the task of Object Naming has been stud-
ied in both Language and Vision and Psycholin-
guistics, and it is related to Object Recognition
tasks in Computer Vision, each field has a different
approach to the task:

Within the field of Language and Vision, datasets
typically collect free and natural referential utter-
ances3 produced by annotators for a given real-
world image. Some relevant datasets are RefCOCO

2The superordinate level (i.e., animal), the basic level (i.e.,
dog), and the subordinate level (i.e., Chihuahua)

3In semantics, a referring expression is a piece of language
(typically a noun phrase) used with a particular referent in
mind that refers to something or someone, or a clearly delim-
ited collection of things or people (Hurford et al., 2007).
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(and its newer variant RefCOCO+) (Yu et al., 2016),
Flickr30k Entities (Plummer et al., 2015), and Vi-
sualGenome (Krishna et al., 2017). Although nam-
ing occurs within those datasets, it is not normally
marked up and linked to its corresponding image
regions.

The task of picture naming constitutes an impor-
tant experimental paradigm on research in Cogni-
tive Science and Psycholinguistics, and has been
traditionally used to assess language impairments
and difficulties recalling general knowledge from
semantic memory (Snodgrass and Vanderwart,
1980). Subjects reach a high agreement in this task,
but it must be taken into account that participants
are normally shown line drawing pictures that de-
pict a prototypical category rather than real-world
images that show objects in a context.

In Computer Vision, the task of Object Recogni-
tion identifies and classifies objects into several dif-
ferent categories (Russakovsky et al., 2015). Never-
theless, current recognition benchmarks use labels
and images from ImageNet (Deng et al., 2009) that
assume a single ground-truth label, ignoring lin-
guistic variation.

As we can see, the task of Object Naming is ad-
dressed differently in Cognitive Science, Language
and Vision and Computer Vision, but it would
highly benefit from bringing together the partic-
ularities of each field so as to generate and provide
quality resources.

2.2 The ManyNames Dataset

The ManyNames dataset (Silberer et al., 2020a)
provides up to 36 crowd-sourced names for 25K
object instances extracted from VisualGenome (Kr-
ishna et al., 2017). Unlike other Language and
Vision datasets, it focuses on Object Naming rather
than collecting complete utterances. Data collec-
tion was inspired by the picture naming norms de-
veloped in Psycholinguistics (Snodgrass and Van-
derwart, 1980) but using real-world images of ob-
jects in a visual context, making it suitable for anal-
ysis and modeling of object naming, as well as for
research in Language and Vision.

Images were selected from seven domains4 (AN-
IMALS_PLANTS, BUILDINGS, CLOTHING,
FOOD, HOME, PEOPLE, VEHICLES) by defin-
ing 52 synsets from VisualGenome in order to col-
lect instances from different taxonomic levels. In-

4All domains are based on McRae’s feature norms (McRae
et al., 2005) except PEOPLE, which was considered to be
salient due to its prominence for humans.

stances were sampled depending on the size of the
number of names obtained per synset in order to
balance the collection. The annotations were col-
lected by setting a crowdsourcing elicitation task on
Amazon Mechanical Turk (AMT). The procedure
required several annotation rounds, in which prob-
lematic cases such as unclear bounding boxes or
occluded objects were discarded. Because of noise
in the data, a second version of ManyNames (MN
v2) was released (Silberer et al., 2020b), which
is a verified dataset that contains consistent re-
sponse sets with adequate responses that refer to
the same object only. The resulting dataset con-
tained substantial variation (2.2 names per object
on average in MN v2). ANIMALS_PLANTS ob-
tained the highest agreement, whereas PEOPLE
reached a particularly low agreement. The analy-
sis performed on the Bottom-Up model (Anderson
et al., 2018) using the ManyNames dataset (Sil-
berer et al., 2020b) showed that single-label data
underestimated model effectiveness against multi-
label data, obtaining a lower accuracy. This demon-
strates that, compared to single-label resources for
Object Naming, the ManyNames dataset provides
a more accurate picture of human naming prefer-
ences by taking into account linguistic variation.

3 A New Dataset for Object Naming in
Catalan

The main motivations for using the ManyNames
dataset as source data are (i) its consideration of
linguistic variation in Object Naming, which is
widely ignored up to now in Computer Vision, and
(ii) the better accuracy that has shown to perform
against single-label datasets in Language and Vi-
sion modelling. In order to obtain a Catalan ver-
sion of ManyNames, we decided to automatically
translate all the annotations in the original English
dataset to Catalan using a state-of-the-art Machine
Translation (MT) tool. To assess the quality of the
resulting resource, we collected real human anno-
tations for a subset of the dataset, consisting of
around 1K images. Although the size of the man-
ually annotated subset may seem small, it can be
considered standard for a test set with the purpose
of evaluating the quality of automatic annotations.
Table 1 shows an overview of the columns con-
tained in the CAT ManyNames dataset.
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Column Type Description
responses dict Correct responses and their counts
topname str The most frequent name of the object
domain str The ManyNames domain of the object
incorrect5 dict Incorrect responses and their counts
singletons6 dict All responses which were given only once
total_responses int Sum count of correct responses
split str Use of the images in training, test and validation
vg_object_id int The VisualGenome id of the object
vg_image_id int The VisualGenome id of the image
topname_agreement7 int Top name responses divided by total responses
jaccard_similarity8 int Jaccard similarity index of the responses column
raw_responses9 dict Uncorrected responses in the human annotated test set

Table 1: Description of the columns in the CAT ManyNames

3.1 Translated Annotations

Two different neural MT systems were considered
before carrying out the translation of the Many-
Names dataset: SoftCatalà and Google Translate.

Softcatalà is an open-source initiative 10 that,
among other free NLP tools, offers automatic
translation services between Catalan and several
languages based on neural network technology
(Mas, 2021). The popular Google Translate en-
gine, which provides translation services between
more than 100 language pairs (Caswell and Liang,
2020), was also considered.

Given the lack of linguistic context in the annota-
tions to be translated (which were, in most cases, a
single word), sense disambiguation was a major lin-
guistic issue that needed to be solved before carry-
ing out the automatic translation. Since no current
MT system is yet able to take advantage of images
as context 11, ad-hoc linguistic contexts were auto-
matically inserted in each input string in order to
compensate for this. The linguistic patterns were
added using regular expressions depending on the
domain. For example, in the domain HOME, the
following pattern was used: "I bought a/an [word]
for my home." .

Once the linguistic contexts were added, the re-
sulting sentences from the training split of the data
were translated with both SoftCatalà and Google
translate. In order to evaluate which system per-
formed a better translation, a random sample of
500 sentences out of the total translated sentences

10Visit the following link for further information:
https://github.com/Softcatala/nmt-softcatala

11Please note that in order to carry out the automatic trans-
lation, images were not considered

was collected and its quality was manually eval-
uated. 403 sentences out of 500 had an identical
translation in both systems, but in 74 cases Google
Translate got a more accurate translation than Soft-
Català (which only surpassed Google Translate in
23 examples), probably due to having been trained
with larger amounts of data. As a result, Google
Translate was considered as a better option for per-
forming the automatic translation of the dataset.
The linguistic patterns added in order to disam-
biguate were removed after the translation of the
whole dataset, and repeated words, as well as their
counts, were merged.

3.2 Manual Annotation of the Test Set
In order to gather as many manual annotations as
possible for the test set, an annotation campaign
was launched for a subset of 1,072 images. For
this, we used 22 different Google Forms12, each
containing 50 images13. Participants were asked
to fill one of the Google forms (picked at random)
and name the object, animal or person inside the
bounding box with the first name that came to their
mind. Demographic information about participants
was collected during the survey, such as age, gen-
der and region of origin. Statistics show that they
were quite balanced in terms of age and gender,
but in terms of geographical variation, the Central
Catalan dialect was largely over-represented. At
the end of the campaign, a total of 220 native Cata-
lan speakers had participated, gathering a total of
10,072 annotations, corresponding to 10 annota-

12Among the main reasons to use Google forms are its
simplicity of use and the possibility to fill in surveys from a
mobile device.

13Except the last one, which contained 22 images.
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tions per image14.
Post-processing steps for the human annotations

included spellchecking the responses. After this
step, possible erroneous responses were filtered out
by comparing the corrected responses to the incor-
rect translated column of the ManyNames dataset
and were also manually revised. In the process,
possible offensive and/or inadequate content were
also eliminated. Counts were added once the filter-
ing process was finished. The resulting manually
annotated subset has been published with an open
license15.

4 Analysis and Discussion

The purpose of the analysis was, on the one hand, to
assess the quality of the automatic translation in the
subset that had been human annotated by compar-
ing both the translation and the human annotations,
and on the other, to explore possible differences
in lexical choices based on cultural biases. To this
end, the accuracy of the top name, the degree of
variation per image, the average number of differ-
ent responses per image and the agreement on the
top name were computed for both test sets.

The most immediate measure to evaluate the
quality of the translated test set was to compute the
accuracy of the translation of the most frequent re-
sponse per image (aka the top name) by comparing
it with the corresponding top name in the human
annotated set. This accuracy only reached 67,91%,
which is a clear indication of how different both
resources are.

Another interesting metric to be computed was
the degree of lexical variation in the two sets. De-
spite the difference in the number of annotations
(36 for the translated vs 10 for the human anno-
tated), the average number of types in the translated
test set was 2.1 responses per image, whereas in
the human annotated test set, it was 3.116, showing
greater lexical variation in the human annotated
test set. To account for this clear divergence, we
could hypothesize that often two different names
get conflated into one in the translation process.
However, the ratio of the translated dataset (2.1) is

14Time constraints prevented us from gathering more anno-
tations per image, but for the purposes of the present exercise,
10 annotations looks like an acceptable number

15Available at https://huggingface.co/datasets/projecte-
aina/cat_manynames

16As for the types by domain, the human annotated test set
has more types in all domains except in FOOD and CLOTH-
ING, where both test sets have the same number of types.

very close to the 2.2 names per object on average
in the original ManyNames dataset.

A related metric that was also applied is agree-
ment on the top name per image, which is com-
puted by dividing the number of responses for the
top name by the number of total responses. Since
more variation is observed in the human annotated
set, we expect a higher agreement in the translated
set. Indeed, the median is higher in the translated
data (0.93) than in the human annotated data (0.7).

A qualitative analysis was performed by sorting
both test sets by domain and top name and man-
ually inspecting them to spot divergent cases of
translation between English and Catalan. Several
findings account for the observed richer lexical vari-
ation in Catalan: it was found that Catalan speakers
tended to choose a subordinate name (portaveu,
esportista, tennista, etc.) rather than a taxonomic
name (dona, noi, noia, etc.) in the PEOPLE do-
main, the exception being images that involved
specific terminology of an activity or a sport not
specific to the Catalan culture, i.e. baseball or skate-
boarding. In those cases, Catalan speakers tended
to choose the basic level (jugador, noi) rather than
the subordinate level (batedor, patinador). Certain
domains, such as CLOTHING showed Catalan to
be more specific than English (which had repercus-
sions in the translation). For example, jacket can
be translated as americana or jaqueta, depending
on the formality of the event. In addition, Catalan
speakers may opt for the use of a diminutive (trenet
vs tren), but this is a lexical option that English
speakers do not have.

Our analyses show major divergences between
the automatically translated dataset and the man-
ually annotated subset, both in terms of degree of
internal lexical variation and accuracy of the trans-
lated top names. Manual inspection of the results
further confirms that these divergences can be at-
tributed to linguistic and even cultural differences.
Automatic translation of language resources from
well-resourced languages to less-resourced ones is
a common practice in NLP and related fields. Our
results show that linguistic and cultural differences
may affect the quality of automatically translated
resources, such as the one presented here.

5 Conclusions

In this paper, we have presented a new dataset for
the task of Object Naming in Catalan, namely CAT
ManyNames. The new resource is the result of
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the machine translation of the English ManyNames
dataset, with some pre- and post-processing steps.
It also includes a subset of 1,072 images which has
been entirely human annotated with 10 annotations
per image. The comparison between the translated
and the human annotated subsets reveals cultural-
based divergences in lexical choices that can affect
the quality of the machine-translated resource. Our
results shows potential weaknesses in resources
built up by translating annotations, particularly in
the Language and Vision field, where context is
provided by the image and thus is not available to
the machine translation system. Since current liter-
ature on Object Naming within the Language and
Vision field is scarce, these findings could serve as
a starting point for research on cross-lingual Object
Naming, and on the impact of automatic translation
in the annotatation of multilingual resources.
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Abstract

The Thesaurus Linguae Latinae (TLL) is a
comprehensive monolingual dictionary that
records contextualized meanings and usages
of Latin words in antique sources at an un-
precedented scale. We created a new dataset
based on a subset of sense representations in
the TLL, with which we finetuned the Latin-
BERT neural language model (Bamman and
Burns, 2020) on a supervised Word Sense Dis-
ambiguation task. We observe that the con-
textualized BERT representations finetuned on
TLL data score better than static embeddings
used in a bidirectional LSTM classifier on the
same dataset, and that our per-lemma BERT
models achieve higher and more robust perfor-
mance than reported by Bamman and Burns
(2020) based on data from a bilingual Latin
dictionary. We discuss the differences in sense
organizational principles between these two
lexical resources, and report about our dataset
construction and improved evaluation method-
ology.

1 Introduction

In the field of Natural Language Processing (NLP),
there is a growing amount of languages for which
contextualized representation models are created.
For Latin, a pretrained BERT model (cf. Devlin
et al., 2018) was published by Bamman and Burns
(2020), which they finetuned for four classical NLP
tasks, among others for Word Sense Disambigua-
tion (WSD). WSD, an area of computational se-
mantics, has been approached in NLP by several
machine learning setups (for an overview cf. Nav-
igli, 2009 and Bevilacqua et al., 2021), and recent
works (e.g. Scarlini et al., 2020) have also targeted

the use of neural models and architectures in com-
bination with lexical knowledge bases and ency-
clopaedic resources.

WSD is typically cast as supervised classifica-
tion, where the learning task consists of predicting
the appropriate sense label for one or more focus
tokens in their context unit, e.g. within a sentence.
Based on the application end task, sense labels
can be defined in a variety of ways, e.g. aiming
to distinguish coarse or fine granularity of senses,
binary or multiple sense distinctions, etc. Creat-
ing labeled data for a supervised WSD application
is nontrivial. Large, sense-annotated benchmark
datasets are scarce, especially in languages other
than English. A promising resource to be utilized
for Latin WSD could be the Latin Wordnet1; for its
evaluation and references cf. Franzini et al. (2019).
Seeking proxy resources and methods to leverage
WSD resources is important, since it is expensive
to manually produce a sense labeled corpus from
scratch that captures contextual information for sev-
eral senses of a word. Therefore, our study aims to
contribute insights into methods that use dictionar-
ies for automatically assigning sense labels.

Bamman and Burns (2020) (henceforth: B&B)
constructed WSD data for BERT, a transformer-
based language model, by taking the textual exam-
ples (i.e., quotes from antique sources) inventorized
for a particular headword (aka ’lemma’) in the bilin-
gual Latin Dictionary of Lewis and Short (1879):
to each quote snippet in the first two sense groups
of each lemma, they assigned its sense category
(i.e., I or II) as gold standard label.

Inspired by this sense inventory creation (i.e., bi-

1https://latinwordnet.exeter.ac.uk
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nary class labeling) method of B&B, we requested
data for the same lemmas that B&B presented,
from a currently proprietary resource: the The-
saurus Linguae Latinae2 (TLL)3. The TLL is a
comprehensive monolingual Latin dictionary that
aims to record all meanings of all ancient Latin
words, citing all (or a representative sample) of its
seen attestations. The TLL is vast: it is estimated
to comprise cca. 53k-56k entries as of now4, so it
likely holds a major part of the quotes that occur in
L&S and thus in the B&B WSD dataset.

The prospect of comparing WSD performance
across datasets constructed from two dictionaries
– one bilingual, another monolingual – was in-
triguing in several scholarly respects, a.o. for gain-
ing quantitative insights into dictionary structuring
practices, or even for attempting to validate sense
structuring in an empirical way. After inspecting
the data, we realized that a direct comparison of
machine learning performance based on data con-
structed from the TLL resp. from L&S would be
methodologically flawed:

1. We made pilot analyses of the quotes across
the B&B and TLL sense labeled data, and noted
that sense categorization in TLL and L&S draws
on very different semantic principles: for one and
the same lemma, the subset of quotes labeled with
sense I in B&B can be distributed across both sense
class I and II in TLL, and/or vice versa.

2. Working with the methodology of B&B of
constructing sense-balanced data would not allow
unleashing the full potential of the TLL data size.
As we chose not to discard quotes (i.e., did not
match the amount of quotes in the smaller sense
label set), our TLL dataset became orders of mag-
nitude larger and sense-label-wise possibly more
aggregative, thus likely coarser-grained.

Our aims in the current contribution were thus:

• Investigating methods and challenges for ex-
perimentally validating sense representations
and their WSD distinction

• Giving account of joint work between the Hu-
manities and the NLP communities that de-
liver complementary expertise

• Reusing a pretrained contextual representation
model for Latin, released by Bamman and
Burns (2020)

2https://tll.degruyter.com/about
3The Bavarian Academy of Sciences and Humanities plans

to make the complete TLL data open source by 2030.
4Currently headwords are prepared till letter R.

• Reproducing the WSD experiment of Bam-
man and Burns (2020) via the benchmark data,
code, and baseline classifier they released5

• Repeating the WSD experiment by finetun-
ing Latin BERT on new WSD data that we
constructed from the TLL

• Observing sense organization principles and
scale across the two datasets

• Improving experimental methodology by pro-
viding a detailed evaluation in terms of F-
macro scoring in a per-lemma-WSD-setup.

The paper is structured as follows: first, a short
exploratory analysis is given for the B&B resp. the
TLL data in terms of the original resources and
their construction principles. Afterwards we report
on the finetuning experiments and we summarize
the study with a conclusion section.

Figure 1: Excerpt from the nested structure of the TLL
article for the lemma patior, meant for human reading.

Figure 2: Flattened, sense-labeled WSD data for BERT,
derived from the TLL article and its sense inventory, for
the lemma patior.

5https://github.com/dbamman/latin-bert

38



2 Exploratory Data Analysis

2.1 B&B Data
The B&B dataset comprises 8,354 instances for a
total of 201 dictionary headwords (lemmas). The
source of B&B data is the bilingual dictionary of
L&S6 that is a translation of Freund’s dictionary
from the 19th century, reflecting edition techniques
from 200 years ago.

2.2 TLL Data
The ongoing TLL compilation project started in
1900; its editorial principles have changed every
once in a while7. Within each TLL article, a con-
trastive, nested (thus: semantically additive) struc-
ture is pursued that can descend as deep as 10+
levels.

Sense groups on the same level are aimed to be
of the same sense granularity but to feature mutu-
ally exclusive parameters of syntactic or semantic
nature or their combination. This implies that the
TLL structure does not reflect sense distinctions
that depend on their translatability to another lan-
guage, but its goal is a dichotomic arrangement
(which is not always limited to two sense groups
on the highest level) of word attestations (quotes
from Latin texts) while staying within the same
language.

The TLL data was available to us in TEI XML
format. Just like B&B, we generated the data from
within a single dictionary entry, by definition ex-
cluding homonymy, and we only considered the
first two main senses of a lemma, labeling all text
snippets that are longer than 4 words with the cor-
responding highest-level sense label (see Figure 2),
by recursively descending into – thus flattening –
the nested structure of the printed article (see Fig-
ure 1). Our TLL data points correspond to 25,227
text snippets for the subset of 40 lemmas, whose
part-of-speech distributions are: 40% verbs, 22.5%
adjectives, 10% nouns, 27.5% others (adverb, pro-
noun, preposition, conjunction, particle).

Starting from letter C, in the articles a large
amount of words – by definition the lemma on-
set itself, but also other tokens – are heavily and
somewhat irregularly abbreviated, which we had to
resolve by extensive human-in-the-loop procedures,
e.g. by identifying patterns and writing replacement
rules for omitted subword material in a per-lemma

6http://www.perseus.tufts.edu/hopper/
7For an impression see https://publikationen.

badw.de/de/thesaurus/lemmata

Figure 3: Data size per lemma per dataset. Blue: B&B
data. Orange: TLL data.

fashion. Reconstructing the omitted subword parts
of the inflected lemma forms was mandatory for
running meaningful WSD experiments because the
lemma forms supply a core piece of information to
the learning algorithms.

2.3 Analysis of the Derived Sense Classes
We observed a number of important phenomena
about sense classes as derived from the dictionaries.

1. Semantically motivated separation be-
tween senses Often, sense separation is mutually
exclusive, e.g. the lemma relinquo demonstrates
that out of the first two main TLL sense groups,
I pertains to ’relocation in physical space’, as op-
posed to II that describes ’movement in a figurative
sense’.

2. Artificial dichotomy of senses The separa-
tion of senses can often be rather artificially con-
structed, e.g. in ratio, and L&S uses such separa-
tion practices, e.g. by container labels such as "in
general" vs. "in particular", even though the latter
split oftentimes does not yield a semantically or
syntactically homogeneous group.

3. Lemma vs. Sublemma Classes can also be
split on certain grammatical phenomena in L&S,
e.g. on participle perfect used as an adjective (cf. re-
mitto where this usage makes up class II for B&B),
whereas the TLL renders such usage as a so-called
sublemma and treats it structurally elsewhere than
in the main article, thus the Latin quotes in it do
not get extracted into the TLL WSD data.

4. Temporal and domain diversity The TLL
has a uniquely wide temporal scope spanning
nearly 1000 years from Old and Classical Latin till
late antiquity and Christian Latin (cca. AD 700),
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and encompasses genres beyond the domain of lit-
erature, such as legal and medical texts and in-
scriptions. Thereby, it delivers markedly different
semantic representation proportions than (a) the
pretrained BERT that saw texts spanning cca. 2000
years, seeing attestation from Middle Latin and Hu-
manism, or (b) the B&B finetuned BERT that saw
texts from cca. 200 years, focused on a subset of
canonical classical authors. As an example: religio
in the contemporary sense of religion as ’a dog-
matic system of faith based on revelation’ did not
exist before the rise of Christianity; for "pagan"
Romans, religio denoted ’feelings of awe, fear, re-
spect towards the gods or strictly defined forms of
(liturgical) worship’.8

5. Truthfulness to sources In both the B&B and
the TLL data, their antique sources are not always
literally cited, but the quotes are often edited. The
TLL maintains more strictness, e.g. no syntactic
changes are allowed. In the B&B (aka L&S) data,
one regularly finds modified or artificially inserted
constructions that diverge from the sources.

3 WSD Experiments

Finetuning BERT is a technique that takes its pre-
trained language model and explicitly trains it for
the WSD task, i.e., in our case on Latin quote – typ-
ically on the subsentential level – that are labeled
to have class I or class II, as assigned based on
the TLL sense inventory. This yields a classifica-
tion model that can distinguish exactly two mean-
ings for the token that designates the focus lemma.
This is certainly a simplified WSD setup, neverthe-
less helpful for pilot studies to assess the power of
newly constructed data for disambiguating between
two major senses (or usage contexts) of words. The
finetuning task is in contrast with what already took
place in the first phase of creating lexical represen-
tations, the so-called pretraining. There the task
was that BERT’s Latin language model learns as
many senses of a word as possible.

3.1 Training and Testing Setup

The setup across our WSD experiments on a ma-
chine with GPU running Linux Ubuntu 18 is listed
below. Splitting the data into partitions for training,
development, and testing was done by the method
and Github code of Bamman and Burns (2020).

8We aim to utilize TLL data for chronological analyses,
characterizing and training the recognition of e.g. semantic
drift, but this goes beyond the scope of the current paper.

Dataset Model
B&B biLSTM

BERT
TLL biLSTM

BERT

mean F-macro stdev
.613 .205
.695 .213
.705 .132
.794 .143

Table 1: Mean performance scores over 40 lemmas.

• 100 epochs (training rounds) per lemma
• Training and testing performed per lemma
• B&B used cross entropy loss without class

weights for training. Since in our data the
two classes are imbalanced per lemma, we
calculated the weights for each class for the
cross entropy loss function

• Performance was evaluated in terms of the
unweighted macro F1-score per lemma us-
ing Pedregosa et al. (2011). Accuracy would
be suboptimal to use as it does not transpar-
ently express how well we perform on the
two classes and it does not correct for class
imbalance

• For each epoch, macro F1 was calculated on
the development set

• For each lemma, the best performing develop-
ment epoch’s parameters were used to mea-
sure macro F1 on the heldout test set

• As baseline model we used from B&B9

200-dimensional static word2vec embeddings
(Mikolov et al., 2013) in a biLSTM classifier

• Enclitica were not separated from words since
BERT’s wordpiece tokenizer10 was assumed
to account for these.

3.2 Evaluation
B&B Dataset We reproduced the B&B WSD study
with a similar accuracy score as they report (.737).
Next, we derived from the B&B aggregated dataset
a per-lemma dataset, on which we trained both clas-
sifier models, using the B&B code that we amended
with the settings listed in Section 3.1. The results
are shown in Table 1. We observe that the B&B
per-lemma data are small (cf. Figure 3) and yield
statistically unreliable results as standard deviation
values are large; this variability is also illustrated
by the whiskers of the boxplot (cf. Figure 4). While
Table 1 reports the means and the standard devia-
tions, the boxplots show the median.

9
https://github.com/dbamman/latin-bert/blob/

cd6bea9f7ff84ff4b18c172f3d5719d1d3198e69/case_studies/
pos_tagging/scripts/download_static_vectors.sh

10
https://ai.googleblog.com/2021/12/

a-fast-wordpiece-tokenization-system.html
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Figure 4: Performance distribution boxplots: F-macro
and accuracy across lemmas per dataset per model.

TLL Dataset Due to the data preparation over-
head, thus far we processed a subset of 40 lemmas.
The WSD performance scores on TLL data are also
listed in Table 1: BERT attains a nearly .80 F-score
and outperforms the baseline biLSTM model with
a large margin (for both datasets). Figure 4 also
indicates that the median of the scores for TLL data
is higher than for B&B data.

4 Summary and Conclusion

Our study aimed to confirm the impact of Latin
BERT (Bamman and Burns, 2020) and to point
out an important new Latin WSD resource. We
constructed a large dataset from the TLL that
holds quotes labeled with the first two highest-level
senses of a headword. These likely incorporate
senses that the B&B dataset did not include. We
experimentally validated that the nested dictionary
structure of the TLL is able to deliver WSD data
for finetuning contextual representations in a trans-
former architecture. The WSD models yielded a
large improvement above the static embeddings
baseline, when evaluated on held-out data from
our new, TLL-based dataset. We plan to scale up
this study and to release a benchmark dataset and
trained models for Latin WSD in future work.
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Abstract

Definition modeling is the task to generate a
valid definition for a given input term. This
relatively novel task has been approached ei-
ther with no context (i.e., given a word em-
bedding alone) and, more recently, as word-in-
context modeling. Despite their success, most
works make little to no distinction between re-
sources and their specific features (e.g., type
and style of definitions, or quality of examples)
when used for training. Given the high diver-
sity lexicographic resources exhibit in terms
of topic coverage, style and formal structure,
it is desirable for downstream definition mod-
eling to better understand which of them are
better suited for the task. In this paper, we pro-
pose an empirical evaluation of the well-known
lexical database WordNet, and specifically, its
dictionary examples. We evaluate them both
directly, by matching them against criteria for
good dictionary writing, and indirectly, in the
task of definition modeling. Our results sug-
gest that WordNet’s dictionary examples could
be improved by extending them in length, and
incorporating prototypicality.

1 Introduction

Definition modeling (DM), as introduced by No-
raset et al. (2017), is the task of generating a dic-
tionary definition for a given word. This task was
made possible by the adoption in NLP of sequence-
to-sequence architectures based on RNNs (Gardner
et al., 2022). Recently, DM systems have shown im-
pressive performance in several intrinsic and down-
stream tasks, mostly thanks to being able to go from
context-less (Noraset et al. only used the definien-
dum1 as a conditioning token at all timesteps) to
a contextually richer setting, e.g., by conditioning
the generated definition to an example of usage
of the target word (Ni and Wang, 2017; Gadetsky

1The genus-et-differentia Aristotelian definitions follows
an A is a B which Z structure, with A being the definiendum, B
the genus and Z the definiens or differentia specifica.

et al., 2018; Chang et al., 2018; Zhu et al., 2019;
Mickus et al., 2019; Ishiwatari et al., 2019).

Recently, a notable leap in DM was achieved
in Bevilacqua et al. (2020), who fine-tuned BART
(Lewis et al., 2019) on example-definition pairs,
and reported high results in intrinsic benchmarks
and, more importantly, used their DM system
for downstream NLP, specifically word sense dis-
ambiguation (WSD) and word-in-context classi-
fication. DM has also been explored from other
perspectives, e.g., generating definitions with ap-
propriate specificity using re-ranking mechanisms
(Huang et al., 2021), or extending the generation
cross-entropy loss with a reconstruction objective
(Kong et al., 2022) (reminiscent of works that used
dictionary definitions for improving word embed-
dings via autoencoders (Bosc and Vincent, 2018)
or LSTMs (Hill et al., 2016)). Moreover, Barba
et al. (2021) explore a BART-based model for per-
forming the reverse task to DM, i.e., exemplifica-
tion modeling, or generating a dictionary example
given a term and its definition. Other applications
of DM range from the aforementioned lexical se-
mantics tasks to reverse dictionary (predict a word
given a definition), interpretability, or for clarifying
technical and medical terminology (Chen and Zhao,
2022; August et al., 2022), whereas recent applica-
tions of BART to tasks not originally designed to
be solved generatively are semantic role labeling
(Bevilacqua et al., 2020), relation extraction (Cabot
and Navigli, 2021) or entity linking (De Cao et al.,
2020).

Despite the above successes, little attention has
been paid so far to the quality of the dictionary
examples (or contexts) used for fine-tuning these
models. In fact, most existing DM systems train
on WordNet (WN) (Miller, 1995), which is the de-
facto lexical database for English. However, we
are not aware of previous work that has explored
the quality (and hence, suitability for DM) of WN
examples. Therefore, in this paper, we first inves-
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tigate the quality of WN examples by evaluating
against the GDEX (Good Dictionary Examples)
set of criteria (Kilgarriff et al., 2008), and use as a
point of comparison a widely adopted open dataset
used in DM, which is primarily based on the Ox-
ford Dictionary (Chang and Chen, 2019) (CHA). It
is worth noting, however, that these two resources
were built for different objectives, as the initial
purpose behind creating WN was to explain how
lexical meaning is stored in the mind (Broda et al.,
2009), and its primary use may be as a sense inven-
tory (Agirre and Edmonds, 2007). However, with
this caveat in mind, and given how lexicographic
resources are currently converging into useful pre-
training and fine-tuning datasets for lexical seman-
tics, we also propose to extrinsically test these two
resources in the DM task. Specifically, in our sec-
ond set of experiments we fine-tune a BART-based
model on WN and CHA, and show that generally
speaking, results of models fine-tuned on WN per-
form slightly worse than if fine-tuned on CHA. Our
preliminary results suggest that WN’s examples
sometimes do not provide enough context, mak-
ing it difficult to learn a good representation for
the word being contextualized. We also report an
experiment comparing DM modeling results on
WN nouns vs. WN verbs; which suggests that a
DM model trained on WN nouns performs slightly
better.

2 Data

WordNet (WN) is an electronic lexical dictionary
for English that describes words (11,7097 nouns,
11,488 verbs, 22,141 adjectives, and 4,601 adverbs)
organized in groups of synonyms called “synsets”
(Miller, 1995; Fellbaum, 2013). Each synset is
described by its definition, lemmas, examples of
usage (for some but not all words), and the relations
between synsets, e.g., hypernymy (is-a), meronymy
(is-part) or troponymy (manner-of). WN has typ-
ically been used in lexicographic and language
learning settings (Morato et al., 2004), but more
importantly, also in NLP, e.g., as a natural language
interface for optimizing the precision of search en-
gines, WSD or query expansion (Moldovan and Mi-
halcea, 2000; Banerjee and Pedersen, 2002). More-
over, relations in WN have been used extensively,
for example for improving word embeddings via
retrofitting (Faruqui et al., 2014; Espinosa-Anke
et al., 2016; Vulić and Mrkšić, 2017; Mrkšić et al.,
2017).

CHA (Chang and Chen, 2019), the other re-
source we consider in this paper, is based on Ox-
ford Dictionaries. It was released with two splits,
namely seen, where definitions in the training set
also exist in the test set, and unseen, which con-
tains a set of words not available in the training
set (Bevilacqua et al., 2020). This is similar to the
lexical splits (as opposed to random splits) present
in other analogous tasks such as graded lexical en-
tailment (Shwartz et al., 2016; Vulić et al., 2017).
In this paper, we are concerned with the quality
of examples in WN (and how they compare with
CHA), i.e., sentences where a target word appears,
and which should be informative enough to con-
vey the necessary contextual information to clarify
fully or partially the word’s meaning (encoded in a
natural language definition or gloss, instead of e.g.,
a word embedding).

We show in Table 1 examples from WN and
CHA, where it becomes apparent that WN exam-
ples have a different pattern, e.g., they are much
shorter, and are crucially limited in the contextual
information they provide, as opposed to the ex-
amples in CHA, which features, first, full-fledged
grammatical examples, and second, associated vo-
cabularies that help position the target word in the
mental lexicon, which is crucial for word access
(Zock et al., 2010).

Data Lemma Definition Example
WN people (plural) any group of

human beings (men
or women or children)
collectively

old people

CHA people human beings in gen-
eral or considered col-
lectively

each day he has looked
at a key issue facing us
as a nation as a people
as frail human beings

WN sheet any broad thin expanse
or surface

a sheet of ice

CHA sheet a large rectangular
piece of cotton or
other fabric used on
a bed to cover the
mattress and as a layer
beneath blankets when
these are used

Mary quietly got off the
bed and covered him
with the sheet and blan-
ket

WN tall great in vertical dimen-
sion; high in stature

tall people

CHA tall of great or more than
average height espe-
cially with reference
to an object relative to
width

the elevator came to a
stop and the doors slid
open revealing the sixth
floor of the tall building

Table 1: WN vs CHA definitions and examples for a
given lemma (in bold).
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3 Experiments

In this section, we introduce the two sets of experi-
ments we perform. First, the descriptive compari-
son between WN and CHA examples using GDEX
as a proxy (Section 3.1). Second, we describe the
setting for the DM experiment, where we test WN
as supervision signal (Section 3.2).

3.1 GDEX-based comparison

As a proxy for determining the quality of dictio-
nary examples in WN, and given that there is no
manually annotated dataset for this purpose, we
used GDEX (Good Dictionary Examples) criteria.
GDEX is a system that added around 8,000 new ex-
ample sentences to Macmillan English Dictionary
by automatically finding good examples in corpora
using a set of rules of thumb (Kilgarriff et al., 2008;
Bejoint, 2014).

In our work, we used some of the features that
are introduced in GDEX, specifically:

• sentence length: according to Kilgarriff et al.
(2008), good dictionary examples should
range between 10 and 25 words, and thus we
penalize shorter or longer dictionary examples
proportionally (the more an example deviates
from the acceptable minimum or maximum,
the more it is penalized).

• word frequency: a sentence is penalized for
each non-frequent word that is not in the list of
the top 20,000 most frequent words in English
Wikipedia.

• anaphoric references: we penalize the num-
ber of pronouns in the dictionary example,
normalized by sentence length.

• sentence probability: we use the GPT-2 (Rad-
ford et al., 2019) language model to score the
probability of dictionary examples. Intuitively,
this can be a useful metric for semantic coher-
ence and fluency.

3.2 Definition Modeling

The general formulation of DM is as follows. To
generate a gloss g that defines a target lemma t
in a context c, the standard sequence-to-sequence
conditional generation probability is computed by
factorising it auto-regressively (Bevilacqua et al.,
2020):

P (g|c, t) =
|g|∏

k=1

P (gk|g0:k−1, c, t) (1)

where gk is the kth token of g and g0 is a special
start token (Bevilacqua et al., 2020). We fine-tune
BART, a pre-trained encoder-decoder system, to
perform the definition generation task by taking the
pair (context, target lemma) as an input to produce
the corresponding definition. The dataset includes
(c, t, g) triples where t is the target word (lemma)
in a context c (example) and g is the gold gloss
which defines t in c (definition). We encode the
input as (t, c) pairs and special tokens are used
to identify the target lemma in each context such
as The cherry tree <target> bloomed </target>.,
with the lemma “bloom” as the target word in this
context.

Exp. 1 (WN vs CHA) Since we are concerned
with using WN in definition modeling, we trained
and tested the definition generation model (BART)
on WN lemmas that have examples (44,351 lem-
mas) using an 80/20 split for training and testing.
Additionally, we trained the same model using a
CHA-derived training set of the same size as our
WN training set, and tested it on the same WN test
set. We ensured that no duplicates/leakage occured
between sets in both experiments. We train both
models with a maximum of 50 epochs with early
stopping2.

Exp. 2 (WN Nouns vs WN Verbs) We trained
and tested the same BART model with same hyper-
parameters as in the WN vs CHA experiment on
random 10k noun lemmas and 10k verb lemmas
from WN separately (using again an 80/20 ratio for
training and testing) to evaluate whether there are
noticeable differences between these two grammat-
ical categories.

4 Analysis

In this section, we discuss the results of our two
experiments, namely GDEX-wise comparison be-
tween WN and CHA, and WN’s stress test in the
DM task.

2We implemented our experiments us-
ing the simpletransformers (http://
simpletransformers.ai/) library, a wrapper on
top of transformers (Wolf et al., 2020).
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(a) (b)

Figure 1: Empirical distribution functions between WN
(blue) and CHA (orange) for length (a) and frequency
(b) penalties.

Figure 2: Violin plot showing the difference in log-
likelihood assigned by GPT-2 to WN vs CHA examples
(higher is better).

4.1 GDEX score

Since Kilgarriff et al. did not specify an optimal
weighting for the different factors they took into
account in the GDEX metric, we look individu-
ally at each of the four factors discussed in Section
3.1. We leave for future work investigating op-
timal weighting for these and other metrics, for
example, by tuning them on downstream applica-
tions. When comparing these scores for both WN
and CHA examples, Figure 1 (lower is better in
both metrics) shows that WN has generally higher
penalties both for example length and for usage
of infrequent words. Specifically, for instance, we
found that 80% of CHA’s examples have a length
penalty of .6 or less, whereas for the same propor-
tion, the length penalty reaches more than .8 in
WN. In a subsequent analysis, we found that these
differences, if studied between WN’s nouns and
verbs, clearly favour nouns, that is, WN’s nouns
are in general accompanied by better examples.
Specifically, we found that, on average, the length
penalty is .49 for nouns, and .62 for verbs, and that

the frequency penalty is .10 for nouns and .15 for
verbs.

Finally, while the sentence probability is a valid
metric, we observe that it is more likely that shorter
sentences exhibit lower perplexity, and therefore
will be scored higher by a language model. To fur-
ther investigate this, we conduct an analysis where
we split WN’s and CHA’s examples into 4 bins,
namely short, mid-short, mid-long and long, with
short examples containing between 1 and 15 to-
kens, mid-short up to 30 tokens, mid-long up to
45 tokens, and long above 45 tokens. Then, we
compared the probability assigned by the language
model to these examples, and verified that, indeed,
WN has better short and mid-short examples, but
worse mid-long examples. It also important to note
that among the long examples, most of them were
close to 45 tokens for WN, while for CHA they are
much longer. To (perhaps anecdotally) illustrate
this point, the longest dictionary example in WN is
only 46 tokens long, while the longest in CHA is
141. Finally, in terms of usage of anaphoric refer-
ences, we did not find significantly different results
between WN and CHA.

4.2 Definition Modeling

Evaluating the quality of the generated definitions
is a subjective matter, as delivering the meaning
of words can take many forms. Table 2 shows ex-
amples of the predicted definitions generated by
a WN-trained model and a CHA-trained model.
When analysing these definitions and annotating
the error types (following the typification proposed
in Noraset et al. (2017)), it seems that the predicted
definitions generated by the WN-trained model
show evidence of under-specificity (first and sec-
ond rows), since in each case the definition repre-
sents the general idea, but where part of the mean-
ing of the target lemma in context is lost. In the
third row, the generated definition falls into the self-
reference type of error, since it refers to the same
lemma in a circular way.

We also noticed that, generally speaking, the
CHA-trained model learned to explicitly mention
the prototypical concept or the idea to which a
definition applies, and this is interesting from a
commonsense learning point of view, which has
recently received considerable attention (Gajbhiye
et al., 2022; Nguyen et al., 2022). Therefore, given
that CHA has many definitions that start with the
prototypical concept/entity that embodies that prop-
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No. Lemma Example Gold definition PD_WN PD_CHA
(1) accelerate The car accelerated move faster become more powerful

or efficient
of a vehicle or aircraft
move forward at a high
rate of speed

(2) appear Did your latest book ap-
pear yet?

be issued or published have a physical form or
appearance

of a book or other prod-
uct reach the shelves of a
bookstore or other store

(3) immigrate Many people immigrated
at the beginning of the
20th century

come into a new coun-
try and change resi-
dency

become immigratory of a person move to a for-
eign country to settle per-
manently

Table 2: Sample of predicted definitions generated by WN-trained model and CHA-trained model. PD_WN:
predicted definition by WN-trained model, PD_CHA: predicted definition by CHA-trained model

WN CHA

BLEU 0.18 00.16
METEOR 12.28 14.89
ROUGE-L 16.49 17.37

Table 3: DM evaluation results for WN and CHA

Nouns Verbs

BLEU 3.67 0.47
METEOR 20.66 14.13
ROUGE-L 26.85 18.72
Average 1 7.06 11.12

Table 4: DM evaluation results for WN Nouns vs WN
Verbs

erty (e.g., “accelerate” having a definition starting
with “of a vehicle”), for the future, this resource
could be helpful to map prototypical features to
concepts, using dictionary examples as additional
contexts.

We evaluated the definitions intrinsically using
automatic string matching measures, specifically
BLEU, ROUGE-L and METEOR. BLEU is a met-
ric used for machine translation evaluation and
compares n-grams matches of the candidate sen-
tence with the reference sentence (Papineni et al.,
2002) (we used the default BLEU-4). Rouge-L
measures the longest common sub-sequence be-
tween the candidate sentence with the reference
sentence (Lin, 2004). METEOR is another im-
proved machine translation evaluation metric that
matches uni-grams based on their surface forms,
stemmed forms, and meanings (Lavie and Agarwal,
2007).

Exp. 1 (WN vs CHA) Table 3 shows the aver-
age BLEU, METEOR and ROUGE-L scores for
the definitions generated by WN-trained model and
CHA-trained model. The results show that the over-

all scores for evaluating the definition generation
model that uses WN examples are low in general,
even when comparing it with the model that uses
CHA examples for training.

Exp. 2 (WN Nouns vs WN Verbs) Finally, with
regards to the WN nouns vs WN verbs experiment,
Table 4 shows the results of the three metrics used
for evaluating the generated definitions. When com-
paring these results and the average of the scores,
we can see that the quality of generated definitions
of nouns is generally better than that of verbs. We
leave for future work to further explore the differ-
ences between WN’s noun vs verb examples, and
why nouns seem to be easier to learn.

5 Conclusion

Definition modeling is the task to generate a dictio-
nary definition given an input word and, optionally,
some context. While different lexicographic re-
sources are used as supervision for DM systems,
there is little work analyzing their intrinsic quality.
Our evaluation is focused on the examples avail-
able in WordNet and the Oxford Dictionary, where
we train a sequence-to-sequence definition model-
ing architecture based on BART using these two
dictionaries. We found that WN’s dictionary ex-
amples are written in a style that may make them
hard to learn (especially verbs), and that they are,
generally, (perhaps too) short. For the future, we
would like to explore extrinsic evaluations and per-
form additional experiments with other datasets
and language models.
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word vectors for lexical entailment. arXiv preprint
arXiv:1710.06371.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020
conference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Ruimin Zhu, Thanapon Noraset, Alisa Liu, Wenxin
Jiang, and Doug Downey. 2019. Multi-sense defini-
tion modeling using word sense decompositions.

Michael Zock, Olivier Ferret, and Didier Schwab. 2010.
Deliberate word access: an intuition, a roadmap and
some preliminary empirical results. International
Journal of Speech Technology, 13(4):201–218.

48



Proceedings of the Workshop on Cognitive Aspects of the Lexicon, pages 49–57
November 20, 2022. ©2022 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_007

Exploring Nominal Coercion in Semantic Spaces
with Static and Contextualized Word Embeddings

Chenxin Liu and Emmanuele Chersoni
The Hong Kong Polytechnic University

Department of Chinese and Bilingual Studies
Yuk Choi Road 11, Hung Hom, Kowloon, Hong Kong (China)

chenxin.liu@connect.polyu.edu.hk, emmanuelechersoni@gmail.com

Abstract

The distinction between mass nouns and count
nouns has a long history in formal semantics,
and linguists have been trying to identify the
semantic properties defining the two classes.
However, they also recognized that both can
undergo meaning shifts and be used in contexts
of a different type, via nominal coercion.

In this paper, we present an approach to mea-
sure the meaning shift in count-mass coercion
in English that makes use of static and contex-
tualized word embedding distance.

Our results show that the coercion shifts are de-
tected only by a small subset of the traditional
word embedding models, and that the shifts
detected by the contextualized embedding of
BERT are more pronounced for mass nouns.

1 Introduction

The literature in formal semantics has debated for
long on the distinction between count nouns and
mass nouns, which has often been described as an
opposition between discrete, countable objects and
substances that cannot instead be divided into sub-
units. A notorious formal characterization of this
intuition is provided by Link (1983): mass nouns
like wine are non-quantized, in the sense that each
subpart of wine will still count as wine; on the other
hand, count nouns like cat are quantized, because if
you take a subpart of a cat, it will not count as a cat
(Cheng, 1973). According to such view, in other
words, the two types of nouns denote in different
domains with different properties.

Chomsky (1965) proposed instead a lexical-
ist perspective on the problem, where nouns are
marked with a binary feature ± COUNT determin-
ing the kind of syntactic context (mass or count) in
which they can appear. Although the approaches
adopt different criteria for defining the "countabil-
ity" of the nouns, they both predict that count nouns
will (mostly) appear in count contexts, and mass
nouns will (mostly) appear in mass contexts.

However, cases like the following are extremely
frequent in natural language:

1. There is rabbit in my soup. (count to mass)

2. Two wines at table four! (mass to count)

In 1., the count noun rabbit is interpreted as
rabbit meat, while in 2. the plural form of the
mass noun wine means glasses of wine. Both cases
are examples of coercion, a semantic phenomenon
occurring when the standard interpretation of an
expression (in our case, the noun) yields an impos-
sible conceptual representation (e.g. in 1. a rabbit
swimming in the soup) (Wiese and Maling, 2005);
consequently, a more plausible interpretation is re-
trieved by "enriching" the semantic representation
with concepts that are associated to the standard
interpretation of the target expression (enriched
composition; see Jackendoff (1997)). The focus of
this paper is specifically on nominal coercion of
mass and count nouns.

Since it is rare to find nouns that occur exclu-
sively in either mass or count contexts, it makes
more sense to talk about predominantly count and
predominantly mass nouns. Chierchia (2010) de-
scribes the idea of mass-count elasticity, meaning
that any noun can be in principle mass or count,
its status being determined at the level of the nom-
inal phrase. When we say "predominantly" mass
or count noun, therefore, we mean that a noun has
the tendency to occur more frequently in one of the
two context types. On such basis, the count-mass
distinction can be intuitively seen as a continuum,
with the nouns traditionally described in the liter-
ature being closer to one the two extremes (Katz
and Zamparelli, 2012).

In this work, we investigate to what extent mod-
ern Distributional Semantic Models -which are
nowadays the standard for the representation of
lexical meaning in NLP- encode the meaning shifts
caused by mass-count coercion. We run two dif-
ferent experiments, making use respectively of
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static and contextualized word embedding mod-
els to identify the meaning shifts, and we study
some of the potential factors that might influence
the extent to which a noun is shifting.

2 Related Work

Modern NLP widely adopts Distributional Seman-
tic Models (DSMs) for the representation of lexical
meaning, using vectors that are based on the co-
occurrences patterns of words in large text corpora.
Vector representations are usually compared us-
ing the cosine of the angle between them, and the
smaller the angle between two words, the closer
their meanings will be (Turney and Pantel, 2010).

The literature on DSMs has identified three gen-
erations of vector spaces (Lenci et al., 2022). The
first generation is typically referred to as count
models (Baroni et al., 2014), because the spaces
are obtained from the extraction of co-occurrences
between the target words and the linguistic contexts
that are deemed relevant, then the co-occurrences
are weighted via associations measures (Landauer
and Dumais, 1997; Baroni and Lenci, 2010; Bulli-
naria and Levy, 2012).

A second family of models emerged in the early
2010s and became known as word embeddings or
prediction-based models (Mikolov et al., 2013; Bo-
janowski et al., 2017). In such models, the learning
of word vectors is generally framed as a super-
vised task: a neural network is trained to predict
words given other context words, and the vectors
are learned as parameters. Words that tend to co-
occur will have similar vector representations.

However, a common feature of both families is
that they produce static vector representations, in
the sense that each word gets represented as a sin-
gle vector, which makes it difficult to handle cases
of ambiguity and polysemy. The most recent gen-
eration of distributional vectors is said instead to
be contextualized, because word representations
are generated in context on the basis of the activa-
tion states of a neural language model (Peters et al.,
2018; Devlin et al., 2019). One of the advantages of
models like BERT (Devlin et al., 2019) is that they
allow generating a specific word embedding for
each context in which target words occur, making
them an interesting option for modeling contextual
phenomena such as nominal coercion.

Concerning the modeling work on nominal coer-
cion in Distributional Semantics, Katz and Zampar-
elli (2012) were the first, to our knowledge, to use

DSMs to investigate the phenomenon. They con-
sidered pluralisation as a proxy of count usage, and
built a traditional count model with separate vector
representations for the singular and the plural of
a list of candidate mass and count nouns. Consis-
tently with their initial hypothesis, they found that
the vector similarity between singular and plural is
higher for count nouns than for mass nouns, since
the latter undergo a meaning shift when they are
pluralized (cf. example 2 in Section 1). Hürlimann
et al. (2014) later analyzed the factors affecting the
similarity scores in the data by Katz and Zamparelli
(2012), reporting that abstract and highly polyse-
mous nouns undergo greater semantic shifts as a
consequence of pluralization.

Both these works are close in spirit to our re-
search: in our first experiment, we will use sev-
eral types of word embedding models to compare
the distances between singular and plural forms
of mass and count nouns; in our second experi-
ment, we will use the contextualized vectors of
BERT to observe how coercion changes the se-
mantic representations of the nouns in mass and
count contexts, which we automatically extract
from the British National Corpus (Leech, 1992).
To our knowledge, this is the first study specifi-
cally on mass-count nominal coercion including
both static and contextualized embedding mod-
els, although other types of coercion have previ-
ously been investigated in the literature on DSMs,
e.g. complement coercion (Zarcone and Padó,
2011; Chersoni et al., 2017; Rambelli et al., 2020;
Chersoni et al., 2021; Ye et al., 2022) or classi-
cal metonymies (CONTAINER-FOR-CONTENT,
PRODUCER FOR PRODUCT etc.) (Pedinotti and
Lenci, 2020).

3 Experiment 1: Comparing the
Singular-Plural Similarity in Static
Embedding Spaces

In our first experiment, we follow Katz and Zampar-
elli (2012) in considering pluralisation as a reliable
proxy of count usage and we compare the distribu-
tional representations of singular and plural forms
of candidate mass and count nouns across the most
popular word embedding spaces in the literature. If
a model is able to detect the coercion meaning shift,
then we expect to see that the average semantic sim-
ilarity between singular and plural forms is lower
for the mass nouns (see example 2 in Section 1).
We use a list of predominantly count and predom-

50



Figure 1: Cosine similarity scores for the singular-plural comparison of count and mass nouns in the GloVe-w2
(left) and in the GloVe-w10 model (right).

inantly mass nouns introduced in the same paper,
identified via the selection of syntactic contexts:

• 1a. candidate mass nouns: information, time,
money, detail, space, fun, attention, info, part,
work, interest, evidence, experience, energy,
power, water, room, recipe, use, opportunity,
effort, emphasis, support, research, trouble;

• 1b. candidate count nouns: time, year, day,
way, person, place, bit, week, man, opportu-
nity, problem, lot, thing, role, company, basis,
child, look, one, report, month, book, area,
approach, hour.

The vectors of the target nouns and their cor-
responding plural forms are firstly extracted from
different word embedding spaces. Our pool of mod-
els includes the following vector spaces: CBOW
vectors (Mikolov et al., 2013), one model with win-
dow size 2 (CBOW-w2) and one with window size
10 (CBOW-w10); Skip-Gram vectors (Mikolov
et al., 2013), one model with window size 2 (SGNS-
w2) and one with window size 10 (SGNS-w10);
GloVe vectors (Pennington et al., 2014), one model
with window size 2 (GloVe-w2) and one with win-
dow size 10 (GloVe-w10); FastText vectors (Bo-
janowski et al., 2017), one model with window
size 2 (FastText-w2) and one with window size
10 (FastText-w10). Finally, we also include two
variants of the Skip Gram where the contexts are
selected via syntactic dependency with the target
word (Levy and Goldberg, 2014; Lenci et al., 2022),
one with untyped dependencies (SGNS-synf) and
one with typed dependencies (SGNS-synt) (e.g. in

the first case, given the target dog and the context
big dog, the model will just use the syntactic neigh-
bor big as a context, while the second will also
include the type of syntactic relation linking the
two words, i.e. adjectival modifier). All models
have been trained with default hyperparameters on
a concatenation of the UkWac (Baroni et al., 2009),
of the British National Corpus and of a 2018 dump
of Wikipedia 1, and the semantic similarity is esti-
mated via the classical cosine metric.

Model Avg. mass Avg. count p
CBOW-w2 0.59 0.60

CBOW-w10 0.54 0.56
FastText-w2 0.66 0.68
FastText-w10 0.69 0.74 ∗

GloVe-w2 0.56 0.71 ∗ ∗ ∗
GloVe-w10 0.60 0.75 ∗ ∗ ∗
SGNS-w2 0.64 0.66
SGNS-w10 0.62 0.67 ∗
SGNS-synf 0.66 0.66
SGNS-synt 0.67 0.65

Table 1: Average of cosine similarity scores between
singular and plural forms for each vector space, and
p-values computed on the scores of mass and count
nouns. Significant differences are reported as follows:
p < 0.05∗, p < 0.01 ∗ ∗, p < 0.001 ∗ ∗∗.

We report the average similarity scores between
singular and plural forms for both mass and count
nouns in Table 1, and we use the Wilcoxon rank
sum test to identify significant differences between
the two groups. While for most models the scores
are very close, 4 of them manage to identify a sig-

1The corpus was POS-tagged and parsed and contains
syntactic annotations in the Universal Dependencies format
(Nivre et al., 2016; De Marneffe et al., 2021).
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nificant difference and in all cases the similarity is
lower for the mass nouns. GloVe models are the
ones finding the biggest differences, with the scores
of mass nouns being significantly lower (see the
boxplots in Figure 1). Interestingly, among the em-
bedding models, GloVe is the only one belonging
to the more traditional count-based types, and thus
more similar to the ones used in the studies of Katz
and Zamparelli (2012) and Hürlimann et al. (2014).
This may suggest that the GloVe training method,
based on global co-occurrence statistics, is a better
fit for capturing fine-grained semantic differences
than the vectors derived from the Word2Vec family,
which are all trained on separate local context win-
dows. Additionally, larger differences are found
by the models with a larger window, suggesting
that semantic shifts are better captured by vector
spaces modeling topic/domain similarity (Turney,
2012). On the other hand, vector spaces model-
ing local contextual co-occurrences fail to find any
difference between mass and count nouns.

4 Experiment 2: Modeling Mass/Count
Coercion with BERT

In our second experiment, we extract sentences in
which our mass and count nouns occur from the
British National Corpus, and we use the patterns
described in Katz and Zamparelli (2012) to divide
them into mass contexts and count contexts, and
then we use the BERT model to compare their con-
textualized representations. Using BERT allows
us to take into account a wider variety of contexts
rather than just using a pair of vectors for the sin-
gular and plural forms. In this case, we expect that
both types of nouns, when they occur in different
context types, will have a lower semantic similarity,
because both of them will be undergoing semantic
shifts (mass to count or count to mass).

The selected patterns are the following:

• 2a. mass: i) singular nouns immediately be
preceded by lots, plenty of, much, more, less,
enough, most, sufficient, considerable, bound-
less, ample, or limited that are not preceded
by a(n); ii) singular nouns directly following
a verb;

• 2b. count: i) singular nouns immediately be
preceded by a, an, one, every, first, each, an-
other; ii) plural nouns.

In both contexts, the nouns are excluded if fol-
lowed by another noun, adjective, or participle to

avoid selecting noun-noun compounds. In mass
contexts, we also exclude the cases where the tar-
get nouns directly follow a participle to prevent
misclassification of the participle noun phrases, e.g.
the baked cake. To increase the reliability of the
sentences for the experiment, we manually filter the
sentences containing cases of idiomatic usages, e.g.
day by day. As a result, we extract a total of 614512
sentences. Only the candidate mass or count nouns
occurring at least 20 times in both mass and count
contexts are considered. Generally, count nouns
have a higher average frequency in both contexts,
and both count and mass nouns have a higher av-
erage frequency in count contexts. The frequency
of count nouns in count context ranges from 49218
(time) to 6148 (role), with a mean of 27787.47,
while the frequency in mass context ranges from
8211(time) to 20 (role), with a mean of 1245.53.
For mass nouns, the width of frequency in mass
context is from 9259 (part) to 45 (recipe) and the
average frequency is 2110.43, whereas the mass
nouns in count contexts have an average frequency
of 6414.19, a maximum of 49598 (time) and a min-
imum of 34 (information). Notice that nouns can,
in principle, occur both as count and as mass nouns,
and their frequencies are computed separately as
they have been extracted with different patterns.
Among the target nouns, time and opportunity ap-
pear as both candidate count noun and candidate
mass noun. Although the nouns may be argued as
ambiguous, the syntactic patterns used to extract
them are unambiguous and can correctly reflect
their usage in the count contexts and mass contexts.
2 Therefore, they could still be included to compare
the meaning shift a noun undergoes in the transition
from the ’standard’ context to coerced context.

Noun Context Avg. freq Avg. freq Min. freq
Count Count 27787.47 49218 6148
Count Mass 1245.53 8211 20
Mass Mass 2110.43 9259 45
Mass Count 6414.49 48598 34

Table 2: Statistics for the context extraction from the
British National Corpus: average, max and min fre-
quency for each noun-context type.

Then we use the BERT-BASE-UNCASED model
and the MINICONS Python library (Misra, 2022) 3

to generate semantic representations of the target

2We thank the first anonymous reviewer for pointing out
this issue.

3https://github.com/kanishkamisra/
minicons
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nouns in context: the idea is to measure the simi-
larity scores of each (mass or count) noun to itself
for randomly sampled sentences. We carry out the
sampling either i) by selecting context pairs where
the target noun occurs in both cases in its mass,
or in its count contexts (within the same context
type, which could be either count or mass); or ii)
by selecting context pairs where the target noun
occurs once in a mass context and once in a count
context (between context types).

This means that each noun type will have its
occurrences sampled in three different ways:

1. all context pairs sampled from its own type
(mass nouns in mass contexts, count nouns in
count contexts);

2. all context pairs sampled from the other type
(mass nouns in count contexts, count nouns in
mass contexts);

3. the context pair composed by one mass con-
text and one count context.

The similarity comparison between 1) and 3) is the
most relevant one for our study: we expect that
similarities in 3) to be much lower than in 1), to
an extent proportional to the meaning shift that the
noun is undergoing. For each noun, we repeat the
sampling 10 times from each group, and for each
time we randomly extract 10 different context pairs
to generate the vectors.

Notice that, differently from a big part of the
literature, we use Spearman’s rank correlation and
not the cosine as a similarity metric for BERT
vectors. Our choice is motivated by recent find-
ings about the anisotropy of contextualized vector
spaces, where a small number of ’rogue’ dimen-
sions dominate the cosine similarity scores (Etha-
yarajh, 2019; Timkey and van Schijndel, 2021).
Timkey and van Schijndel (2021) showed that us-
ing postprocessing techniques like normalization
or rank-based metrics such as Spearman’s rank led
to much better correlations with human similar-
ity judgments. Moreover, rank-based metrics have
been previously proven to be more robust than co-
sine in several similarity-related tasks (Santus et al.,
2016a,b, 2017, 2018; Zhelezniak et al., 2019).

The results of Spearman’s rank correlation exper-
iment are reported in Table 3. The average correla-
tion of context pairs where the target noun occurs in
its typical kind of context (i.e. count nouns in count
contexts, mass nouns in the mass ones) reflects

Noun Context Avg. corr
Count Count 0.455
Count Mass 0.466
Count Both 0.360
Mass Mass 0.550
Mass Count 0.476
Mass Both 0.391

Table 3: Average Spearman’s rank correlation scores
for each noun type under the six different sampling
conditions.

how semantically similar the target noun is to itself
when used in the ’standard’ meaning, while the
average correlation across different context types
reflects the similarity between the standard and
the coerced meaning. Therefore, the difference
between the two correlations should quantify the
meaning shift of the target noun when nominal
coercion is imposed on the standard interpretation.

Let us illustrate the statement with an example
for the predominantly count noun problem and an
example for the predominantly mass noun water,
respectively.

s1. more, i believe, than would be acceptable to people, so
that nuclear power in itself will never be the solution to
our energy problems. (count context)

s2. not surprisingly these devices are distributed with lit-
tle or no instruction on correct use— thus increasing
women’s health problems. (count context)

s3. current models seem to be auto-sensing, so there

shouldn’t be much problem. (mass context)

The noun problems in s1 and s2 refer in both
cases to a specific issue that needs to be resolved,
while problem in s3 seems to be more generic and
more similar to trouble. Accordingly, the correla-
tion of s1 and s2 is 0.55, and the correlation of s1
and s3 is 0.33. The correlation difference between
the s1-s2 pair and the s1-s3 pair should reflect the
meaning shift that problem undergoes, changing
from its standard "count" meaning to its coerced
interpretation in a mass context.

s4. you can drink water freely during the course of the diet.
(mass context)

s5. in the year to august 1992, the works used 22 per cent
less water, 18 per cent less nitrogen, 11 per cent less
steam and nine per cent less electricity. (mass context)

s6. to the east of Venice lies Lido di Jesolo and Caorle, with
miles of golden sand lapped by the warm waters of the
Adriatic. (count context)

The noun water in s4 and s5 is used in mass con-
texts and it has the standard meaning of i) water as
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Figure 2: Spearman’s rank correlations for mass (left) and count (right) nouns computed with BERT-BASE-
UNCASED. The dark green box shows the correlations for the same group (mass in mass, count in count) context
sampling, the light green box shows the correlations with one mass and one count context.

a liquid that can be drunk (s4); and ii) the amount
of water usage in a hydraulic system (s5). On the
other hand, in the last context (s6) waters is rather
referring to a specific geographical/territorial unit.
The correlation of the s4-s5 pair is 0.59, while the
correlation of the s4-s6 pair is 0.41, and the correla-
tion difference between the two pairs should reflect
the meaning shift from mass to count usage.

It is immediately evident from Table that 3 count
nouns generally have a lower average Spearman
correlation score than mass nouns in either count or
mass contexts, suggesting that the cluster of count
nouns is less compact and their meanings are more
varied and scattered across the semantic space. It
should be noticed that many of the count nouns
are highly frequent (e.g. child, thing, way, man,
one, place, time, day all have more than 10K oc-
currences, more than any mass noun in our data),
therefore they might display much more contextual
variation in their usage, which could explain the
relatively low similarity value. Indeed, the sim-
ilarity of the count nouns when the contexts are
sampled from the count or the mass groups does
not differ significantly, with the latter being even
slightly higher.

For both count and mass nouns, as we expected,
we observe a lower similarity when the contexts
are sampled from both groups (see also Figure 2):
the average difference with the sampling within
the same group is, respectively, of 0.1 and 0.16
correlation points, confirming the finding that mass
nouns typically undergo a greater meaning shift
(Hürlimann et al., 2014) even when patterns beyond
pluralization are taken into account.

It is also noticeable that mass nouns have a rel-
atively high similarity when they are sampled in
count contexts, which could be explained by the
fact that many of these nouns have systematic sec-
ondary meanings that are more compatible with
a count usage (nouns denoting drinkable liquids
are typically undergoing a shift from the liquid to
the container, e.g. beers → pints of beer, or from
the liquid to the variety, e.g. wines → varieties of
wine). In sum, the results of our experiment pro-
vide further support to the view that the mass/count
distinction should be seen as a continuum, and that
the syntactic context is the strongest cue to the type
of denotation (Chierchia, 2010). Moreover, even
with more varied mass and count contexts than the
ones used in previous studies (Katz and Zampar-
elli, 2012; Hürlimann et al., 2014), we also find
that coercion makes mass nouns undergo a greater
semantic shift than count nouns.

We also analyze some of the factors mentioned
as relevant by Hürlimann et al. (2014) to predict the
meaning shift of the nouns: frequency, polysemy,
and concreteness. For polysemy, we simply use the
WordNet synsets (Fellbaum, 2010) of a noun as an
indicator of the number of word senses, while for
concreteness we use the values from the English
norms by Brysbaert et al. (2014).

Unfortunately, we do not find any significant
correlation between the average differences in
the Spearman correlations that we computed with
BERT and the above-mentioned factors, probably
because of the small size of our set of nouns. Table
4 presents the statistics for the top-5 most shift-
ing count and mass nouns (i.e. the nouns with the
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Noun Freq.
WordNet
Synsets

Concreteness

company 18792 9 4.11
child 43018 4 4.78
thing 47655 12 3.17
way 29644 12 2.34
area 26273 6 3.72

information 3199 5 2.87
attention 2323 6 2.30
trouble 1051 6 2.25
support 308 11 2.83
money 4947 3 4.54

Table 4: Frequency, synsets and concreteness for the top-5 most shifting count (bold) and mass (italic) nouns.

highest average correlation difference). Despite
the lack of significance of the correlation scores,
it can still be noticed that: i) regarding polysemy,
the most shifting nouns tend to have a relatively
high number of word senses; ii) as for concreteness,
the most shifting count nouns have relatively high
values, while the most shifting mass nouns tend to
denote more abstract entities. More studies with a
larger set of predominantly mass and count nouns
are needed to confirm the finding.

4.1 A Final Note about Polysemy

With reference to our rabbit meat example (see
Section 1) and as a general methodological consid-
eration, Reviewer 2 points out that the, given the
polysemy of the word rabbit, which is also attested
in dictionaries, this example cannot be considered
as a case of coercion, but it just corresponds to a dif-
ferent word sense. As a consequence, the polysemy
of the target nouns should be identified in advance,
because otherwise we risk to confuse coercion with
occurrences of different word senses.

Since we are adopting the perspective of distri-
butional approaches, in our view the main issue
is whether linguistic distributions are determined
by the inventory of senses of a word, or they are
determining what we conceive as their inventory
of senses, in accordance to the so-called strong
versions of the Distributional Hypothesis (Miller
and Charles, 1991; Lenci, 2008). In cases such
the above-mentioned one, coercion itself might
be responsible the emergence of new meanings
and senses. Keeping the rabbit meat example, one
could imagine that, following the same pattern, the
speakers of a language at some point could start us-
ing the name for its meat in similar mass contexts,

and that would undoubtedly qualify as a case of
coercion because the coerced meaning will be an
innovation, and thus it would not be attested in any
dictionary. Only when the usage of the name of
the animal for its meat will have become frequent
enough to be conventional, then dictionaries will
start including it as a secondary sense.

This does not detract from the validity of the
reviewer’s objection. But we would like to clar-
ify that, in our approach, we consider the word
senses annotated in dictionaries and lexicographic
resources as possibly consequential to shifts in lin-
guistic distributions, and not the other way around.

5 Conclusion

In this paper, we have presented two experiments
on modeling nominal coercion of mass and count
nouns with two different typologies of Distribu-
tional Semantic Models. In the first experiment,
we compared the vector representations of singular
and plural mass/count nouns across several popular
word embedding models. Perhaps surprisingly, we
found that i) the count-based GloVe models and ii)
the Word2Vec-like models with larger contextual
windows were the most successful in identifying
significant differences between singular and plu-
ral representations of mass nouns, whose mean-
ings shifted more when they were pluralized, while
the most of the other models did not detect any
shift. We hypothesized, therefore, that such seman-
tic shifts are better captured by semantic spaces
that focus on modeling similarities of topic/domain,
rather than similarity of co-occurrence in the same
local contexts.

In the second experiment, we compared the
vectors generated by BERT in different context
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types. We found that the self-similarity of the
nouns sharply decreased when contexts of different
types were sampled to generate the contextualized
representations and that the shifts of predominantly
mass nouns were more pronounced. Our qualitative
analyses suggested that factors such as polysemy
and concreteness of the nouns might play a role in
predicting semantic shifts, although more studies
with a larger set of nouns are necessary.

Another promising direction for future research
would be using DSMs to model the effects of
nominal coercion in human sentence processing,
since psycholinguistic studies proved that, in sev-
eral languages (e.g. English, German, Mandarin
Chinese), coerced nouns lead to increased read-
ing times and longer eye fixations (McElree et al.,
2001; Traxler et al., 2002; Pylkkanen and McElree,
2006; Zarcone et al., 2017; Xue et al., 2021). In this
sense, integrating DSMs-derived similarity metrics
in the current computational models could lead to
better estimation of reading difficulties induced by
coercion operations.
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Abstract
The paper presents a frame-based model of
inherently polysemous nouns (such as ‘book’,
which denotes both a physical object and an
informational content) in which the meaning
facets are directly accessible via attributes and
which also takes into account the semantic re-
lations between the facets. Predication over
meaning facets (as in ‘memorize the book’) is
then modeled as targeting the value of the cor-
responding facet attribute while coercion (as in
‘finish the book’) is modeled via specific patterns
that enrich the predication. We use a composi-
tional framework whose basic components are
lexicalized syntactic trees paired with semantic
frames and in which frame unification is trig-
gered by tree composition. The approach is ap-
plied to a variety of combinations of predica-
tions over meaning facets and coercions.

1 Introduction
The lexical representation of inherently polysemous
nouns and the variable evocation of their meaning
facets by the predications in which they occur con-
tinue to be topics of ongoing research. Two ques-
tions are of particular interest in this context: (i)
What are the mechanisms that underlie copredica-
tion constructions in which two or more predicates
that aim at different meaning facets are applied to
the same nominal argument? (ii) How does facet se-
lection for inherently polysemous nouns differ from
cases of argument coercion in which an apparent
mismatch between the semantic type of an argu-
ment expression and the requirements of the pred-
icate is resolved by an extended mode of compo-
sition that draws on additional pieces of lexical or
contextual information?
Examples of inherent polysemy classes are given

by nouns such as ‘book’ and ‘letter’, which have
a physical facet and an information facet, and by
nouns such as ‘documentation’ and ‘classification’,
which have a process and a result facet. The sen-
tence in (1a) illustrates a verb-verb copredication

construction in which ‘memorize’ addresses the in-
formation facet of the letter while ‘burn’ targets its
physical facet.

(1) a. Before leavingRome he hadmemorized and
burned a nine-page letter from Moscow.1

b. […] and she ripped the offending letter to
shreds.2

c. Although Kafur burned the poem without
having read it, […]3

In verb-adjective copredication constructions like
(1b), it is the argument-taking verb and the mod-
ifying adjective that address different facets of the
noun. The example in (1c), by contrast, would count
as a case of coercion if we assume that poems do not
inherently come with physical facets.
The examples in (2), retrieved via Sketch En-

gine’s interface to the ACL Anthology Reference
Corpus (Bird et al., 2008), show an analogous pat-
tern with respect to the evocation of process and re-
sult facets. In (2a), ‘conducted’ addresses the pro-
cess facets of the classifications while ‘evaluated’
(most probably) refers to their result facets. Like-
wise, the modifying adjective ‘correct’ targets the
result facet in (2b).

(2) a. […] all classifications are conducted and
evaluated on the basis of individual in-
stances.4

b. […] while still performing correct classifi-
cation.5

c. The model generates automatic summaries
of topics […]6

1Forsyth, 1996: Icon. (Google Books)
2Marshall, 2013: Margaret Fuller - A New American Life.

(Google books)
3Larkin, 2012: Al-Mutanabbi. (Google Books)
4Feng & Hirst, 2012: Text-level discourse parsing with rich

linguistic features.
5Goldstein & Uzuner, 2010. Does negation really matter?
6Ramage et al., 2009: Labeled LDA: A supervised topic

model for credit attribution in multi-labeled corpora.
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The example in (2c), on the other hand, would count
again as a coercion since the noun ‘summary’ (in
contrast to ‘summarization’) does not lexically pro-
vide reference to a process or event. For instance,
‘summary’ does not combine well with verbs like
‘perform’ nor does it go together with ‘process’ in
noun compounds (*‘summary process’ vs. ‘summa-
rization process’).
Amore systematic approach to distinguishing co-

ercion from polysemy would draw on empirical data
from corpus studies and psycholinguistic experi-
ments. As to the former type of approach, Jezek and
Vieu (2014) argue that inherent polysemy can be
distinguished from coercion by looking at the vari-
ability of the co-occuring predicates in copredica-
tion constructions, where high variability is taken as
an indicator of polysemy. From a psycholinguistic
point of view, the hypothesis is that complement co-
ercion comes with higher processing costs (Traxler
et al., 2002) than just selecting a lexically provided
facet of a polysemous noun. (See Murphy (2021)
for a more recent overview of the relevant experi-
ments.) The primary goal of the present paper is
not so much to provide a strong empirical basis for
the distinction in question but to introduce a formal
cognitive model that allows us to represent the pos-
tulated semantic differences in a sufficiently fine-
grained way.
A good part of the more recent formal modeling

approaches for inherent polysemy and coercion rely
on some sort of advanced type-theoretical frame-
work such as Type Composition Logic (Asher,
2011), Type Theory with Records (Cooper, 2011),
Montagovian Generative Lexical Theory (Mery
and Retoré, 2015), Unifying Theory of dependent
Types (Chatzikyriakidis and Luo, 2015), and De-
pendent Type Semantics (Kinoshita et al., 2017,
2018). Most if not all of them were at least partly
driven by the aim to overcome what was seen as
formal limitations of Pustejovsky (1995)’s original
proposal. Notably Asher (2011, p. 87) regards the
typed feature structure formalism used by Puste-
jovsky and feature structure unification as inade-
quate for modeling copredication and coercion.
In this paper, we present a frame-semanticmodel

of inherent polysemy and argument coercion. A
central assumption of frame semantics is that at-
tributes (features) play a crucial role for the struc-
tured representation of meaning (Barsalou, 1992;
Löbner, 2014). Our approach builds on the frame-
work of Kallmeyer and Osswald (2013), where

(i) frames are defined as generalized typed feature
structures, (ii) semantic frames are linked with syn-
tactic trees, and (iii) frame unification is guided by
syntactic tree operations; cf. Section 2 for details.
Babonnaud et al. (2016) describe a first applica-

tion of this framework to the analysis of polysemy
and coercion. They pursue an “eliminative” strategy
with respect to complex types and objects in that
they avoid positing special “dot objects” that jointly
represent the different meaning facets of an inher-
ently polysemous noun. Their idea is that a frame-
based representation of the facets and the semantic
relations between them is sufficient for explaining
the flexible behavior of polysemous nouns. For in-
stance, they do not introduce a “dot type” physical-
object • information (phys-obj • info, for short) for
characterizing the class of polysemous nouns com-
prising ‘book’, ‘letter’, etc. Instead, these nouns
are lexically classified as denoting entities of type
info(rmation)-carrier, which is introduced as a sub-
type of phys-obj together with the constraint that
its instances have an attribute CONT(ENT) whose
value is of type info. More succinctly, in the for-
mal frame description language used in the present
paper: info-carrier⇛ phys-obj ∧ CONT : info.
Babonnaud et al.’s eliminative strategy has the

following two issues: (i) It is usually necessary to de-
cide on a “primary” facet of which the other facet is
value of an attribute. (ii) In order to access the “non-
primary” facet of a polysemous noun, the predicate
has to anticipate the underlying attribute structure.
To give an illustration, consider the two predications
‘memorized the letter’ and ‘burned the letter’. If ‘let-
ter’ has the type info-carrier then the NP ‘the let-
ter’ is compatible with the selectional restrictions of
the PATIENT argument of the verb ‘burned’, which
requires an argument of type phys-obj. Figure 1
sketches how argument substitution would lead to
the integration of the NP argument frame into the
verb frame in this case. (The specific choice of the
syntactic category labels will be explained in Sec-
tion 2.)
Combining ‘the letter’ with ‘memorized’ by NP

substitution, on the other hand, calls for more flex-
ible selectional restrictions on the direct object of
the verb: the object NP can have the type info or
the type info-carrier. This is shown in Figure 2
where ‘memorized’ comes with a disjunctive speci-
fication: either the direct object is of type info and
can directly provide the THEME or the THEME is the
value of the direct object’s CONT attribute. How-
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CLAUSE

CORE[I = e]

NP[I = y]NUC

burned

NP[I = x]

e



burning
AGENT x
PATIENT y

[
phys-obj

]




NP[I = z]

the letter

z

[
info-carrier
CONT

[
info
]
]

Figure 1: Syntactic and semantic composition for
‘burned the letter’ (preliminary version)

CLAUSE

CORE[I = e]

NP[I = y]NUC

memorized

NP[I = x]

y 1
[
info
]
∨

y
[
info-carrier
CONT 1

[
info
]
]

e



memorizing
AGENT x
THEME 1




Figure 2: Lexicalized construction for ‘memorized’ along
the lines of Babonnaud et al. (2016)

ever, since having different meaning facets is a lexi-
cal property of the polysemous noun, access to them
should be provided by the noun entry as well.
A related issue is that Babonnaud et al. (2016)

employ the same kind of disjunctive encoding for
modeling coercion. However, there should be a
distinction between coercion mechanisms (linked
to the predicate) and accessing different meaning
facets (provided by the noun). An example where
the difference matters is the selection of the object
of ‘perform’. Assuming that in ‘perform an annota-
tion’, the frame of ‘perform’ picks the creation event
of the ‘annotation’ frame, and assuming that such an
event is also present in the frame of ‘summary’, it is
not clear why the latter cannot be targeted by ‘per-
form’. The crucial difference is that in “perform an
annotation” a meaning facet is targeted (‘annotation’
is a process • result dot type noun), while “perform
a summary” requires a coercion. The unavailabil-
ity of ‘perform a summary’ might therefore be due
to the absence of an event facet for ‘summary’ and,
furthermore, the unavailability of an adequate coer-
cion pattern for ‘perform’.
The goal of the present paper is to show how a

non-eliminative strategy for modeling polysemous
nouns by means of frames can overcome the de-
scribed issues. To this end, dot types are added
as proper members of the type hierarchy. They
are not related to their component types by inher-

a)
info-carrier

info

CONT

b)
info-carrier

info

phys-obj • info
CONT

OBJ-F
ACET

INFO-FACET

Figure 3: Eliminative (a) and non-eliminative (b) frame
representations for inherently polysemous nouns like ‘let-
ter’ and ‘book’

itance but rather by functional relations, i.e., by
attributes. For example, instances of type phys-
obj • info have two attributes OBJ(ECT)-FACET and
INFO(RMATION)-FACET whose values are of type
info-carrier and info, respectively. The two facets
are related by the CONT attribute as before:

(3) phys-obj • info ⇛ OBJ-FACET : info-carrier ∧
INFO-FACET : info ∧
OBJ-FACET ·CONT .

= INFO-FACET

Figure 3 depicts the two frame representations for
the eliminative and the non-eliminative strategy side
by side. Argument coercion, on the other hand,
does not involve facet selection but is analyzed via
additional patterns that can be used to augment the
semantics of a predicate.

2 Background: Syntax-driven frame
composition

The formalization of frame semantics used in the
present paper is a slightly modified version of the
one proposed by Kallmeyer and Osswald (2013).
Frames are understood as generalized feature struc-
tures. Instead of requiring a distinguished root node
from which every other node is accessible via a fi-
nite attribute sequence, the generalized version al-
lows for multiple labeled nodes under the condition
that each node is accessible from at least one of
the labeled nodes. Correspondingly, frame unifica-
tion does not require the identification of designated
root nodes but relies on the identification of nodes
with the same label. Frames can be defined asmini-
mal models of conjunctive attribute-value formulas.
The underlying logic is described in Appendix A.
Kallmeyer and Osswald (2013) combine frame

semantics with Tree Adjoining Grammars (TAG).
The basic components of this approach are elemen-
tary constructions, which are pairs of elementary
syntactic trees and semantic frames where (some of)
the constituent nodes of the tree are linked to nodes
of the frame. The link is encoded by an I(NDEX)
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Constraints for dot types and their meaning facets:
phys-obj • info ⇛ OBJ-FACET : info-carrier ∧ INFO-FACET : info ∧ OBJ-FACET · CONT .

= INFO-FACET
process • result ⇛ EVENT-FACET : process ∧ EVENT-FACET · RESULT · CREATION .

= EVENT-FACET
process • result ∧ EVENT-FACET · RESULT ·OBJ-FACET ⇛ EVENT-FACET · RESULT ·OBJ-FACET .

= OBJ-FACET
process • result ∧ EVENT-FACET · RESULT · INFO-FACET ⇛ EVENT-FACET · RESULT · INFO-FACET .

= INFO-FACET

Constraints for single types and their meaning facets:
phys-obj ⇛ OBJ-FACET .

= SELF event ⇛ EVENT-FACET .
= SELF info ⇛ INFO-FACET .

= SELF

Subtype constraints:
info-carrier⇛ phys-obj sheet⇛ phys-obj poem⇛ info
book⇛ phys-obj • info letter⇛ phys-obj • info summary⇛ phys-obj • info
annotation⇛ process • result classification⇛ process • result process⇛ event

Specification of attributes depending on types:
annotation⇛ EVENT-FACET · RESULT : phys-obj • info classification⇛ EVENT-FACET · RESULT : phys-obj • info

Type incompatibilites:
phys-obj ∧ info ⇛ ⊥ phys-obj ∧ event ⇛ ⊥ event ∧ info ⇛ ⊥

Type-attribute incompatibilites:
phys-obj ∧ INFO-FACET :⊤ ⇛ ⊥ event ∧ INFO-FACET :⊤ ⇛ ⊥ info ∧ EVENT-FACET :⊤ ⇛ ⊥
phys-obj ∧ EVENT-FACET :⊤ ⇛ ⊥ event ∧ OBJ-FACET :⊤ ⇛ ⊥ info ∧ OBJ-FACET :⊤ ⇛ ⊥

Figure 4: Selected universal AV constraints

feature at the constituent nodes. Tree composition
then gives rise to the identification of index values
and, thereby, to specific constraints on how the as-
sociated semantic frames are unified. For example,
the composition of the two constructions in Figure 1
leads to the identification of y and z, i.e. y .

= z.
The syntactic side of the approach is not re-

stricted to TAG but generalizes to other tree rewrit-
ing formalisms. In this paper, we use the formal-
ism of Tree Wrapping Grammars (TWG) together
with grammatical concepts of Role and Reference
Grammar (RRG; Van Valin 2005), for which TWG
has been developed (Kallmeyer et al., 2013).
RRG provides an elaborate theory of clause link-

age, which comes in handy for the analysis of co-
predication constructions, among others. Instead of
an X-bar scheme, RRG assumes a layered struc-
ture consisting of nucleus, core and clause. The
nucleus contains the main predicate, the core con-
tains the nucleus and the (non-extracted) syntactic
arguments, and the clause includes the core and ex-
tracted arguments. Each layer can have a periph-
ery of adjuncts. Grammatical operators, that is,
closed-class elements encoding tense, modality, as-
pect, etc., attach to different layers depending on
their scope.
Concerning complex constructions, RRG draws

not only a distinction between coordination and
subordination but assumes in addition cosubor-
dination constructions, which are dependent but
non-embedded structures of the general form

[[ ]X [ ]X]X. In such constructions, operators that
apply to category X are usually realized only once
but have scope over both X-daughters.
The tree composition operations of TWG are

(simple) substitution (replacing a non-terminal leaf
by a tree, as in Figure 1), sister adjunction (adding a
tree as a subtree of a non-leaf, see the adjunction of
‘and’ in Figure 9) andwrapping substitution (splitting
the new tree at a dominance-edge, filling a substitu-
tion node with the lower part and adding the upper
part to the root of the target tree, cf. Figure 9).

3 Predications over meaning facets

In this section, we develop an analysis of predica-
tions that target existing meaning facets (either of
dot type nouns or of single type nouns).
Universal constraints. As already mentioned, we
introduce attributes for meaning facets and specific
types for dot types. Meaning facets occur system-
atically for certain types, and they are therefore in-
troduced by universal attribute-value constraints of
the form φ ⇛ ψ. (Cf. the appendix for the for-
mal background). Some of the relevant constraints
for dot types phys-obj • info and process • result are
given in Figure 4. They specify available meaning
facets together with the specific relations that hold
between the different facets: For phys-obj • info, the
CONT value of the OBJ-FACET is the INFO-FACET,
while for process • result, the CREATION value of the
OBJ-FACET is the EVENT-FACET and the RESULT
of the EVENT-FACET is the OBJ-FACET. For sin-
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phys-obj∧ info-carrier
CONT 1
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INFO-FACET 1

[
info
INFO-FACET 1

]




Figure 5: Application of universal constraints to the lex-
ical entry of letter

CLAUSE

CORE[I = e]

NP[I = y]NUC

burned

NP[I = x]

x
[
OBJ-FACET 1

[
entity

]]

y
[
OBJ-FACET 2

[
phys-obj

]]

e



burning
AGENT 1

PATIENT 2




NP[I = z]

the letter

z




letter

OBJ-FACET
[
info-carrier
CONT 3

]

INFO-FACET 3
[
info
]




Figure 6: Revised syntactic and semantic composition
for ‘burned the letter’ (cf. Figure 1)

gle types, the frame node is its own correspond-
ing meaning facet (with SELF denoting the iden-
tity function properly restricted). The third group
of constraints specifies subtype relations, for in-
stance every entity of type book is also of type phys-
obj • info, and the last two groups detail incompati-
bilities between types (e.g., nothing can be of types
event and phys-obj at the same time) and between
types and attributes (e.g., nothing can be of type
phys-obj while having an EVENT-FACET). Figure 5
shows the application of these constraints to the lex-
ical frame of ‘letter’.
Single verbal predications. (4) lists cases of verbs
predicating over single meaning facets of their ob-
ject nouns (the latter being single or dot type nouns).

(4) a. Kim burned the sheet/letter.
b. Kim memorized the poem/letter.
c. Kim performed the dance/annotation.
d. Kim evaluated the essay/annotation.

The elementary constructions for the verbs de-
scribe the event and its participants and determine
which facet of the respective arguments fills which
semantic role; see the entry for ‘burned’ in Figure 6.
In combination with the I features on the nodes,
the frame encodes that the OBJ-FACET of the di-

info-carrier info

letter

CONTburningentity

OBJ-F
ACET

INFO-FACET
PATIENTAGENT

OBJ-FACET

Figure 7: Resulting frame for ‘burned the letter’

CORE∗
N[I = x]

APPERI

correct/
automatic

frame of ‘correct’:
x
[
INFO-FACET

[
QUALITY

[
correct

]]]

frame of ‘automatic’:
x
[
EVENT-FACET

[
MANNER

[
auto

]]]

Figure 8: Tree frame pairs for ‘correct’ and ‘automatic’

rect object is the PATIENT of the burning event. The
derivation in Figure 6 leads to the frame in Figure 7.
The constructions for ‘memorized’, ‘performed’ and
‘evaluated’ look similar, except that the THEME ex-
pressed by the direct object is provided by different
facets. Due to the frame constraints for meaning
facets in single type nouns, the analysis works there
as well (as in ‘burned the sheet’).

Adjectival predications. A second type of predi-
cation we consider in this paper are adjectival predi-
cations as in (5) where two adjectives modify a noun
while targeting different facets of it.

(5) a. Where manual fine-grained annotation is
unavailable, [...]7

b. the correct automatic annotation

The elementary constructions for ‘correct’ and ‘au-
tomatic’ in (5b) are given in Figure 8. The trees are
added by sister adjunction to the COREN node of
an NP tree. The COREN is the immediate daughter
of NP, and both constituent nodes carry the same I
feature. This way, the frame of the adjective unifies
with the noun frame.

Multi-verb copredication. We now consider con-
structions of the form ‘NP V1 and V2 NP’, as in (6).

(6) a. Kim memorized and burned the letter.
b. Kim performed and evaluated the annota-

tion.

The two verbs in (6a) and (6b) share their argu-
ments while targeting different facets of the object
NP and assigning different semantic roles. They

7Abney and Bird, 2010. The Human Language Project:
Building a Universal Corpus of the World’s Languages.
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OBJ-FACET 4

]
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AGENT 3

PATIENT 4




e3
[
comp-event

]

part-of(e2, e3)

Figure 9: Derivation for ‘memorized and burned’

constitute a complex event with a certain tempo-
ral structure, but they are still distinguishable within
the complex event. We therefore analyze their syn-
tactic structure as constituting a complex CORE
consisting of two single COREs, i.e., a CORE co-
subordination construction in RRG terms; see the
tree in Figure 10. We capture the information
about the shared subject by means of the features
CONTROLLER (CTRL; for the CORE that provides
the subject) and PIVOT (for the CORE that needs
to retrieve an argument). The shared object NP,
however, is present in the trees of both verbs, and
the two NP nodes are merged via wrapping substi-
tution (see Figure 9). The first CORE contains a
dominance edge that leaves room between the up-
per CORE node and the shared object NP for in-
serting the second CORE while merging the object
NP nodes.
We introduce a frame type comp(lex)-event for

events that have several component events that all
stand in a part-of relation to it. This relation be-
tween the complex event and its parts is specified
in the corresponding unanchored elementary tree
frame pairs, i.e., in the construction.
Figure 9 gives the tree-frame pairs for the two

verbs. Each contributes an event that is part of a
joint complex event. The first tree contributes the
subject or, in more general RRG notions, the privi-
leged syntactic argument (PSA). This is shared be-
tween all component events and, to this end, it is
made available at the higher CORE node via a CTRL
attribute. The second argument of the two trees is
a shared NP node, where the sharing is realized via
wrapping. Both the PSA and second NP argument
can fill different semantic roles for the two events,
and, furthermore, different facets of them can fill
these roles. As a result of the adjunction, the frames

CLAUSE

CORE



CTRL = x
PIVOT = x
I = e0




CORE
[
PIVOT = x
I = e2

]

NP[I = y]NUC

burned

CLM

and

CORE
[
CTRL = x
I = e1

]

NUC

memorized

NP[I = x]

x
[
OBJ-FACET 1

]
y
[
INFO-FACET 2

OBJ-FACET 3

]

e1



memorizing
AGENT 1

THEME 2


 e2



burning
AGENT 1

PATIENT 3




e0
[
comp-event

] part-of(e1, e0)
part-of(e2, e0)

Figure 10: Result of the derivation in Figure 9

e0 and e3 unify, which yields a frame (Figure 10)
that expresses that we have a complex event consist-
ing of two part events, memorizing and burning, and
that the subject filler provides the respective agents
via its object facet, while the object NP filler pro-
vide the THEME of memorizing via its INFO-FACET
and the PATIENT of burning via its OBJ-FACET.
For (6b), the analysis is similar, except for target-

ing different facets of the object NP.

4 Coercion
We now extend our analysis to cases of coercion as
in (1c) (‘burn the poem’) and (2c) (‘automatic sum-
mary’). The examples in (7) show that for the same
predicate, depending on the context, different ad-
ditional frame fragments are coerced, even for the
same object nouns.
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Frame for ‘summary’:

x
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INFO-FACET 1

OBJ-FACET 2

CREATION




summarize
AGENT [ ]

THEME [ ]

RESULT x



phys-obj • info
OBJ-FACET 2

INFO-FACET 1










Revised frame for ‘automatic’ (tree as in Figure 8):

y
[
EVENT-FACET

[
MANNER

[
auto

]]] ∨

y
[
CREATION

[
MANNER

[
auto

]]]

Figure 11: Frames for ‘automatic summary’

(7) a. […] Mr. Darcy had much better finish his
letter.8

b. […] once we start to translate words in a
zone, we have to finish all its words before
moving outside again.9

Let us start by discussing ‘automatic summary’. If
the modified noun has an event facet, we can apply
‘automatic’ directly. Otherwise, we have to coerce
an event. This could simply be done by adding an at-
tribute EVENT-FACET on the fly via unification. But
this would predict that we target always the same
event, which is not the case. The event facet (if ex-
istent) is unique, but not the coerced events. For ex-
ample, let us assume that Kim has to grade a num-
ber of manually and automatically produced sum-
maries. In this situation, ‘finished’ in sentence (8)
may refer to the process of grading the summary
while ‘automatic’ refers to creating it.

(8) Kim just finished a bad automatic summary.

In ‘automatic summary’, the noun does not have
an event facet, while the adjective adds a manner
specification to a process, in this case to the cre-
ation of the summary, which is part of the frame
of ‘summary’ (see Figure 11).10 This type of coer-
cion, namely targeting the creation event, is com-
mon among manner adjectives, so we assume that
there is a coercion pattern for this, that can be ap-
plied to manner modifications in general. Coercion

8Jane Austen, 1813: Pride and Prejudice.
9Koehn & Haddow, 2009. Analysing the effect of out-of-

domain data on SMT systems.
10Our classification of ‘summary’ as a dot object nounmay be

disputable. However, the coercion mechanism presented here
would apply in the same way if ‘summary’ had an INFO-FACET
only.
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Figure 12: Tree-frame pair for ‘finished’

patterns are defined as separate classes in the meta-
grammar (a factorized description of elementary
tree frame pairs) and then combined in a disjunc-
tion with the basic pattern. Since coercion patterns
are metagrammar classes, they can be (re)used in
different constructions. Figure 11 shows the result-
ing disjunction of frames for ‘automatic’. The first
frame is used when combining with a noun that has
an event facet, while the second is used when com-
bining with a noun that has a CREATION attribute.
(Note that, technically, this disjunction is part of the
metagrammar and will therefore already be com-
piled out when computing the elementary construc-
tions.) The composition of ‘automatic summary’
(x .

= y in Figure 11) necessarily chooses the coer-
cion option, since a summary cannot have an event
facet. Coercion can easily be combined with predi-
cations over existing meaning facets, as in ‘evaluate
the automatic summary’ since the meaning facets of
the noun are not changed by the coercion patterns.
As we have seen, ‘automatic’ in ‘automatic sum-

mary’ follows an existing path in the noun frame in
order to retrieve its argument. This is different for
‘finish’ in (7). When triggering a coercion, ‘finish’
creates a new event frame (the coerced event) which
embeds the denotation of the noun as a participant,
more concretely as an undergoer. This is expressed
in the frame in Figure 12 where the disjunction con-
tains the basic pattern (the THEME 2 is the existing
EVENT-FACET) and a coercion pattern ( 2 is a newly
created event). An aspect that is missing here is that
the coerced event tends to be of a type that corre-
sponds to the telic qualia of the noun (e.g.,writing in
(7a); cf. Pustejovsky 1995). One could model this
within frames by including frame types as proper
frame objects. We leave this for future research.
With this analysis, we can apply more than one

coercion leading to different coerced frame ele-
ments of the same type, as in (8). And we can
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also apply coercion to dot type nouns, creating new
frame nodes in addition to the available facets, even
when one of the facets matches the type require-
ments. For example, if we replace ‘summary’ in (8)
by ‘annotation’ then ‘automatic’ refers to the event
facet of ‘annotation’. In this case, the basic pattern
as well as the coercion pattern are possible.

5 Conclusion
In this paper, we proposed a frame-based analy-
sis of dot objects, predications over their meaning
facets, and, in contrast to this, coercion. A crucial
aspect of our analysis is that the meaning facets are
modeled as attributes in the lexical frames of dot
type nouns, while coercion involves the application
of coercion patterns that are defined in the meta-
grammar. Their application is constrained by lexi-
cal properties, but the meaning components added
by coercion are not part of the lexical entries and
are in particular not meaning facets. This accounts
for the high flexibility of coercion, i.e., the possible
variability of the coerced meaning components.
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Appendix: Attribute-value logic of frames
The appendix describes the attribute-value (AV)
logic that underlies the frame approach of this ar-
ticle; see also Kallmeyer and Osswald (2013), who
in turn build on Hegner (1994). The logic makes
use of two kinds of expressions: AV formulas and
AV descriptions.
AV descriptions are evaluated at frame

nodes, formulas on whole frames. AV ex-
pressions are defined over a vocabulary
⟨Attr,Typ,Rel,Nnam,Nvar⟩ consisting of a fi-
nite set Attr of attribute symbols, a finite set Typ of
type symbols, a finite set Rel = ∪nReln of relation
symbols (where Reln are n-ary relation symbols), a
finite set Nnam of node names (or nominals), and a
countably infinite set Nvar of node variables. The
members of Nlab = Nnam ∪ Nvar are referred
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Figure 13: The middle column shows primitive AV de-
scriptions (a) and formulas (b), their notation as AV ma-
trices (right columns), and the structures they denote (left
columns)

to as node labels. The primitive AV descriptions
consist of the following expressions:

(9) t | p : t | p .
= q | ⟨p1, . . . , pn⟩ : r | p .

= k

with t∈Typ, r∈Rel, p, q, pi ∈Attr∗, and k∈Nlab.
The intended meaning of these expressions is de-
picted in Figure 13a, which also shows the equiva-
lent matrix style notations. The filled circles indi-
cate the nodes at which the expressions are evalu-
ated. Node labels are depicted inside nodes, type
symbols are depicted at the outside of nodes.
The set of primitive AV formulas is defined as fol-

lows:

(10) k · p : t | k · p .
= l · q | ⟨k1 · p1, . . . , kn · pn⟩ : r

with t ∈ Typ, r ∈ Rel, p, q, pi ∈ Attr∗, and
k, l, ki ∈ Nlab. AV formulas state that there are
certain labeled nodes that have certain properties.
The intended meaning of AV formulas is sketched
in Figure 13b.
Formally, the satisfaction of AV expressions is

defined relative to a structure ⟨V, I, g⟩ over the given
vocabulary consisting of a set V, the universe of
“nodes”, an interpretation function I defined on
Attr ∪ Typ ∪ Rel ∪ Nnam, and a partial variable
assignment function g from Nvar to V. The func-
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tion I takes members of Attr to partial functions on
V, members of Typ to subsets of V, members of
Reln to n-ary relations on V, and members of Nnam
to members of V. Let Ig be the partial function
from Nlab to V that takes k to I(k) if k∈Nnam and
to g(k) if k∈ dom(g). The members of the image
of Ig are called labeled nodes. The interpretation
of attributes extends naturally to an interpretation
of attribute paths such that I(p · f) = I(f) ◦ I(p)
for f∈Attr and p∈Attr+. Due to lack of space, we
spell out the fairly canonical definitions of satisfac-
tion only for a few cases. For example, primitive de-
scriptions of the form p : t are satisfied at a node v of
a structure ⟨V, I, g ⟩, in symbols, ⟨V, I, g ⟩, v ⊨ p :
t, iff v ∈ dom(I(p)) and I(p)(v)∈I(t). By com-
parison, primitive formulas of the form k · p .

= l · q
are satisfied by a structure ⟨V, I, g ⟩ iff {k, l } ⊆
dom(Ig), Ig(k) ∈ dom(I(p)), Ig(l) ∈ dom(I(q)),
and I(p)(Ig(k)) = I(q)(Ig(l)). The AV descrip-
tions and formulas include ⊤ and ⊥ and are closed
under all Boolean operators. The satisfaction rela-
tion ⊨ can be extended correspondingly in the usual
way.
A frame is a structure ⟨V, I, g⟩ in which every

node is accessible from a labeled node by finitely
many applications of attribute functions; that is, for
every node v there is a node label k and a finite at-
tribute sequence p such that v = I(p)(Ig(k)).
Given two frames F = ⟨V, I, g⟩ and F ′ =

⟨V ′, I ′, g ′⟩ over ⟨Attr,Typ,Rel,Nnam,Nvar⟩, F
subsumes F ′, or F ′ is more informative than F, in
symbols, F ⊑ F ′, if there is a function h from V
to V ′ that preserves the labeling and the typing in
the frame F as well as its attribute structure and the
relations between its nodes. For instance, preserva-
tion of the attribute structure of F by h means that
h(v)∈ dom(I ′(f)) and I ′(f)(h(v)) = h(I(f)(v))
for f∈Attr and v∈ dom(I(f)). It is easy to see that
if such a function h exists, it is uniquely determined
by these conditions. The unification F ⊔ F′ of two
frames F and F′ is their least upper bound with re-
spect to subsumption, if existent.
A frame F is a model of an AV formula α iff

F satisfies α. It is not difficult to see that every
finite conjunction of primitive AV formulas has a
unique frame model (up to isomorphism) that is
minimal with respect subsumption. Vice versa, ev-
ery frame is the minimal model of a finite conjunc-
tion of primitive AV formulas.
Frame representations of a certain domain are

usually subject to a number of (universal) AV con-

straints that express implicational relations between
types and attributes: Types may be (i) subtypes of
other types, (ii) imply the presence of certain at-
tributes (and vice versa), etc. Universal constraints
have the general form ∀φ, with φ a Boolean AV
description. A frame (or structure) satisfies ∀φ if
each of its nodes satisfies φ. If φ is a Horn de-
scription, ∀φ is called a Horn constraint. Instead of
∀(φ → ψ), we write φ⇛ ψ. Given a frame F and
a finite set of Horn constraints (which do not gener-
ate infinite structures),11 there is a unique frame F′

subsumed by F that satisfies all the constraints.
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Abstract

In this paper, we present a novel approach for
building kanji dictionaries by enriching the lex-
ical data of 3,500 kanji with images, structural
decompositions, and semantically based cross-
media mappings from the textual to the visual
dimension. Our kanji dictionary is part of a
Web-based contextual language learning envi-
ronment based on augmented browsing tech-
nology. We display our multimodal kanji in-
formation as kanji cards in the Web browser,
offering a versatile representation that can be in-
tegrated into other advanced creative language
learning applications, such as memorization
puzzles, creative storytelling assignments, or
educational games.

1 Introduction

Learning a foreign language can be interesting and
exciting. However, when we begin to feel over-
whelmed by difficulties, or are faced with unin-
teresting learning material, it can become tedious
and frustrating (Doughty and Long, 2003; VanPat-
ten et al., 2020). Learning Japanese as an English
speaker poses a particular challenge (Matsumoto,
2007). It requires extensive memorization due to
the drastically different and complicated writing
system (Paxton, 2019). The logographic characters
called kanji make up its core and are supplemented
by two syllabic scripts: hiragana and katakana.
Kanji pose a significant challenge to students who
are not aware of this concept (Mori, 2014). There
are thousands of these characters and each of them
has several possible meanings and pronunciations
depending on the usage context (Hermalin, 2015).
People born and educated in Japan learn 80-200
kanji per school year, and more advanced charac-
ters after high school. Therefore acquiring kanji is
a lifelong process. Someone who decides to learn
Japanese as a foreign language cannot fall back on
this incremental and steady acquisition process, but
has to memorize these characters quickly.

2 Related Work

In order to build effective methods for the study
of kanji, extensive high quality digital resources
are needed. The most predominant, freely avail-
able kanji dictionary is KANJIDIC2 (Breen, 2004),
which contains detailed information about 13,108
characters. Wiktionary data is even more compre-
hensive and accessible as LLOD (Linguistic Linked
Open Data) via Dbnary (Sérasset and Tchechmed-
jiev, 2014; Sérasset, 2015).

Recently, lexical resources have been increas-
ingly enhanced with visual representations. Promi-
nent examples are Wikipedia thumbnails and
other illustrations, also accessible via DBpe-
dia (Lehmann et al., 2014). However, the number
of images provided varies widely across language
versions. Babelfy (Moro et al., 2014a,b) is another
good example of such efforts, whereas Wiktionary
contains comparatively few images so far.

On the other hand, Wiktionary displays Ideo-
graphic Description Sequences (IDS) from the
IDS data set, which is derived from the CHISE
project (Morioka, 2008) and is freely available on
github1. We are aware of only one application that
uses this compositional data for educational pur-
poses: the KanjiBuilder component included in
Kanshudo2. However, the entire content is propri-
etary, hence it is not available for academic use.

At the semantic level, efforts are equally limited.
So far, to the best of our knowledge, there exists
no approach that maps kanji to WordNet (Miller,
1995) synsets. However, there are ongoing efforts
at the word level in the Japanese WordNet (Isahara
et al., 2008). Regarding the mapping of images
to WordNet synsets, there is the well-known Ima-
geNet collection, which maps about 1,000 images
to each synset (Deng et al., 2009). While this is
undoubtedly an excellent resource for deep learn-

1https://github.com/cjkvi/cjkvi-ids
2https://www.kanshudo.com/
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Figure 1: Example of decomposition of a kanji.

ing applications, it is not ideal for educational use,
where we often need one well-chosen, representa-
tive image. Another effort to assign cliparts from
Openclipart3 to synsets was discontinued after il-
lustrating only 581 synsets (Bond et al., 2009).

The use of flashcards has a long tradition in
studying Japanese kanji (Diner and Prasetiani,
2015), e.g. available in Anki 4. We integrate the
display of our kanji data as kanji cards into our
contextual language learning environment by using
augmented browsing technology, as opposed to the
traditionally isolated presentation. This way, we
can offer advanced creative learning (Watts and
Blessinger, 2017; Davies et al., 2013) solutions,
such as storytelling (Windhaber, 2018) or educa-
tional games (Cornillie et al., 2012; Peterson, 2010).
As stated very recently in (ELM Learning, 2021),
creative learning is vital for several reasons:

• it stimulates problem solving, which can be
further enhanced by gamification techniques;

• it develops critical thinking by leaving the
3https://openclipart.org/
4https://apps.ankiweb.net/

study path up to the learners and enabling
to change and shape the material to fit their
patterns of thinking;

• it promotes risk-taking by leaving the diffi-
culty level up to the student;

• the choice of the learning context encourages
a curious mindset for the subject matter, fus-
ing the acquisition of new, exciting informa-
tion with acquisition of language;

• the study of more natural, context-oriented
material increases confidence levels in every-
day usage of the study material.

We included these insightful considerations and
combine them with our experience from our long-
lasting and ongoing research efforts in refining
the structure and presentation of enriched kanji
cards (Winiwarter, 2017; Wloka and Winiwarter,
2021b,c). We considered the feedback, critique,
and comments we received in the course of this
research to develop the novel design of kanji cards
presented in this paper.
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Our enriched kanji dictionary VISCOSE lays the
foundation for a novel and innovative method that
contributes a vital stimulus for second language
acquisition of Japanese. We believe that this will
greatly alleviate the difficulty of memorizing kanji
for beginners (Kubota, 2017) and keep advanced
students motivated.

3 Building an Enhanced Kanji Dictionary

We have implemented our kanji dictionary in SWI-
Prolog (Wielemaker et al., 2012) because it is an op-
timal choice for natural language processing tasks
as well as the management and retrieval of linguis-
tic data. It is suitable for efficient processing of
large XML and RDF files and provides a scalable
Web server solution (Wielemaker et al., 2008). We
use the latter to generate dynamic Web content for
creative language learning scenarios via augmented
browsing. We chose to render the kanji informa-
tion in the Web browser as kanji cards because this
is an aesthetically pleasing representation, which
can be flexibly adapted to many language learn-
ing applications, including quizzes and educational
games.

The kanji cards in Fig. 1 contain the following
information: the radical number, variant forms,
on’yomi and kun’yomi readings (described below),
glosses, an image, and the ideographic description
sequence. The radical is the main component of
the kanji used for lookup in a paper kanji dictionary.
There are 214 radicals in total.

The on’yomi readings are displayed in upper-
case, they descend from approximations of original
Chinese pronunciations. In contrast, kun’yomi read-
ings are based on pronunciations of native words
approximating the meaning of the kanji when it
was introduced. Some kanji do not have on’yomi,
they are so-called kokuji, having been newly cre-
ated in Japan. We extracted all this lexical data
from KANJIDIC2. So far, we performed 460 cor-
rections and additions using mainly Wiktionary as
supplementary resource for the 3,500 kanji in our
dictionary.

The images displayed on the kanji cards add
essential visual information. They were all col-
lected manually and exclusively from Wikipedia
pages due to licensing reasons and to guarantee
access to valuable contextual and ontological data
via DBpedia datasets.

We have also added compositional information
to the kanji cards, represented as an ideographic

description sequence (IDS). We spent extensive ed-
itorial work to meticulously check the IDS data
resulting in 581 corrections. One reason for this
high number was our goal of creating consistent
and complete decompositions of all kanji as shown
in Fig. 1. This means that we recursively follow
the IDS data down to the level of radicals and some
additional individual strokes. All the intermediary
components have to be valid characters, i.e. they
are included in our set of 3,500 kanji. In our vi-
sual representation, the kanji cards for radicals are
red, same as the radical of the kanji if it occurs in
the IDS. Additional radical kanji in the IDS are
highlighted in orange.

During the arduous process of gathering suitable
images for kanji cards, we soon identified success-
ful strategies for finding visual representations of
abstract concepts. We also observed that we of-
ten covered several aspects of the lexical data in
one image, which sometimes happened even sub-
consciously. Often these hidden associations were
discovered in a review process by a second per-
son. These experiences were the main motivation
to start annotating this mapping process to be able
to preserve a formalized representation of the im-
age acquisition task. This semantic information
is a valuable resource for many more advanced lan-
guage learning applications. However, to reap its
full benefit we also had to address the issue of word
sense disambiguation by assigning each mapping
to the correct WordNet synset.

Figure 2: Resources used for the information on a kanji
card.

A graphical representation of the integrated re-
sources and an example depiction of a kanji card
are shown in Fig. 2.

Figure 3 shows an example of three mappings for
a kanji card with verbal descriptions and WordNet
synset definitions. We have converted this repre-
sentation into a more formal annotation format as
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Figure 3: Example of mappings.

a set of septuples:

{(LexicalData,SourceType,InformationType,
TargetRegion,DepictionType,MappingType,Synset)}

For instance, the mappings in Fig. 3 would be
translated into:

{(chop,gloss,activity,main motif,

real depiction,execution,chop.v.05),

(tree,radical,tangible object,foreground,

real depiction,direct,tree.n.01),

(axe,component,tangible object,detail of main motif,

real depiction,direct,ax.n.01)}.

Of course, we actually use one-letter codes for
the values of the five features to guarantee the effi-

cient storage and processing of the annotation data.
The features are explained in detail in Sect. 4.

We have created annotations for all 3,500 kanji
in our dictionary resulting in a total number of
4,282 annotated mappings. We used altogether 45
different feature values, which are introduced in
the next section and summarized later in Table 1.

4 Annotation Examples

In the following subsections, we present detailed
examples of annotations for all values of the five
features that are used to represent the mappings
from the textual kanji information to its visual rep-
resentation.

4.1 Source Type

The first example in Fig. 4 shows the mapping of
the gloss (G) “time”, an intangible object (I), to
the real depiction (R) of a sundial, which is the
main motif (M ) of the image. The connection be-
tween the two concepts is established through the
association (A) that a sundial is used to measure
the time of day. If we look at the radical (R)日
(sun), we can see an association because the sun-
light produces the shadow that indicates the time.
Similarly, we can find an association with the indi-
rect component (C)寸 (measurement):

{(time,G,I,M,R,A,clock_time.n.01),

(sun,R,I,M,R,A,sunlight.n.01),

(measurement,C,I,M,R,A,measurement.n.01)}.

Figure 4: Example of source types G, R, and C.

The kanji card in Fig. 5 is an example of mapping
a partial gloss (P ) “tea kettle”, a tangible object
(T ), directly (D) to its visual representation as de-
tail of the main motif (D). Partial glosses mainly
concern radicals and a few more exotic cases:

{(kettle lid radical (no. 8),P,T,D,R,D,lid.n.02)}.
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Figure 5: Example of source type P .

There are numerous Japanese words that have
become English loanwords over the years. In such
cases we usually have a mapping from the kun’yomi
(K) reading to the image as in the example in
Fig. 6. We can also detect a component (C) or part
meronym relation from the radical木 (tree) to the
fruit as well as an association with the component
市 (market) where the fruit is sold:

{(persimmon,G,T,M,R,D,persimmon.n.02),

(kaki,K,T,M,R,D,japanese_persimmon.n.01),

(tree,R,T,M,R,C,tree.n.01),

(market,C,T,M,R,A,marketplace.n.02)}.

Figure 6: Example of source type K.

Similarly, there exist some mappings of on’yomi
(O) readings, like in the example in Fig. 7. Con-
veniently, the string “SEN” is also printed on the
coin, therefore, we have a literal (L) mapping:

{(.01 yen,G,I,M,R,A,sen.n.01),

(coin,G,T,M,R,D,coin.n.01),

(money,G,I,M,R,A,money.n.03),

(SEN,O,I,D,R,L,sen.n.01)}.

Finally, for some kanji we can match the glyph
(G) of its logogram (L) with shapes, lines, or
curves in the image. Figure 8 illustrates such an
example for the kanji爻. The image shows a fa-
mous film scene (F ) from the “The Great Dictator”
in which the “double cross” symbol can be seen on

Figure 7: Example of source type O.

Charlie Chaplin’s cap. Therefore, in this case, we
have a full match (F ):

{(double X radical (no. 89),P,I,D,F,L,x.n.02),

(∅,L,G,D,F,F,∅)}.

Figure 8: Example of source type L.

4.2 Information Type
The feature values I, T,G were already introduced
in Fig. 4, Fig. 5, and Fig. 8. The two missing infor-
mation types are activities (A) and properties (P ).
Both can be seen in the annotation for Fig. 9. The
image shows a detail from the mural painting (P )
entitled “Labor”. The two men are shown during
the execution (E) of the activity “toil”. From their
hard manual work we can infer that they presum-
ably possess the property (P ) “diligent” as well as
being “strong” as indicated by the radical力:

{(toil,G,A,M,P,E,labor.v.02),

(diligent,G,P,M,P,P,diligent.a.02),

(strong,R,P,M,P,P,strong.a.01}.

4.3 Target Region
So far, we have encountered the feature values M
in Fig. 4 and D in Fig. 5. The missing four target
regions, which occur less often, are mappings to the
background (B), the foreground (F ), a secondary
motif (S), and the whole image (W ).
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Figure 9: Example of information types A and P .

In Fig. 10 we map the radical山 (mountain) to
the background of the image:

{(beach,G,T,M,R,D,beach.n.01),

(mountain,R,T,B,R,D,mountain.n.01}.

Figure 10: Example of target region B.

If you look at the landscape in the foreground of
Fig. 11, it gives you the impression of vastness:

{(vast,G,P,F,R,P,huge.s.01)}.

Figure 11: Example of target region F .

In Fig. 12, the main motif is the tape measure to
represent the intangible objects “measurement” and
“tenth of a shaku” because the latter is about 3.03
cm. In addition, there are the two “small” coins as
secondary motif:

{(measurement,G,I,M,R,A,measurement.n.01),

(tenth of a shaku,G,I,M,R,A,unit_of_measurement.n.01),

(small,G,P,S,R,P,minor.s.10}.

Figure 12: Example of target region S.

Finally, Fig. 13 shows a commemorative stamp
depicting a drawing (D) that illustrates the well-
known scene from the narration (N ) “Sleeping
Beauty”. The whole image (W ) is an excellent vi-
sual explanation of the intangible concept “curse”:

{(curse,G,I,W,D,N,hex.n.01)}.

Figure 13: Example of target region W .

4.4 Depiction Type
In the previous subsections we have already used
the depiction types R,F, P,D in Fig. 4, Fig. 8,
Fig. 9, and Fig. 13. There are five additional, more
specific depiction types. The first one is bills (B),
such as posters or flyers. Figure 14 is a perfume
advertisement, which also uses textual (T ) informa-
tion to make it easier to associate the image with
the property “fragrant”:

{(fragrant,G,P,W,B,T,fragrant.a.01)}.

A related category to bills regarding visual de-
sign are covers (C) of magazines, books, etc. Fig-
ure 15 shows the cover of the November 1924 issue
of “Vanity Fair” magazine, which offers a literal
hint towards the correct intangible object:

{(vanity,G,I,S,C,L,amour_propre.n.01)}.

Another long tradition of transferring immate-
rial objects to perceivable artifacts are monumen-
tal sculpture (M ) and any other form of three-
dimensional visual arts. Right from the beginning,
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Figure 14: Example of depiction type B.

Figure 15: Example of depiction type C.

ancient advanced civilizations used anthropomor-
phic metaphors (M ), in particular personifications,
for this purpose. In many polytheistic religions,
abstract concepts were also attributed to deities.
Figure 16 is such an example using goddess Justi-
tia with her three symbolic items balance, sword,
and blindfold: {(justice,G,I,M,M,M,justice.n.01)}.

The banner in Fig. 17 is an example of a sign (S),
which contains the word “bribe” to demonstrate
against bribery: {(bribe,G,I,D,S,L,bribe.n.01)}.

A special type of signs are traffic signs (T ). They
often use icons (I), also called pictograms. Their
meaning is interpreted through their resemblance
to a real object. Figure 18 is a warning sign from
Poland to alert the driver to the danger of a steep
upward slope: {(slope,G,I,W,T,I,gradient.n.02)}.

Finally, Fig. 19 shows the result (R) of the activ-

Figure 16: Example of depiction type M .

Figure 17: Example of depiction type S.

Figure 18: Example of depiction type T .

Figure 19: Example of depiction type W .

Figure 20: Example of mapping type O.
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Figure 21: Example of mapping type S.

Figure 22: Example of mapping type V .

ity “write”, a page filled with scribbled words. The
page is an instance of a written material (W ), the
words are textual representations of the intangible
object “word” referred to by the radical言 (word):

{(write,G,A,W,W,R,write.v.02),

(word,R,I,W,W,T,word.n.01)}.

4.5 Mapping Type
Most of the mapping types have already been dis-
cussed in the preceding subsections. There is one
remaining feature value specifically for activities
in addition to E and R. In some situations we vi-
sualize the original state O before executing an
activity, e.g. in Fig. 20 before literally “weeding
out”: {(weeding out,G,A,W,R,O,weed.v.01)}.

One important semantic relation is the substance
(S) holonym relation, e.g. in Fig. 21 the radical木
indicates the material used to manufacture the table
(and the chair) in the image:

{(table,G,T,D,R,D,table.n.02),

(wood,R,T,M,R,S,wood.n.01)}.

Regarding the mapping of glyphs (see Fig. 8),
we not only annotate full matches but also more
vague resemblances (V ) as shown in Fig. 22 for
the athlete’s legs:

{(legs radical (no. 10),P,T,D,R,D,leg.n.01),

(∅,L,G,D,R,V,∅)}

Figure 23: Example of mapping type W .

Finally, two very successful strategies to estab-
lish associations is to use knowledge and concep-
tions about well-known personalities (W ) and zo-
ological subjects (Z), i.e. animals. Figure 23 is a
typical example where we can derive the following
mapping from some basic biographical information
about the life of the actor James Dean:

{(early death,G,I,M,R,W,death.n.01)}.

The last image in Fig. 24 is an example of the
second strategy. It shows two dogs who seem to be
quite happy: {(happiness,G,I,M,R,Z,happiness.n.01)}.
For easier reference, we add an overview of all
feature values introduced in this section in Table 1.

Figure 24: Example of mapping type Z.

5 Conclusion

In this paper we presented VISCOSE, an enhanced
kanji dictionary with detailed visual, compositional,
and semantic annotations. We described our moti-
vation and the steps involved in building this lexical
resource. Our main contribution is a formal rep-
resentation of semantically grounded cross-media
mappings from the textual to the visual dimension.
We drew upon years of experience and many itera-
tions of designs to optimize the presentation of the
many details on the kanji cards.

The current version of the annotation was done
by the authors, who both have a higher educational
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Source Type Information Type Target Region Depiction Type Mapping Type
C component A activity B background B bill A association
G gloss G glyph D detail of main motif C cover C component
K kun’yomi I intangible object F foreground D drawing D direct
L logogram P property M main motif F film scene E execution
O on’yomi T tangible object S secondary motif M monumental sculpture F full match
P partial gloss W whole image P painting I icon
R radical R real depiction L literal

S sign M metaphor
T traffic sign N narration
W written material O original state

P property
R result
S substance
T textual
V vague resemblance
W well-known personality
Z zoological subject

Table 1: Overview of feature values.

background in computer science, linguistics, and
Japanese studies, as well as long research and teach-
ing experience in natural language processing in-
cluding several projects on lexicographic and ter-
minological topics. Future research will focus on
editorial work and writing a comprehensive anno-
tation guide. We will make a preliminary version
available as soon as possible, before publishing
our resource at LRE Map. We also plan to involve
students in the process of refining and extending
the annotations as class room assignments, and
evaluate the annotation agreement. In this con-
text we plan to measure the improvement regard-
ing language acquisition in comparison with other
approaches, as well as get feedback on usability,
entertainment factors and the often related engage-
ment level.

We already envision many interesting future use
cases. One example is the use of kanji cards to
replace thematic cards in strategic games based on
feature value agreements and synset similarities.
Another idea is to create cross-media analogies for
memorization puzzles, such as guessing the correct
gloss based on an image and an analogous kanji
card. Finally, we also want to put the structural
information to good use by applying our decompo-
sition diagrams to creative storytelling to collect
mnemonic sentences for improved kanji retention.

Finally, we will continue our ambitious research
efforts towards integrating the kanji cards into
multifaceted annotations of Japanese sentences at
the lexical, syntactic, conceptual, and relational
level (Wloka and Winiwarter, 2021a).

All these implementations will be evaluated in
graduate courses with students in translation stud-
ies. We will follow recent suggestions in evaluation
approaches (Heuer and Buschek, 2021) by putting
learners in the center of the evaluation process and

giving them an active role in the further develop-
ment of our environment. We will solicit feedback
at the beginning, during, and at the end of the eval-
uation to incorporate criticism and suggestions into
the continued development of VISCOSE.
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Abstract

Usage-based constructionist approaches con-
sider language a structured inventory of con-
structions, form-meaning pairings of different
schematicity and complexity, and claim that
the more a linguistic pattern is encountered, the
more it becomes accessible to speakers. How-
ever, when an expression is unavailable, what
processes underlie the interpretation? While
traditional answers rely on the principle of com-
positionality, for which the meaning is built
word-by-word and incrementally, usage-based
theories argue that novel utterances are created
based on previously experienced ones through
analogy, mapping an existing structural pattern
onto a novel instance.

Starting from this theoretical perspective, we
propose here a computational implementation
of these assumptions. As the principle of com-
positionality has been used to generate distribu-
tional representations of phrases, we propose
a neural network simulating the construction
of phrasal embedding as an analogical process.
Our framework, inspired by word2vec and com-
puter vision techniques, was evaluated on tasks
of generalization from existing vectors.

1 Introduction

While the generative tradition has dominated lin-
guistic research for over half a century, the last
decades have seen the emergence of an alterna-
tive paradigm in linguistics and cognitive sciences,
which goes under the name of usage-based models
of language (Langacker, 1987; Croft, 1991, 2001;
Givón, 1995; Tomasello, 2009; Bybee, 2010), a
variety of approaches grounded on the idea that lin-
guistic structures emerge and are shaped through
the use of language. Their claim is that language
is not different from any other cognitive domain:
Linguistic structures are not the result of a specific-
language function but are explainable as the imple-
mentation of domain-general processes (Ibbotson,

2013). The usage-based position shares the fun-
damental assumption of Construction Grammar
(Hoffman and Trousdale, 2013): language con-
sists of meaningful and symbolic form–meaning
mappings, called constructions. Words, idiomatic
expressions (e.g., kick the bucket —“to die” or
jog <someone’s> memory —“to refresh <some-
one’s> memory”) and highly general and produc-
tive syntactic patterns (e.g., ditransitive structures)
are all constructions varying along a continuum of
schematicity and complexity.

In particular, usage-based constructionist ap-
proaches emphasize the notion of frequency: com-
binations that are more frequently encountered be-
come more accessible (perhaps because they are
stored in memory) and are preferred. Indeed, if
the language system derives from language use, it
follows that how often a speaker encounters a par-
ticular linguistic expression will affect the system
itself. This assumption implies that any sequence
of words – if used frequently enough – can be a
construction, even if there are no idiosyncrasies of
form and meaning (Goldberg, 2006). However, it is
impossible to store any possible word combinations
a speaker has or will ever produce. The traditional
answer relies on the principle of compositionality:
the meaning of a complex expression is entirely
determined by its structure and the meanings of
its constituents – once we specify what the parts
mean and how they are put together, there is no
more leeway regarding the meaning of the whole
(Partee, 2004). Usage-based theories favor a differ-
ent explanation: novel utterances are created based
on previously experienced utterances thanks to the
cognitive process of analogy.

The ability to make analogies – that is, to map
familiar relations from one domain of experience
to another – is a fundamental ingredient of human
intelligence and creativity (Hofstadter, 2001). In
the linguistic domain, analogy depends on simi-
larity in form and meaning between constructions,
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whether these constructions are of a concrete type
or an abstract type: a novel instance is compared
to those stored in our long-term memory to infer
the new representation. In this perspective, the
acceptability of a novel item is a gradient that de-
pends on the extent of similarity to prior uses of
a construction (Bybee, 2010). In a more radical
stance, Ambridge (2020) proposed disregarding
completely abstraction: unwitnessed forms are pro-
duced and comprehended “by on the fly analogy”
across multiple stored exemplars. Without deny-
ing the existence of abstract representations, we
also assume that analogical mechanisms play a key
role in explaining systematic processes of language
productivity.

This paper aims to articulate the hypotheses in-
troduced above in computational terms. We address
two interconnected questions: How can we repre-
sent (lexicalized) constructions? Is it possible to
replicate the interpretation-as-analogy mechanism
in computational terms? Specifically, we investi-
gate how to model constructions as well as analogy-
based compositionality using Distributional Seman-
tic Models (DSMs). DSMs represent the lexicon
in terms of vector spaces, where a lexical target
is described in terms of a vector (also known as
embedding) built by identifying in a corpus its syn-
tactic and lexical contexts (Lenci, 2018).

As a first approximation, we decided to consider
constructions any kind of frequent pairs of words
linked by a syntactic relation. Traditionally, build-
ing distributional representations beyond individual
words, such as phrases and sentences, is the focus
of Compositional Distributional Semantic Models.
Their proposed methodologies try to derive the
meaning of an expression from the meanings of the
sentence’s constituents (Baroni et al., 2014): the
simplest CSDMs represent words as vectors and
obtain sentence vectors with sum or product oper-
ations between constituent vectors (Mitchell and
Lapata, 2010), while more complex models repre-
sent predicates with matrices and tensors (Baroni
and Zamparelli, 2010; Coecke et al., 2010; Baroni
et al., 2014; Paperno et al., 2014) or reproduce the
compositionality operation by means of a neural ar-
chitecture learning so-called sentence embeddings
(Socher et al., 2012; Cheng and Kartsaklis, 2015).
It is interesting to notice that most distributional
models for phrases/constructions/sentences assume
more or less explicitly the principle of composition-
ality, while the idea that units above the word level

could be stored and retrieved via analogy/similarity
mechanisms has rarely been explored. 1

The experiment presented here distances itself
from these approaches, following a more usage-
based perspective. Suppose frequently experienced
word sequences are, to some extent, stored in
memory, and the organization and productivity of
language are understood as the result of analogi-
cal processes between form and meaning in this
structured inventory of constructions. In that case,
new phrases could be constructed by analogy with
stored linguistic patterns. We propose a neural net-
work model to infer a distributional representation
of a new syntactic phrase by preserving the struc-
tural information encoded in the embeddings repre-
senting previously stored, high-frequency phrases.

As the main contributions of the paper, i) we
introduce a new DSM in which both lemmas and
syntactic relations in the form of <head, dependent,
syntactic role> triples have a unique distributional
representation; ii) we propose an analogical model
to create the distributional embeddings of new re-
lations by applying deep-learning techniques, and
evaluate different architectures in terms of general-
ization and systematicity; iii) we discuss the impli-
cations of our analogical model from a theoretical
and computational perspective.

2 Relational Embeddings

The first step consisted in developing a DSM for
lexicalized constructions. We represent the mean-
ing of phrases following a holistic approach (Tur-
ney, 2012): as a numeric vector can represent nouns
like space and race, in the same way, phrases like
space race are associated with a unique embedding.
For our goal, we built embeddings corresponding
to triples <head, dependent, role>, assuming that
these vectors should keep track of the syntactic re-
lation between words. For this reason, we called
these Relational Embeddings (RelEmbs), and we
assume they represent the meaning of lexicalized
constructions.

We built our semantic space using word2vecf
(Levy and Goldberg, 2014), a modification of the
skip-gram model introduced by Mikolov et al.
(2013a). While the original implementation as-
sumes bag-of-words contexts, i.e., the model keeps

1Some partial exceptions are instance-based distributional
models (Jones and Mewhort, 2007; Jamieson et al., 2018;
Crump et al., 2020) and distributional models of event knowl-
edge that store event occurrences in the form of syntactic
graphs (Chersoni et al., 2019, 2021).
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track of word counts and disregards the grammati-
cal details and the word order, word2vecf allows
us to use arbitrary context features. In detail, we
extracted <target, context> occurrences from the
concatenation of ukWaC and a 2018 dump of En-
glish Wikipedia, parsed using CoreNLP (Manning
et al., 2014): targets are both words and <head, de-
pendent, role> triples (e.g., <bark, dog, nsubj>),
while context is always an open-class word (noun,
verb, adjective) occurring with the target in the
sentence within a window ± 10 (ten words before
and ten words after the head of the relation ex-
cluding the dependent). Word2vecf parameters are
reported in Appendix A. We built our DSM con-
sidering only words and relations with a frequency
equal to or larger than 100 and filtering out <target,
context> pairs with a frequency less than 20; lastly,
we kept only <head, dependent, role> triples with
a frequency ≥ 1,000, where both the head and
the dependent lemmas have a frequency ≥ 10,000.
This strategy is consistent with the idea that holis-
tic representations of complex constructions are
stored only for substantially frequent items. The
final space contains 127,739 word embeddings and
173,496 RelEmbs, for a total of 301,235 items.

Semantic space evaluation We tested the quality
of the semantic space over some most common
benchmarks for the intrinsic evaluation of word
and phrase embeddings. It is worth mentioning
that we are not aiming at beating traditional DSMs,
but rather at carrying out a general evaluation of
the goodness of our distributional representations
of lexicalized constructions.

For word embeddings, we ran the standard Word
Similarity/Relatedness task using the well-known
WordSim-353 (Finkelstein et al., 2001) and MEN
(Bruni et al., 2014). The task is to compute the
cosine similarity between two words (e.g., cup and
mug) and verify how their score correlates with the
similarity rate given by humans. We also evaluated
the DSM against FAST (Evert and Lapesa, 2021), a
free associations dataset. The goal of this multiple-
choice task is to determine the most frequent asso-
ciate for a given stimulus among three candidates
(e.g., which word between neck, apple, wine is
most associated with giraffe?). As a baseline, we
computed the performance of a DSM trained with
the original word2vec Skip Gram model (Mikolov
et al., 2013a) on the same concatenation of corpora.

Results are reported in Table 1. Considering the
first task, we observe that Spearman’s correlation

scores for the baseline are a bit higher than our
DSM in all settings, except for the MEN dataset.
However, the differences are not statistically signif-
icant.2 It is worth noticing that similarity results are
better than relatedness results, showing the same
trend reported in Agirre et al. (2009). We observe
an opposite performance for the classification task:
our space consistently beats the baseline, and the
difference is statistically significant.

Dataset RelEmbs.w baseline Coverage
WS353-all 0.684 0.721 333/353
WS353-sim 0.734 0.75 195/203
WS-353-rel 0.628 0.675 236/252
MEN 0.774 0.735 3000/3000
FAST-EAT 0.786∗∗∗ 0.737 5877/7610
FAST-USF 0.725∗∗∗ 0.719 4057/4719

Table 1: Word embeddings evaluation. On top:
Spearman’s correlation scores for Word Similar-
ity/Relatedness task. Bottom: Accuracy scores for Free
Association task. ∗∗∗ = p<0.01 using McNemar test.

Moving to the relational embeddings, we used
the Mitchell et al. (2010) Phrase Similarity dataset
(ML10), which includes 324 English phrase pairs,
tripartite in noun phrases, verb phrases, and adjec-
tive phrases. Given two expressions (e.g., general
principle and basic rule), the task consists in com-
paring the cosine similarity between the two cor-
responding vectors and then correlating the score
with the human similarity rating. As a baseline, we
represented the phrases as the sum of the word2vec
vectors used for word embedding evaluation. Table
2 reveals that correlation scores are not homoge-
neous among the different sets: the noun phrase
subset achieves a higher score (0.635) compared to
the other two sets, whose score is lower than 0.5.
Moreover, baseline results are consistently better
than our model and are statistically significant for
the AN subset.

Dataset RelEmbs baseline Coverage
ML-vo 0.499 0.599 99/108
ML-nn 0.635 0.716 99/108
ML-an 0.462 0.683∗∗ 102/108

Table 2: Relational embeddings evaluation. Spear-
man’s correlation scores for Phrase Similarity task. ∗∗

= p<0.01 using Fisher r-to-z transformation test.

2p>0.1, the p-value is computed with Fisher’s r-to-z trans-
formation, one-tailed test
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Qualitative analysis Results in Table 2 suggest
that RelEmbs perform worst than the baseline in
the phrase similarity test. To gain more insight, we
selected some problematic pairs from the ML10
dataset and manually inspected the k-nearest neigh-
bors, i.e., the most similar words by cosine similar-
ity. Let us look at the pair reduce amount and cut
cost: the two expressions are judged very similar
(6.55), but their cosine similarity is just 0.41. How-
ever, their distributional neighbors are coherent and
somehow systematic in the sense that they are sim-
ilar to relational embeddings in which the same
head or dependent word occurs. So, reduce amount
is mostly similar to increase amount, reduce waste,
a person reduce, large amount, high amount; on
the other hand, the neighbors of cut cost are reduce
cost, improve efficiency, increase profit, lower cost,
save money. Similar observations are for nominal
phrases, like government leader and health min-
ister. While ML10 reports a high score (4.95),
the cosine similarity between the two is quite low
(0.43). However, this is explainable by observing
their neighbors. In the first case, health minister is
similar to other types of ministers (health secretary,
transport minister, environment minister, minister
for health); conversely, government leader is more
associated with situations (invite a leader, include
a leader) or other offices (chief whip, head of the
committee, regional leader) associated to leaders.
In other words, while the phrases refer to govern-
ment members, the two roles are not the same (and
functions also differ).

To sum up, the qualitative analysis of the neigh-
bors reveals that RelEmbs form a semantically co-
herent space, even though they do not outperform
the baseline in the phrase similarity task.

3 Analogical Neural Network for
Embeddings

Usage-based theories of language assume that sys-
tematic processes of language productivity can be
explained mainly by analogical inferences rather
than by sequential compositional operations. In
this perspective, we present a system to expand
the coverage of the RelEmbs space simulating the
construction of phrasal meaning as an analogical
process via deep learning techniques.

3.1 Architecture

We aim to infer a distributional representation of a
new syntactic phrase (ANALOGICAL TARGET) by

preserving the structural information encoded in
an existing relational embedding (ANALOGICAL

BASE). For simplicity, we represent this process
using the familiar four-term formalism.3 Approx-
imately, solving the analogy A:B::C:? requires a
system that generates an appropriate embedding
to make a valid analogy: if we need to infer an
embedding for the target phrase drink cider using
drink water as the base, we can reformulate the
analogy as: water : drink_waterdobj :: cider :?

We framed the problem of analogy completion
as a regression task: the aim is to build a phrasal
vector given the embeddings of the other expres-
sions in the analogy. While word embeddings have
been widely employed to perform analogy by addi-
tion and subtraction of word embeddings (Mikolov
et al., 2013b; Gladkova et al., 2016), we argue that
directly training a deep neural network on the task
of analogy completion could provide better results,
as already proposed by Reed et al. (2015) for vi-
sual analogy-making. We named our novel neural
network model as Analogical Neural Network for
Embeddings (ANNE).

In detail, we implemented a feed-forward neu-
ral network architecture with one hidden layer: the
model is trained to learn a function f : R2D → RD

that maps an input vector x to a generated embed-
ding y of dimension D (where D=300), preserving
the structural properties of the selected base. The
input vector x should incorporate the analogical
base (e.g., drink water), and the new argument
(e.g., cider). We tested two possible combinations:
i) the input vector is the concatenation between the
analogical base and the new argument (CONCAT,
Figure 1a); ii) we compute the difference between
the analogical base and the argument in the same
relation; the resulting vector is concatenated to the
new argument vector (DIFF; Figure 1b). The intu-
ition below the DIFF input representation is that
we apply some aspects of Mikolov’s analogical
operation with the nonlinearities and supervision
offered by a neural network.

We developed several variants of this network,
each with a distinct objective function. The ba-
sic architecture (SIMPLE) is trained to maximize
the cosine similarity between the original and pre-
dicted embedding. However, ANNE should not
simply create a vector similar to the actual instance
in the DSM but also learn the relational structure

3It is, however, doubtful that linguistic analogies are com-
puted in this way at the brain level (Bybee, 2010).
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Figure 1: ANNE architecture with CONCAT (a) and DIFF (b) input. The
⊕

indicates a vector concatenation, while
⊖ indicates vector subtraction.

of the base and transpose it to the generated em-
bedding. To this end, we implemented a multiple
losses function, which combines the SIMPLE loss
with a new loss aimed at minimizing the differ-
ence of the similarity between the relational vector
and the embeddings of its words computed for the
base and the target. For instance, if the similar-
ity between drink water and drink is 0.60 and the
similarity between drink water and water is 0.49,
similar scores should be obtained by computing
the similarity of the output vector with the vec-
tors of drink and cider. Therefore, the network is
trained to generate RelEmbs that preserve the same
relations with its components as the ones in the
analogical base. To compare the similarity scores
we tested three functions (cf. Appendix B): the
Mean Squared Error (MULTIMSE), the mean of
the scores difference (MULTIAVG), or the hinge
loss function (MULTIHINGE).

Training the network We selected analogical
base-target pairs from the Relational Embeddings
attested in space to train the neural network. We
assembled the dataset as follows: given a rela-
tion <head, dependent, syntactic relation>, we
selected all RelEmbs with the same head and syn-
tactic relation and calculated the similarity between
the arguments of each pair, keeping only those pairs
with the cosine similarity between arguments ≥ 0.4
and the cosine similarity between RelEmbs ≥ 0.6.
We chose the filter on similarity heuristically: the
idea is that the candidate targets should be some-
how similar with respect to their analogical bases
but not the exact synonyms. The final dataset con-
sisted of 350,404 items and was divided into Train
and Test parts (respectively, 95% and 5%).

To verify the analogy-solving capability of the

network, i.e., its ability to generalize from the base,
we kept some analogical pairs out of the training
step. The resulting data (named Test-unseen), com-
prises 3,201 pairs (cf. Appendix C). This dataset
should verify the network’s performance when en-
countering new relations, which is to say, evaluate
the model’s generalization ability. The training
setup configurations are reported in Appendix D.

3.2 RSA Evaluation

A preliminary evaluation of ANNE consisted of
computing the similarity between relational embed-
dings attested in the DSM and embeddings analog-
ically generated from ANNE attested in the Test
and the Test-unseen datasets. We applied the Rep-
resentational Similarity Analysis (RSA; Kriegesko-
rte et al. (2008); Kriegeskorte and Kievit (2013)),
a computational technique that allows us to com-
pare heterogeneous representations in higher-order
spaces. The core idea is simple: instead of directly
correlating representations of stimuli in different
representation spaces, we compute how similar rep-
resentations are between pairs of stimuli in each
space, and the resulting similarity matrices are then
compared. As we are interested in understanding
how similar the original and generated embeddings
are, we created a pair of matrices where rows are
the vectors representing the analogical targets from
a test set and columns correspond to a subset of
the RelEmbs vocabulary.4 Following Lenci et al.
(2022), we randomly sampled 100 disjoint sets of
1,000 lexemes, ran RSA analyses on each sample,
and then computed the average score.

Table 3 reports Spearman’s ρ between the simi-
larity matrix computed with the original RelEmbs

4A matrix with 301,235 columns would be computation-
ally too expensive.
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and the matrix with vectors generated with ANNE.
We can observe that the models reach similar re-
sults for the two test data, even if the Test-unseen
scores are always slightly lower than those for the
Test set. Overall, the SIMPLE model reaches the
best scores (0.851 for Test and 0.835 for Test-
unseen), while MULTIAVG performs the worst
(reaching just 0.739 for Test-unseen with DIFF in-
put). However, the average correlation of all mod-
els is significantly high. As a baseline, we also
performed the vector offset method (Mikolov et al.,
2013a). RSA correlation scores significantly drop
(0.734 and 0.71 for the Test and Test-unseen, re-
spectively). The worst architecture (MULTIAVG
diff) is still better than the baseline for Test (p <
0.1), but not for Test-unseen. The best architec-
ture (SIMPLEconcat) is different from the baseline
with p < 0.001.5 This result corroborates our as-
sumption that the ANNE architecture is better at
generating analogical vectors than a simple vector
operation.

TEST TEST-UNSEEN
simpleconcat 0.851 0.835
simplediff 0.848 0.834
multiHingeconcat 0.819 0.805
multiHingediff 0.806 0.788
multiAVGconcat 0.782 0.754
multiAVGdiff 0.77 0.739
multiMSEconcat 0.835 0.82
multiMSEdiff 0.824 0.804
baseline 0.734 0.71

Table 3: Average Spearman’s correlation between orig-
inal and analogically generated semantic spaces com-
puted with RSA on 100 random samples of 1, 000 words
for Test and Test-unseen datasets.

4 Compositionality vs. Idiomaticity

Finally, we present a series of analyses to evaluate
the meaning encoded in analogically-generated em-
beddings. We hypothesize that the best-generated
embedding should keep the same relationship
among components as the base (systematicity). As
a counterproof, we also generated embeddings
from idiomatic expressions. In this case, we expect
analogies with idiomatic bases to give odd results
in the semantic space because of their reduced com-
positionality and systematicity. The results should
answer the following questions: What are the char-

5p-values for Fisher’s r-to-z transformation, one-tailed test.

acteristics of analogically-generated embeddings?
How does the type of input (concatenation or dif-
ference) affect the final representation? What loss
functions are better at retaining the same structural
relation of the base, while at the same time gener-
alizing from the original embedding?

Data The analogical bases employed are 44 ver-
bal phrases (22 idioms from Libben and Titone
(2008) + 22 compositional manually picked from
frequent relations) and 24 nominal compounds (12
idiomatic + 12 compositional) selected from the
Noun Compound Senses dataset (Cordeiro et al.,
2019) and the dataset by Reddy et al. (2011).

For each phrase, we manually chose a relation
similar to the base but not attested in the vocabulary
space, with the same head and syntactic role. For
example, given the relation <marketN , fishN , com-
pound> (“a fish market”), we replaced the noun
fish (i.e., the dependent) with the noun shrimp;
expressly, the relation <marketN , shrimpN , com-
pound> (“a shrimp market”) is not attested in
RelEmbs vocabulary. The final dataset consists
of 68 analogical pairs, half with an idiomatic base
and half with the compositional counterpart.

Idiomatic → Target Compositional → Target
VN break ice → break chunk break bone → break finger
NC loan shark → credit shark reef shark → atol shark

Table 4: Examples of analogical pairs (the id-
iomatic/compositional base on the left, the target on
the right of the arrow).

4.1 Analysis 1: Correlation of the Similarities
with the Components

To evaluate if and how the ANNE configurations
are generating embeddings systematically, we ob-
served if the similarities between the relational em-
bedding and those of the component words are
similar for both the analogical base and the gener-
ated target. The assumption is that the embedding
generated by ANNE should have the same internal
structure as the base from which it is inferred: that
is, the relationship between the phrase meaning and
the meaning of its components should be systemati-
cally retained in the generated distributional vector.
This idea can be approximated by the similarities
between the RelEmbs and its parts: if the similarity
between break (a) bone and break is 0.4 (simHead
score) and the similarity with the dependent bone
is 0.42 (simDep score), comparable scores should
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be obtained computing the similarities of break (a)
finger with break and finger, respectively.

We computed the cosine similarity scores for all
ANNE implementations. We assume that the best
architecture (i.e., the one that best fits our theoreti-
cal hypothesis) should be the one that has i) com-
parable similarity distributions for compositional
bases and derived targets (for both word compo-
nents), and ii) different (or incoherent) similarity
distributions for targets generated from idiomatic
bases. By looking closely at the plots in Appendix
E, we observe that each architecture produces dif-
ferent outputs. Among all models, MULTIAVG is
the one performing worse (plots in (c) and (d)): the
generated embeddings have high similarities with
the dependent component in both idiomatic and
compositional cases, possibly because they retain
too much distributional information from depen-
dent words used to generate the new embedding.
The MULTIMSE (plots in (e) and (f)) and the SIM-
PLE (plots in (a) and (b)) losses show a similar
behavior: they give a high simHead and simDep to
vector generated from idiomatic targets. This re-
sult shows that, when deriving a new literal phrase
meaning from a figurative one should be impossi-
ble, the models largely rely on attribute similarity
instead of truly learning a relation. In this sense, the
MULTIMSEdiff (plots in (f)) model is the only one
that perfectly respects our hypothesis (distributions
should be the same for targets from compositional
bases but different for targets with idiomatic bases).
Conversely, the MULTIHINGE model (plots in (g)
and (h)) reduces the impact of the dependent word,
as proved by the fact that the mean similarity of
simDep is lower for the target (orange) than for the
base (blue).

Figure 2: Distribution of the similarities between
RelEmbs and their head for MULTIMSEdiff . Blue
boxplots refer to the base embedding, orange to the
analogically-generated ones.

4.2 Analysis 2: Intersection of Neighbors

As a complementary measure to cosine similar-
ity, we computed the intersection between the 50-
nearest neighbors of i) the base and the gener-
ated target, and ii) the generated target and the
respective head/dependent.6 The first measure tells
us how much information the analogical embed-
ding retains from its base: the higher the value,
the higher their similarity, so it could be that the
network did not generalize from the input. The
second measure should say how much the anal-
ogy moved the distribution towards the component
meanings. Appendix F reports the results as a se-
ries of heatmaps.

Figure 3: Heatmap for MULTIMSEconcat shows the
intersection between the neighbors of the analogically-
generated embedding and the base (NNbaseNNtarg,
*re only RelEmbs)), the head (NNtargNNhead), and
the dependent (NNtargNNdep).

Embeddings generated from idiomatic bases
have no shared neighbors with the vectors of their
heads or dependents: as the network was not
trained on this type of analogies (which are impos-
sible), we expected the neural model to fail. What
we can add, however, is that sometimes it generates
a new embedding that has no common neighbors
with either its base or components, sometimes it
resolves the analogy by copying the distributional
signature of the base. The only exception to this
trend is MULTIAVG (subfigures (c) and (d)): we
notice that some items, such as shark credit, cock-
roach market, and gastropod mail, partake many
neighbors with their dependent, revealing that this

6For head and dependent embeddings, we only considered
neighbors that are RelEmbs to limit the variability.
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model is not generalizing correctly.
A more complex scenario appears if we consider

the targets generated from compositional bases. As
noticed above, ANNE with CONCAT input has more
shared neighbors between the target and the base
(first two columns), while this is not the case for
the ANNE with DIFF input (see heatmaps in (a) and
(b) as example). This finding is further proof that
a neural network that takes as input the concatena-
tion of vectors for the base and the target argument
attempts to generate an embedding as close as pos-
sible to the input relational embedding. In other
words, this type of input could negatively impacts
ANNE in learning the correct inference.

4.3 Architectures’ comparison

Previous analyses reveal that some parameter con-
figurations are better than others. ANNE models
that take as input the SIMPLE concatenation of the
RelEmb base and the word embedding generate
vectors too similar to the base, while modifying the
base with an operation similar to Mikolov’s vector
offset produces better results. Overall, it seems that
ANNE trained with MULTIHINGE and MULTIMSE
losses (with DIFF input) induce more consistent
and explainable results, while MULTIAVG is sub-
optimal for its tendency to generate embeddings
similar to the target’s dependent.

5 General Discussion

An open issue in DSMs is how distributional repre-
sentations can be projected from the lexical level
to the sentence or even discourse level. Most pre-
vious approaches have tried to solve this issue by
explicitly relying on the classic principle of com-
positionality. Given the Fregean assumption that
phrase meaning is a function of the meanings of
its constituents, different computational strategies
have been proposed to derive vectors for phrases
by taking word embeddings as inputs.

In this paper, we proposed a new methodology
grounded on a usage-based perspective: we tried to
generate new distributional representations by im-
plementing an analogical function in the form of a
neural network. Word analogies have been used as
a standard intrinsic evaluation task for measuring
the quality of word (Mikolov et al., 2013c; Levy
and Goldberg, 2014; Linzen, 2016) and sentence
embeddings (Zhu and de Melo, 2020; Wang et al.,
2021; Ushio et al., 2021b). However, the task is
usually defined as a candidate retrieval: given an

analogical proportion, find the correct completion
from a list of candidates to solve the analogy. On
the contrary, our aim is to generate a completely
new embedding, similarly to what is done in reason-
ing and computer vision (Reed et al., 2015; Sadeghi
et al., 2015; Upchurch et al., 2016; Ichien et al.,
2021): the task consists in training deep learning
models to recognize a relationship among two im-
ages and generate a transformed query represen-
tation (in this case, an image) accordingly. We
believe that future investigations in linguistic analo-
gies should pick up from this literature, and ANNE
is a first attempt along this direction.

Our ANNE approach is not without limitations.
One controversial aspect of ANNE is the choice
of building the target by simply changing the argu-
ment in the relation. While it is not too problematic
for verbal phrases, it raises questions for adjective-
noun phrases and noun compounds. Consider the
expressions blue car and fast car. Many things can
be blue and not be a car, but not everything can
be fast (e.g., *fast carrot) because fast constrains
the possible realizations of its head. A similar ob-
servation could be shown for noun compounds: in
some cases, their meaning is related to both com-
ponents (e.g., bank account), but sometimes their
meaning retains aspects of one component (e.g.,
head teacher). To take into account the specifici-
ties of each type of phrases, we could train different
ANNE architectures for each type of phrases.

The main difficulty is to balance relational and
attributional similarity. Indeed, the use of a new
item in a construction requires a great deal of rela-
tional knowledge (Gentner and Markman, 1997);
nonetheless, the importance of similarity or shared
attributes to linguistic analogy is not less vital (By-
bee, 2010). A qualitative evaluation of analogical
inferred embeddings reveals that analogy is eas-
ier to compute if the similarity between the enti-
ties in the syntactic relations is high. For instance,
most all architectures build a good representation
of science technology generated from earth science,
maybe because there are lots of “topic science” ex-
pressions (cf. Table 5). Conversely, if attribute
similarity is lower (i.e., the words between the base
and the target are somewhat dissimilar), the analogi-
cal model is challenged. The neighbors of pedantic
circle (derived from literary circle, cf. Table 6)
are odd and incoherent with the expected mean-
ing, maybe because the adjective literary is usually
associated with a work of literature (an inanimate
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concat diff

SIMPLE

earth science
apply science
marine science
new science
area of technology

area of technology
apply technology
focus ORGANIZ.
include technology
area of engineering

MULTIHINGE

earth science
new science
apply science
relate to technology
area of technology

focus ORGANIZ.
area of technology
apply technology
electronic technology
create technology

MULTIMSE

earth science
apply science
area of technology
new science
area of engineering

area of technology
include technology
focus ORGANIZ.
aspect of technology
aspect of use

MULTIAVG

apply science
information technology
development in science
role of technology
area of technology

information technology
apply technology
area of technology
apply science
new technology

Table 5: 5-nearest neighbors of technology science (com-
pound) generated earth science.

concat diff
show (a) letter
explain in letter
(a) disciple PERSON
(a) letter address
refer in (the) letter

guess PERSON
extol (the) virtue
point_out PERSON
complain about PERSON
dismiss (an) idea

LOCATION scholar
join on return
accompany (an) expedition
await (the) return
(a) letter address

state for example
extol (the) virtue
join on return
serve curacy
say in july

show letter
explain in letter
letter address
enlist aid
(a) PERSON demand

complain about PERSON
guess PERSON
extol (the) virtue
point_out PERSON
say according to PERSON

see before PERSON
like (one’s) style
tell (a) girl
tell about time
everyone tell(s)

see before PERSON
feel like PERSON
tell (a) girl
realize PERSON
want (a) baby

Table 6: 5-nearest neighbors of pedantic circle
(amod) generated from a literary circle.

object), while pedantic collocates with a person. In
these cases, different factors could contribute to the
success or failure of the model, which should be
further investigated.

The introduction of analogy as a strategy to de-
rive meaning for novel expressions does not entail
the entire suppression of compositional approaches.
From a theoretical stance, not every expression
can be built using analogical inference: if anal-
ogy fails, compositional operations switch over to
guide interpretation. In this regard, the question
should not be whether analogically-generated vec-
tors are better than computationally-built ones, but
when one mechanism is preferred to the other. An-
swering this question is challenging from both a
psycholinguistic and computational stance. The
issues related to computational models of analogy
as a productive mechanism in language are theo-
retical before methodological. While it is true that
the cognitive process of analogy represents a cen-
tral mechanism in human cognition (Hofstadter,
2001), the problem in defining a linguistic theory
that formalizes precisely what an analogy is and
when it occurs is complex. In other words, it is
hard to predict which analogies will actually be
drawn and at what linguistic level (Behrens, 2017,
p. 215). Ideally, future systems aiming at modeling
language comprehension should be able to include
this mechanism too. New benchmarks will have
to be built with the aim of identifying analogical
inferences. These datasets could also be valuable
for behavioral analyses.

6 Conclusion and Future Works

In this paper, we presented a new approach that sim-
ulates the construction of phrasal meaning as an
analogical process implemented with deep learning
techniques. We proposed a distributional repre-
sentation of constructional phrases and a model
of generating new embeddings analogically rather
than applying traditional compositional operations.
We experimented with our analogical neural net-
work to understand how it can generalize and be
extendable to different scenarios. We argued that
the proposed methodology could open the doors to
new analyses in distributional semantics as well as
in computational models of language processing.

The future research perspectives on ANNE are
considerable. Firstly, we could build a more so-
phisticated phrasal representation using contex-
tualized embeddings (Ethayarajh, 2019) based
on Transformers (Vaswani et al., 2017; Devlin
et al., 2019). Moreover, we should compare our
Relembs with other phrasal representations repre-
sentations (Shwartz, 2019; Alipoor and Schulte im
Walde, 2020) and Relation Embeddings (Camacho-
Collados et al., 2019; Ushio et al., 2021a). More-
over, while we performed analogy over pre-
selected base-target pairs, we aim at investigating
methods to automatically retrieve the best analogi-
cal candidate. Finally, we plan to evaluate ANNE’s
ability to model human behavior on more complex
tasks regarding compositionality and language pro-
ductivity.
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A RelEmbs parameters

We use the skip-gram algorithm adopting the de-
fault configuration: no hierarchical softmax, 15
negative samples (how many negative contexts to
sample for every correct one), and 300 as the vector
dimension.

B ANNE losses

The basic architecture (SIMPLE) uses the cosine
similarity between original and predicted vectors

to make backpropagation. The CosineEmbeddin-
gLoss7 criterion from PyTorch library (Paszke
et al., 2019) measures whether two inputs t and t′

are similar or dissimilar using the cosine distance
(cos):

CEloss(t, t′, y) =

{
1− cos(t, t′) if y = 1

max(0, cos(t, t′)) if y = −1
(1)

The loss function takes as inputs t, t′, and a la-
bel tensor y containing values (1 or -1). For our
purposes, we set y=1, so the loss is 1 - cos(t, t’):
The closer the cosine value to 1, the more the two
inputs are similar, and then the loss is closer to 0.
The optimization strategy is to minimize the cost
function, that is, obtaining a loss value near 0 for
all items in the training set.

The MULTI-criterion loss function is defined by
the general formula:

lossmulti = CEloss(t, t′)

+ g(CEloss(b, bhead),

CEloss(t′, thead))

+ g(CEloss(b, bdep),

CEloss(t′, tdep))

(2)

where t stands for the vector originally attested in
RelEmbs space and t′ corresponds to the output
vector generated by the network; b represents the
analogical base vector, bhead/dep represents the vec-
tors for the head and the dependent of the base (the
same applies for thead/dep). Finally, g(·) represents
the function used to compare the phrase-argument
similarity scores, which can be either the Mean
Squared Error (equation 3), the mean of the scores
difference (equation 4), or the hinge loss function
(equation 5).

MSE(x, x′) = (x− x′)2 (3)

AVG(x, x′) = mean(x− x′) (4)

HINGE(x, x′) = max(0, x− x′) (5)

For each loss function, the cost derivative for the
model’s parameters (weight matrices W1, bias vec-
tor b1) is computed, and the appropriate parameters
are updated through backpropagation.

7https://pytorch.org/docs/stable/generated/
torch.nn.CosineEmbeddingLoss.html
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C ANNE Test unseen preparation

We randomly selected 15 verbs, 15 nouns, and
15 adjectives attested in the RelEmbs vocabulary
and we picked out from the original list all pairs
in which one of these lemmas appeared. For in-
stance, given the verb study, we saved in a sepa-
rate file all pairs in which the verb occurs, such as
<studyV , aspectN , dobj> (“to study the aspect”)
→ <studyV , developmentN , dobj> (“to study the
development”).

D ANNE Training Setup

Given the possible combinations of input type
(CONCAT and DIFF) and losses functions (SIMPLE,
MULTIMSE, MULTIAVG, and MULTIHINGE), we
trained eight different versions of ANNE. All mod-
els were trained using 5-cross validation for 10
epochs with the Adam (Kingma and Ba, 2014) gra-
dient descent, using a batch size of 25. Hyper-
parameter values equal for all models. The training
was performed on a TITAN Xp GPU (12gb).

E Task1-Correlation of the component
similarities of the base and the
generated target

In order to visualize how these measures differ
among architectures, we plotted the similarity
scores using boxplots (Figure 4). Each subfigure
represents the similarities computed over embed-
dings generated from a specific model architecture.
The plot on the left refers to the RelEmb-head simi-
larities; the plot on the right illustrates the RelEmb-
dependent similarities. In each plot, we grouped
boxplots for the type of base (idiomatic or compo-
sitional) and the syntactic type of phrase (verbal
—VN —or nominal —NC). Finally, similarities are
computed for both the base embedding (blue) and
target embedding (orange).

F Task 2-Intersection of neighbors

We propose here a visual aid to investigate ANNE
behavior. Figure 5 groups a series of heatmaps.
In each heatmap, rows correspond to a specific
item from the dataset, while columns represent the
intersection between the neighbors of:

• The base and the generated target
(NNbase_NNtarg; NNbase_NNtargre
considers only RelEmbs)

• The generated target and the respective
head (NNtarg_NNhead) or dependent
(NNtarg_NNdep) —for these, we consider
only RelEmbs neighbors.

Numbers in the cells correspond to the number
of neighbors retrieved. We present the results of
analogical targets generated from a compositional
(on the left) or idiomatic (on the right) base sepa-
rately. Each subplot shows the results obtained for
a specific model architecture.
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(a) SIMPLE with CONCAT input.

(b) SIMPLE with DIFF input

(c) MULTIAVG with CONCAT input

(d) MULTIAVG with DIFF input
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(e) MULTIMSE with CONCAT input

(f) MULTIMSE with DIFF input

(g) HINGE with CONCAT input

(h) HINGE with DIFF input

Figure 4: Distribution of the similarities between the RelEmb and its head (left), between the RelEmb and its
argument (right). Data are grouped for syntactic type (nominal, NC, or verbal, VN) and if it is compositional
(compos) or idiomatic (idiom). Similarities are computed for both the base embedding (blue) and target embedding
(orange).
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NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_girl/N-dobj
break/V_finger/N-dobj

change/V_forename/N-dobj
clear/V_zone/N-dobj

cross/V_frontier/N-dobj
cross/V_highway/N-dobj

drop/V_sphere/N-dobj
hit/V_tee/N-dobj

hit/V_bike/N-dobj
kick/V_globe/N-dobj
lift/V_statue/N-dobj

lose/V_key/N-dobj
pay/V_euro/N-dobj
pull/V_rifle/N-dobj

push/V_meeting/N-dobj
speak/V_accent/N-dobj

spread/V_plague/N-dobj
steal/V_bike/N-dobj
strike/V_tee/N-dobj

take/V_dollar/N-dobj
turn/V_card/N-dobj

use/V_heuristic/N-dobj
call/N_outgoing/J-amod

circle/N_pedantic/J-amod
end/N_precipitous/J-amod

eye/N_serpent/N-compound
life/N_mundane/J-amod

mail/N_saturday/N-compound
man/N_youthful/J-amod

market/N_shrimp/N-compound
science/N_technology/N-compound

service/N_medical/N-compound
shark/N_atol/N-compound

soldier/N_association/N-compound

6 5 1 19
30 36 0 3
9 13 5 9

10 11 1 0
5 8 6 9
0 0 2 12

18 4 0 0
14 22 5 3
1 2 0 5
7 8 6 0

10 10 1 0
1 8 0 0

11 13 4 4
29 39 1 0
14 17 0 0
8 21 23 15

20 20 5 3
8 8 1 2

31 23 4 2
7 13 0 1

17 23 0 0
6 11 4 16

23 29 17 9
2 2 1 0
5 4 0 0

17 20 0 5
13 16 10 11
16 16 1 16
7 14 12 12
8 21 2 3

10 15 8 6
5 5 0 2
6 4 3 0
4 5 3 0

From compositional base

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_shot/N-dobj
break/V_chunk/N-dobj

change/V_intellect/N-dobj
clear/V_surname/N-dobj

cross/V_brain/N-dobj
cross/V_footpath/N-dobj

drop/V_row/N-dobj
hit/V_caption/N-dobj

hit/V_lane/N-dobj
kick/V_use/N-dobj
lift/V_soul/N-dobj

lose/V_flair/N-dobj
pay/V_method/N-dobj

pull/V_connector/N-dobj
push/V_switch/N-dobj

speak/V_intellect/N-dobj
spread/V_syllable/N-dobj

steal/V_news/N-dobj
strike/V_arpeggio/N-dobj

take/V_dive/N-dobj
turn/V_chair/N-dobj
use/V_skull/N-dobj
call/N_tight/J-amod

circle/N_interior/J-amod
end/N_breathless/J-amod

eye/N_recruit/N-compound
life/N_mundane/J-amod

mail/N_gastropod/N-compound
man/N_frontal/J-amod

market/N_cockroach/N-compound
science/N_projectile/N-compound

service/N_mouth/N-compound
shark/N_credit/N-compound
soldier/N_hand/N-compound

31 36 0 0
16 20 0 0
5 5 0 0

11 11 0 0
20 15 0 0
4 7 0 0
9 19 0 0

12 13 0 0
9 8 0 0

16 16 0 0
20 23 0 0
9 9 0 0
3 7 0 0
4 3 0 0
6 6 0 0

26 33 0 0
1 2 0 0
8 10 0 0
3 4 0 0
9 13 0 0

15 10 0 0
7 7 0 1

30 29 0 0
9 18 2 0
4 4 0 0

26 35 0 0
16 18 0 0
30 35 1 0
10 16 0 0
7 6 0 0

17 23 0 0
7 11 0 0

26 25 0 17
21 28 5 1

From idiomatic base
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simple_concat model

(a)

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_girl/N-dobj
break/V_finger/N-dobj

change/V_forename/N-dobj
clear/V_zone/N-dobj

cross/V_frontier/N-dobj
cross/V_highway/N-dobj

drop/V_sphere/N-dobj
hit/V_tee/N-dobj

hit/V_bike/N-dobj
kick/V_globe/N-dobj
lift/V_statue/N-dobj

lose/V_key/N-dobj
pay/V_euro/N-dobj
pull/V_rifle/N-dobj

push/V_meeting/N-dobj
speak/V_accent/N-dobj

spread/V_plague/N-dobj
steal/V_bike/N-dobj
strike/V_tee/N-dobj

take/V_dollar/N-dobj
turn/V_card/N-dobj

use/V_heuristic/N-dobj
call/N_outgoing/J-amod

circle/N_pedantic/J-amod
end/N_precipitous/J-amod

eye/N_serpent/N-compound
life/N_mundane/J-amod

mail/N_saturday/N-compound
man/N_youthful/J-amod

market/N_shrimp/N-compound
science/N_technology/N-compound

service/N_medical/N-compound
shark/N_atol/N-compound

soldier/N_association/N-compound

0 0 0 22
7 12 0 7
0 0 1 1
2 0 0 0
0 1 0 5
0 0 3 13
0 0 0 0
0 0 0 0
0 0 0 6
0 0 0 0
0 0 0 7
0 0 0 0
0 0 0 7

23 32 1 0
1 1 0 9
0 1 1 1
1 3 1 3
3 6 1 2
0 0 0 0
1 1 0 0
0 1 0 1
0 0 2 1
2 4 7 2
0 0 0 0
1 0 0 0
4 4 0 2
1 1 2 5
9 13 1 13
1 5 3 2
8 16 3 1
2 3 2 11
0 0 0 11
0 0 0 0
0 1 1 0

From compositional base

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_shot/N-dobj
break/V_chunk/N-dobj

change/V_intellect/N-dobj
clear/V_surname/N-dobj

cross/V_brain/N-dobj
cross/V_footpath/N-dobj

drop/V_row/N-dobj
hit/V_caption/N-dobj

hit/V_lane/N-dobj
kick/V_use/N-dobj
lift/V_soul/N-dobj

lose/V_flair/N-dobj
pay/V_method/N-dobj

pull/V_connector/N-dobj
push/V_switch/N-dobj

speak/V_intellect/N-dobj
spread/V_syllable/N-dobj

steal/V_news/N-dobj
strike/V_arpeggio/N-dobj

take/V_dive/N-dobj
turn/V_chair/N-dobj
use/V_skull/N-dobj
call/N_tight/J-amod

circle/N_interior/J-amod
end/N_breathless/J-amod

eye/N_recruit/N-compound
life/N_mundane/J-amod

mail/N_gastropod/N-compound
man/N_frontal/J-amod

market/N_cockroach/N-compound
science/N_projectile/N-compound

service/N_mouth/N-compound
shark/N_credit/N-compound
soldier/N_hand/N-compound

32 32 0 0
13 13 0 0
0 1 0 1

19 21 0 0
6 2 0 0
3 10 0 0
7 12 0 0
0 0 0 0
3 4 0 0

14 12 0 0
10 15 0 0
3 3 0 0
2 0 0 0
0 1 0 0
1 2 0 0

28 36 0 0
0 1 0 0
2 7 0 0
2 5 0 0
7 10 0 0
6 2 0 0
0 2 0 0

15 20 0 0
0 2 0 0
0 2 0 0
4 6 0 0
4 4 0 0

14 21 0 0
12 17 0 0
0 0 0 2

20 19 0 0
3 6 0 0

16 19 0 6
4 14 2 0

From idiomatic base
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(b)
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NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_girl/N-dobj
break/V_finger/N-dobj

change/V_forename/N-dobj
clear/V_zone/N-dobj

cross/V_frontier/N-dobj
cross/V_highway/N-dobj

drop/V_sphere/N-dobj
hit/V_tee/N-dobj

hit/V_bike/N-dobj
kick/V_globe/N-dobj
lift/V_statue/N-dobj

lose/V_key/N-dobj
pay/V_euro/N-dobj
pull/V_rifle/N-dobj

push/V_meeting/N-dobj
speak/V_accent/N-dobj

spread/V_plague/N-dobj
steal/V_bike/N-dobj
strike/V_tee/N-dobj

take/V_dollar/N-dobj
turn/V_card/N-dobj

use/V_heuristic/N-dobj
call/N_outgoing/J-amod

circle/N_pedantic/J-amod
end/N_precipitous/J-amod

eye/N_serpent/N-compound
life/N_mundane/J-amod

mail/N_saturday/N-compound
man/N_youthful/J-amod

market/N_shrimp/N-compound
science/N_technology/N-compound

service/N_medical/N-compound
shark/N_atol/N-compound

soldier/N_association/N-compound

0 3 0 21
18 14 0 18
4 6 4 15
3 1 1 3
3 4 4 14
0 0 3 18

11 6 0 0
10 22 4 5
0 1 0 13
3 6 4 0
3 8 1 0
1 2 0 4
5 10 7 13

17 26 3 8
4 6 0 6

10 16 27 25
18 17 9 9
5 8 2 4

31 25 2 5
6 13 0 10
7 9 0 1
9 9 4 29

22 24 16 17
0 1 0 7
6 6 2 18

17 17 0 5
10 9 10 20
4 7 1 26
8 16 20 13
7 14 1 24
3 12 7 18
7 3 0 13
3 2 2 0
0 1 1 0

From compositional base

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_shot/N-dobj
break/V_chunk/N-dobj

change/V_intellect/N-dobj
clear/V_surname/N-dobj

cross/V_brain/N-dobj
cross/V_footpath/N-dobj

drop/V_row/N-dobj
hit/V_caption/N-dobj

hit/V_lane/N-dobj
kick/V_use/N-dobj
lift/V_soul/N-dobj

lose/V_flair/N-dobj
pay/V_method/N-dobj

pull/V_connector/N-dobj
push/V_switch/N-dobj

speak/V_intellect/N-dobj
spread/V_syllable/N-dobj

steal/V_news/N-dobj
strike/V_arpeggio/N-dobj

take/V_dive/N-dobj
turn/V_chair/N-dobj
use/V_skull/N-dobj
call/N_tight/J-amod

circle/N_interior/J-amod
end/N_breathless/J-amod

eye/N_recruit/N-compound
life/N_mundane/J-amod

mail/N_gastropod/N-compound
man/N_frontal/J-amod

market/N_cockroach/N-compound
science/N_projectile/N-compound

service/N_mouth/N-compound
shark/N_credit/N-compound
soldier/N_hand/N-compound

8 18 0 2
5 8 0 0
0 1 0 0
2 3 0 4

16 12 0 1
0 2 0 0
0 0 0 0
1 3 0 1
3 2 0 3
9 1 0 1
0 5 0 4
2 1 0 0
0 0 0 0
0 0 0 0
6 4 0 8

12 17 0 3
0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 2
0 0 0 0
1 2 4 4
2 7 0 0
2 1 1 0
1 2 0 2
3 1 0 0
3 5 1 0
2 3 0 39
2 4 0 0
1 4 0 28
2 5 0 11
0 1 0 1

16 15 0 30
7 11 4 9

From idiomatic base
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(c)

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_girl/N-dobj
break/V_finger/N-dobj

change/V_forename/N-dobj
clear/V_zone/N-dobj

cross/V_frontier/N-dobj
cross/V_highway/N-dobj

drop/V_sphere/N-dobj
hit/V_tee/N-dobj

hit/V_bike/N-dobj
kick/V_globe/N-dobj
lift/V_statue/N-dobj

lose/V_key/N-dobj
pay/V_euro/N-dobj
pull/V_rifle/N-dobj

push/V_meeting/N-dobj
speak/V_accent/N-dobj

spread/V_plague/N-dobj
steal/V_bike/N-dobj
strike/V_tee/N-dobj

take/V_dollar/N-dobj
turn/V_card/N-dobj

use/V_heuristic/N-dobj
call/N_outgoing/J-amod

circle/N_pedantic/J-amod
end/N_precipitous/J-amod

eye/N_serpent/N-compound
life/N_mundane/J-amod

mail/N_saturday/N-compound
man/N_youthful/J-amod

market/N_shrimp/N-compound
science/N_technology/N-compound

service/N_medical/N-compound
shark/N_atol/N-compound

soldier/N_association/N-compound

0 0 0 35
7 9 1 14
0 0 1 1
1 0 0 0
0 1 1 13
0 0 3 16
0 0 0 0
0 0 0 0
0 0 0 10
0 0 0 1
0 0 0 31
0 0 0 0
0 0 0 27
6 20 2 18
0 0 0 28
0 2 4 10
1 3 2 13
0 4 1 13
3 0 0 0
0 2 0 19
0 1 0 8
3 5 6 20
5 4 3 9
0 0 0 12
0 0 0 32
4 2 0 3
8 4 7 12
2 3 0 23
3 7 5 5
1 5 0 26
2 2 2 23
0 0 0 28
0 0 0 0
0 0 0 0

From compositional base

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_shot/N-dobj
break/V_chunk/N-dobj

change/V_intellect/N-dobj
clear/V_surname/N-dobj

cross/V_brain/N-dobj
cross/V_footpath/N-dobj

drop/V_row/N-dobj
hit/V_caption/N-dobj

hit/V_lane/N-dobj
kick/V_use/N-dobj
lift/V_soul/N-dobj

lose/V_flair/N-dobj
pay/V_method/N-dobj

pull/V_connector/N-dobj
push/V_switch/N-dobj

speak/V_intellect/N-dobj
spread/V_syllable/N-dobj

steal/V_news/N-dobj
strike/V_arpeggio/N-dobj

take/V_dive/N-dobj
turn/V_chair/N-dobj
use/V_skull/N-dobj
call/N_tight/J-amod

circle/N_interior/J-amod
end/N_breathless/J-amod

eye/N_recruit/N-compound
life/N_mundane/J-amod

mail/N_gastropod/N-compound
man/N_frontal/J-amod

market/N_cockroach/N-compound
science/N_projectile/N-compound

service/N_mouth/N-compound
shark/N_credit/N-compound
soldier/N_hand/N-compound

8 14 0 2
5 6 0 0
0 0 1 12
2 3 0 0
5 4 0 2
0 1 0 0
0 1 0 0
0 0 0 2
0 0 0 0
3 0 0 2
1 5 0 2
0 0 0 2
0 0 0 6
0 0 0 0
0 0 0 1
3 13 0 3
0 0 0 0
0 0 0 0
0 0 0 0
0 2 0 5
1 0 0 3
0 0 1 14
0 0 0 0
0 0 0 10
0 1 0 5
0 0 0 0
0 0 4 7
0 0 0 38
0 1 0 1
0 0 0 30
2 7 0 6
0 0 0 1

11 13 0 30
0 0 1 9
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(d)

94



NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_girl/N-dobj
break/V_finger/N-dobj

change/V_forename/N-dobj
clear/V_zone/N-dobj

cross/V_frontier/N-dobj
cross/V_highway/N-dobj

drop/V_sphere/N-dobj
hit/V_tee/N-dobj

hit/V_bike/N-dobj
kick/V_globe/N-dobj
lift/V_statue/N-dobj

lose/V_key/N-dobj
pay/V_euro/N-dobj
pull/V_rifle/N-dobj

push/V_meeting/N-dobj
speak/V_accent/N-dobj

spread/V_plague/N-dobj
steal/V_bike/N-dobj
strike/V_tee/N-dobj

take/V_dollar/N-dobj
turn/V_card/N-dobj

use/V_heuristic/N-dobj
call/N_outgoing/J-amod

circle/N_pedantic/J-amod
end/N_precipitous/J-amod

eye/N_serpent/N-compound
life/N_mundane/J-amod

mail/N_saturday/N-compound
man/N_youthful/J-amod

market/N_shrimp/N-compound
science/N_technology/N-compound

service/N_medical/N-compound
shark/N_atol/N-compound

soldier/N_association/N-compound

6 7 1 16
21 31 0 3
1 2 2 1
4 1 1 0
2 2 1 7
1 0 5 4
7 1 0 0

13 16 5 1
1 2 0 4
7 7 4 0
9 13 1 0
1 2 0 0
8 11 5 3

31 36 1 0
11 17 0 0
4 15 17 11
2 6 2 0
6 6 1 2

29 23 3 1
4 5 0 0
5 4 0 0
7 14 7 9

20 25 14 7
2 0 0 0
7 9 1 0

14 12 0 3
11 14 7 15
12 13 1 16
6 13 17 11
9 21 3 1
8 15 8 6
1 2 0 2
2 2 2 0
4 5 3 0

From compositional base

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_shot/N-dobj
break/V_chunk/N-dobj

change/V_intellect/N-dobj
clear/V_surname/N-dobj

cross/V_brain/N-dobj
cross/V_footpath/N-dobj

drop/V_row/N-dobj
hit/V_caption/N-dobj

hit/V_lane/N-dobj
kick/V_use/N-dobj
lift/V_soul/N-dobj

lose/V_flair/N-dobj
pay/V_method/N-dobj

pull/V_connector/N-dobj
push/V_switch/N-dobj

speak/V_intellect/N-dobj
spread/V_syllable/N-dobj

steal/V_news/N-dobj
strike/V_arpeggio/N-dobj

take/V_dive/N-dobj
turn/V_chair/N-dobj
use/V_skull/N-dobj
call/N_tight/J-amod

circle/N_interior/J-amod
end/N_breathless/J-amod

eye/N_recruit/N-compound
life/N_mundane/J-amod

mail/N_gastropod/N-compound
man/N_frontal/J-amod

market/N_cockroach/N-compound
science/N_projectile/N-compound

service/N_mouth/N-compound
shark/N_credit/N-compound
soldier/N_hand/N-compound

27 35 0 0
10 12 0 0
3 4 0 0
6 8 0 0

19 13 0 0
3 5 0 0
7 8 0 0
8 11 0 0
5 4 0 0

10 3 0 0
10 15 0 0
7 10 0 0
4 4 0 0
1 3 0 0
4 7 0 0

25 33 0 0
0 0 0 0
4 2 0 0
1 3 0 0
3 8 0 0
7 6 0 0
3 2 1 0

21 26 0 0
6 7 1 0
1 2 0 0

21 17 0 0
10 10 0 0
29 31 2 0
24 27 0 0
4 3 0 0

11 15 0 0
6 12 0 0

30 31 0 13
13 23 5 0
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(e)

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_girl/N-dobj
break/V_finger/N-dobj

change/V_forename/N-dobj
clear/V_zone/N-dobj

cross/V_frontier/N-dobj
cross/V_highway/N-dobj

drop/V_sphere/N-dobj
hit/V_tee/N-dobj

hit/V_bike/N-dobj
kick/V_globe/N-dobj
lift/V_statue/N-dobj

lose/V_key/N-dobj
pay/V_euro/N-dobj
pull/V_rifle/N-dobj

push/V_meeting/N-dobj
speak/V_accent/N-dobj

spread/V_plague/N-dobj
steal/V_bike/N-dobj
strike/V_tee/N-dobj

take/V_dollar/N-dobj
turn/V_card/N-dobj

use/V_heuristic/N-dobj
call/N_outgoing/J-amod

circle/N_pedantic/J-amod
end/N_precipitous/J-amod

eye/N_serpent/N-compound
life/N_mundane/J-amod

mail/N_saturday/N-compound
man/N_youthful/J-amod

market/N_shrimp/N-compound
science/N_technology/N-compound

service/N_medical/N-compound
shark/N_atol/N-compound

soldier/N_association/N-compound

0 0 0 18
10 20 0 2
0 0 0 0
3 0 0 0
0 1 0 6
0 0 4 7
0 0 0 0
0 0 0 1
0 0 0 5
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 12

16 31 1 0
0 1 0 0
0 1 2 0
0 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0
1 1 0 0
0 0 4 0
0 0 0 0
0 0 0 0
0 0 0 0
7 1 0 0
0 0 0 0
2 3 0 8
0 0 0 0
6 14 0 0
4 8 3 8
0 0 0 4
0 0 0 0
0 0 0 0

From compositional base

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_shot/N-dobj
break/V_chunk/N-dobj

change/V_intellect/N-dobj
clear/V_surname/N-dobj

cross/V_brain/N-dobj
cross/V_footpath/N-dobj

drop/V_row/N-dobj
hit/V_caption/N-dobj

hit/V_lane/N-dobj
kick/V_use/N-dobj
lift/V_soul/N-dobj

lose/V_flair/N-dobj
pay/V_method/N-dobj

pull/V_connector/N-dobj
push/V_switch/N-dobj

speak/V_intellect/N-dobj
spread/V_syllable/N-dobj

steal/V_news/N-dobj
strike/V_arpeggio/N-dobj

take/V_dive/N-dobj
turn/V_chair/N-dobj
use/V_skull/N-dobj
call/N_tight/J-amod

circle/N_interior/J-amod
end/N_breathless/J-amod

eye/N_recruit/N-compound
life/N_mundane/J-amod

mail/N_gastropod/N-compound
man/N_frontal/J-amod

market/N_cockroach/N-compound
science/N_projectile/N-compound

service/N_mouth/N-compound
shark/N_credit/N-compound
soldier/N_hand/N-compound

21 27 0 0
8 7 0 0
0 0 0 0
4 6 0 0
8 6 0 0
0 0 0 0
3 7 0 0
2 4 0 0
2 4 0 0
6 2 0 0

10 17 0 0
0 0 0 0
0 1 0 0
1 1 0 0
2 3 0 0

22 30 0 0
0 0 0 0
3 6 0 0
1 1 0 0
4 8 0 1
3 2 0 0
0 1 2 0

10 17 0 0
4 9 1 0
0 1 0 1
0 0 0 0
4 6 1 0
3 5 0 0
3 6 0 0
0 0 0 0
5 10 0 0
0 2 0 0

16 22 0 5
1 0 0 1
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NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_girl/N-dobj
break/V_finger/N-dobj

change/V_forename/N-dobj
clear/V_zone/N-dobj

cross/V_frontier/N-dobj
cross/V_highway/N-dobj

drop/V_sphere/N-dobj
hit/V_tee/N-dobj

hit/V_bike/N-dobj
kick/V_globe/N-dobj
lift/V_statue/N-dobj

lose/V_key/N-dobj
pay/V_euro/N-dobj
pull/V_rifle/N-dobj

push/V_meeting/N-dobj
speak/V_accent/N-dobj

spread/V_plague/N-dobj
steal/V_bike/N-dobj
strike/V_tee/N-dobj

take/V_dollar/N-dobj
turn/V_card/N-dobj

use/V_heuristic/N-dobj
call/N_outgoing/J-amod

circle/N_pedantic/J-amod
end/N_precipitous/J-amod

eye/N_serpent/N-compound
life/N_mundane/J-amod

mail/N_saturday/N-compound
man/N_youthful/J-amod

market/N_shrimp/N-compound
science/N_technology/N-compound

service/N_medical/N-compound
shark/N_atol/N-compound

soldier/N_association/N-compound

2 4 0 13
6 15 0 2

10 12 4 1
6 2 1 0
0 2 1 5
0 0 6 8
8 3 0 0

11 17 2 1
1 2 0 2
1 8 3 0
9 12 1 0
7 15 0 0
6 9 3 2

25 34 1 0
12 14 0 0
12 16 13 6
1 6 2 0
7 9 1 1

26 20 2 1
3 6 0 0

12 21 0 0
6 8 4 1

15 17 7 4
0 0 0 0
4 2 0 0

10 4 0 0
8 12 2 5

15 16 1 5
3 8 10 5
8 11 1 0
7 13 7 4
2 2 0 0

15 5 4 0
2 6 4 0

From compositional base

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_shot/N-dobj
break/V_chunk/N-dobj

change/V_intellect/N-dobj
clear/V_surname/N-dobj

cross/V_brain/N-dobj
cross/V_footpath/N-dobj

drop/V_row/N-dobj
hit/V_caption/N-dobj

hit/V_lane/N-dobj
kick/V_use/N-dobj
lift/V_soul/N-dobj

lose/V_flair/N-dobj
pay/V_method/N-dobj

pull/V_connector/N-dobj
push/V_switch/N-dobj

speak/V_intellect/N-dobj
spread/V_syllable/N-dobj

steal/V_news/N-dobj
strike/V_arpeggio/N-dobj

take/V_dive/N-dobj
turn/V_chair/N-dobj
use/V_skull/N-dobj
call/N_tight/J-amod

circle/N_interior/J-amod
end/N_breathless/J-amod

eye/N_recruit/N-compound
life/N_mundane/J-amod

mail/N_gastropod/N-compound
man/N_frontal/J-amod

market/N_cockroach/N-compound
science/N_projectile/N-compound

service/N_mouth/N-compound
shark/N_credit/N-compound
soldier/N_hand/N-compound

24 30 0 0
15 20 0 0
4 5 0 0
7 9 0 0

11 9 0 0
4 5 0 0

14 17 0 0
12 16 0 0
8 12 0 0
5 6 0 0

22 25 0 0
9 9 0 0

10 10 0 0
4 3 0 0
8 12 0 0

35 39 0 0
1 6 0 0
8 8 0 0
2 5 0 0
7 11 0 0

15 17 0 0
1 3 0 0

33 30 0 0
9 14 1 0
3 4 0 0

22 28 0 0
12 16 0 0
16 22 1 0
11 17 0 0
4 1 0 0

16 21 0 0
8 9 0 0

31 31 0 10
15 29 4 0
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(g)

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_girl/N-dobj
break/V_finger/N-dobj

change/V_forename/N-dobj
clear/V_zone/N-dobj

cross/V_frontier/N-dobj
cross/V_highway/N-dobj

drop/V_sphere/N-dobj
hit/V_tee/N-dobj

hit/V_bike/N-dobj
kick/V_globe/N-dobj
lift/V_statue/N-dobj

lose/V_key/N-dobj
pay/V_euro/N-dobj
pull/V_rifle/N-dobj

push/V_meeting/N-dobj
speak/V_accent/N-dobj

spread/V_plague/N-dobj
steal/V_bike/N-dobj
strike/V_tee/N-dobj

take/V_dollar/N-dobj
turn/V_card/N-dobj

use/V_heuristic/N-dobj
call/N_outgoing/J-amod

circle/N_pedantic/J-amod
end/N_precipitous/J-amod

eye/N_serpent/N-compound
life/N_mundane/J-amod

mail/N_saturday/N-compound
man/N_youthful/J-amod

market/N_shrimp/N-compound
science/N_technology/N-compound

service/N_medical/N-compound
shark/N_atol/N-compound

soldier/N_association/N-compound

0 0 0 18
4 18 0 0
0 0 0 0
4 1 1 0
0 1 0 6
0 0 6 4
0 0 0 0
0 0 0 0
0 0 0 4
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

14 24 1 0
0 0 0 0
0 2 1 0
0 2 0 0
0 2 1 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
2 0 0 0
0 0 1 0
8 9 0 0
0 0 0 0
7 13 2 0
2 2 1 10
0 0 0 4
0 0 0 0
0 2 2 0

From compositional base

NNbase_NNtarg

NNbase_NNtarg_re

NNtarg_NNhead

NNtarg_NNdep

bite/V_shot/N-dobj
break/V_chunk/N-dobj

change/V_intellect/N-dobj
clear/V_surname/N-dobj

cross/V_brain/N-dobj
cross/V_footpath/N-dobj

drop/V_row/N-dobj
hit/V_caption/N-dobj

hit/V_lane/N-dobj
kick/V_use/N-dobj
lift/V_soul/N-dobj

lose/V_flair/N-dobj
pay/V_method/N-dobj

pull/V_connector/N-dobj
push/V_switch/N-dobj

speak/V_intellect/N-dobj
spread/V_syllable/N-dobj

steal/V_news/N-dobj
strike/V_arpeggio/N-dobj

take/V_dive/N-dobj
turn/V_chair/N-dobj
use/V_skull/N-dobj
call/N_tight/J-amod

circle/N_interior/J-amod
end/N_breathless/J-amod

eye/N_recruit/N-compound
life/N_mundane/J-amod

mail/N_gastropod/N-compound
man/N_frontal/J-amod

market/N_cockroach/N-compound
science/N_projectile/N-compound

service/N_mouth/N-compound
shark/N_credit/N-compound
soldier/N_hand/N-compound

30 32 0 0
13 13 0 0
2 4 0 0

16 17 0 0
7 9 0 0
4 9 0 0
5 9 0 0
6 5 0 0
3 9 0 0
5 3 0 0

17 22 0 0
3 3 0 0
0 0 0 0
1 2 0 0
1 1 0 0

30 35 0 0
0 0 0 0
1 6 0 0
0 2 0 0
3 4 0 0
8 5 0 0
1 3 0 0

19 27 0 0
11 14 1 0
0 0 0 0
3 5 0 0
6 8 0 0
1 2 0 0
6 8 0 0
0 0 0 0

17 17 0 0
1 2 0 0

21 20 0 1
3 6 1 0
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Figure 5: Heatmaps showing the intersection of common neighbors. Plot on the left refers to the target computed
from a compositional base, plot on the right shows results for vectors generated from idiomatic base.

96



Author Index

Almeman, Fatemah, 42

Beinborn, Lisa, 1
Blache, Philippe, 78
Boleda Torrent, Gemma, 31

Chersoni, Emmanuele, 49, 78

Domínguez Orfila, Mar, 31

Espinosa Anke, Luis, 42

Gonzalez-Dios, Itziar, 1

Hollenstein, Nora, 1
Hsu, Yu-Yin, 16

Jäger, Lena, 1

Kallmeyer, Laura, 58
Kong, Deran, 16

Lenci, Alessandro, 78
Lendvai, Piroska, 37
LIU, Chenxin, 49
Long, Chen, 58

Melero Nogués, Maite, 31
Momenian, Mohammad, 25

Osswald, Rainer, 58

Rambelli, Giulia, 78

Wick, Claudia, 37
Winiwarter, Werner, 68
Wloka, Bartholomäus, 68

97


	Program
	Patterns of Text Readability in Human and Predicted Eye Movements
	(In)Alienable Possession in Mandarin Relative Clauses
	Do Age of Acquisition and Orthographic Transparency Have the Same Effects in Different Modalities?
	CAT ManyNames: A New Dataset for Object Naming in Catalan
	Finetuning Latin BERT for Word Sense Disambiguation on the Thesaurus Linguae Latinae
	Putting WordNet's Dictionary Examples in the Context of Definition Modelling: An Empirical Analysis
	Exploring Nominal Coercion in Semantic Spaces with Static and Contextualized Word Embeddings
	A Frame-Based Model of Inherent Polysemy, Copredication and Argument Coercion
	VISCOSE - a Kanji Dictionary Enriched with VISual, COmpositional, and SEmantic Information
	Compositionality as an Analogical Process: Introducing ANNE

