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Message from the Program Co-Chairs

This shared task, the second of two so far, represents the collaborative efforts of a diverse team of
researchers, across countries, institutional types, research areas, and career stages. The idea for this
series of share tasks emerged through a Discourse Analysis breakout session at SIGDIAL 2020. The
goal was to foster a more active partnership between the discourse and dialogue communities and to
offer, not just a competition, but an opportunity to identify the next great challenges for the area of
coreference.

Since that initial discussion at the Spring 2020 conference, the core organizing team has met almost
weekly to build a vision for this shared task as the initial event out of what is hoped to become a series of
such events, and situated in partnership with other related efforts, such as the Universal Anaphora effort.
In the past year, in order to support an expansion of the initial annotation effort, the team has added an
additional member, Lori Levin from the Language Technologies Institute at Carnegie Mellon University.

The team is excited to host this shared task, this year co-located with COLING 2022. Each of the
organizing team’s members are also grateful to their respective institutions for providing the kind of
environment that facilitates such international collaborations. The team is grateful for funding committed
by the Heidelberg Institute for Theoretical Studies, the Dali Project at Queen Mary University and the
Language Technologies Institute at Carnegie Mellon University (all of which supported annotation for
this series of shared task events) as well as resources provided by Intel (especially in connection with the
CODALAB infrastructure). The annotation team managed jointly for this shared task by Queen Mary
University and Carnegie Mellon University worked tirelessly to produce the annotated data, without
which this shared task would not be a shared task at all! The team is also grateful for the synergistic
efforts of the broader ACL community, for providing an environment in which the vision for this shared
task could be realized and situated within this vibrant COLING milieu.
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Abstract

The CODI-CRAC 2022 Shared Task on
Anaphora Resolution in Dialogues is the sec-
ond edition of an initiative focused on detecting
different types of anaphoric relations in conver-
sations of different kinds. Using five conversa-
tional datasets, four of which have been newly
annotated with a wide range of anaphoric re-
lations: identity, bridging references and dis-
course deixis, we defined multiple tasks focus-
ing individually on these key relations. The
second edition of the shared task maintained
the focus on these relations and used the same
datasets as in 2021, but new test data were anno-
tated, the 2021 data were checked, and new sub-
tasks were added. In this paper, we discuss the
annotation schemes, the datasets, the evaluation
scripts used to assess the system performance
on these tasks, and provide a brief summary
of the participating systems and the results ob-
tained across 230 runs from three teams, with
most submissions achieving significantly better
results than our baseline methods.

1 Introduction

The performance of models for single-antecedent
anaphora resolution on the aspects of anaphoric in-
terpretation annotated in the standard ONTONOTES

dataset (Pradhan et al., 2012) has greatly improved
in recent years (Wiseman et al., 2015; Lee et al.,
2017, 2018; Kantor and Globerson, 2019; Joshi
et al., 2020). So the attention of the community has
started to turn to more complex cases of anaphora
not found or not properly tested in ONTONOTES,
and on genres other than news.

Well-known examples of this trend are work on
the cases of anaphora whose interpretation requires
some form of commonsense knowledge tested by
benchmarks for the Winograd Schema Challenge
(Rahman and Ng, 2012; Liu et al., 2017; Sakaguchi
et al., 2020), or the pronominal anaphors that can-
not be resolved purely using gender, for which

∗Work was done prior to joining AWS AI Labs.

benchmarks such as GAP have been developed
(Webster et al., 2018). GAP, however, still focused
on identity coreference. In addition, more research
has been carried out on aspects of anaphoric in-
terpretation that go beyond identity anaphora but
are covered by datasets such as ARRAU (Poesio
et al., 2018; Uryupina et al., 2020). These include,
e.g., bridging reference (Clark, 1977; Hou et al.,
2018; Hou, 2020; Yu and Poesio, 2020; Kobayashi
and Ng, 2021), discourse deixis (Webber, 1991;
Marasović et al., 2017; Kolhatkar et al., 2018) or
split-antecedent anaphora (Eschenbach et al., 1989;
Vala et al., 2016; Zhou and Choi, 2018; Yu et al.,
2020b, 2021).

There has also been interest in other genres apart
from news. This includes substantial research on
annotating and resolving coreference in biomed-
ical and other scientific domains (Cohen et al.,
2017; Lu and Poesio, 2021) as well as in liter-
ary documents (Bamman et al., 2020). There are,
however, language genres still understudied in the
literature on anaphoric reference. Arguably the
most important among these is conversational lan-
guage in dialogue. Anaphora resolution in dialogue
requires systems to handle grammatically incor-
rect language suffering from disfluencies and men-
tions jointly created across utterances (Poesio and
Rieser, 2010) or whose function is to establish com-
mon ground rather than refer (Clark and Brennan,
1990; Heeman and Hirst, 1995). Dialogue involves
much more deictic reference, vaguer anaphoric and
discourse deictic reference, speaker grounding of
pronouns and long-distance conversation structure.
These are complexities that are normally absent
from news or Wikipedia articles, which constitute
the bulk of current datasets for coreference reso-
lution (Poesio et al., 2016). There has been some
research on coreference in dialogue (Byron, 2002;
Eckert and Strube, 2001; Müller, 2008), but very
limited in scope (primarily related to pronominal
interpretation), due to the lack of suitable corpora.
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The one language for which substantial corpora of
coreference in dialogue exist is French: the AN-
COR corpus (Muzerelle et al., 2014) has enabled
the development of an end-to-end neural model for
coreference interpretation in dialogue by Grobol
(2020). For English, the one resource we are aware
of fully annotated for anaphoric reference is the
TRAINS corpora included in the ARRAU corpus
(Uryupina et al., 2020).

The CODI-CRAC 2021 Shared Task in Anaphora
Resolution in Dialogue (Khosla et al., 2021) was
organized to address this need for datasets about
anaphoric reference in dialogue by providing par-
ticipants with the opportunity to develop automated
approaches for anaphora resolution that tackle less
studied forms of anaphora as well as coreference,
and generalize to different types of conversational
setups. A number of groups participated to this
first edition, but we organizers also realised that
the community could benefit from a second edition
using more data and more cleaned-up, adding more
tasks, and improving the evaluation. As a result,
we organized this year’s second edition. 1 Like
the first edition, CODI-CRAC 2022 involved three
tasks that individually tackle a particular anaphoric
relation: identity, bridging, and discourse deixis,
in four conversational datasets from different do-
mains newly annotated with the above-mentioned
relations. Unlike the first edition, participants also
had training data in those four domains, in addition
to development and test sets. To accommodate for
systems that use gold/predicted mentions for bridg-
ing and discourse deixis tasks, we set up separate
leaderboards for the two settings.

In this paper wepresent an overview of the CODI-
CRAC 2022 shared task. We begin by providing
some background in Section 2 and introducing the
new CODI-CRAC 2022 corpus in Section 3. We
then provide an extensive overview of the different
CODI-CRAC 2022 tasks, markable settings, and
evaluation metrics in Section 4, and submission
details in Section 5. This is followed by details
of the baselines in Section 6 and participating sys-
tems in Section 7. We present a discussion of the
performance of the systems on different tasks and
sub-corpora in Section 8, and finally conclude this
paper in Section 9.

1https://codalab.lisn.upsaclay.fr/
competitions/614

2 Background

2.1 Beyond Identity Coreference

Most modern anaphoric annotation projects cover
basic identity anaphora as in (1).

(1) [Mary]i bought [a new dress]j but [it]j
didn’t fit [her]i.

However, many other types of identity anaphora
exist, as well as other types of anaphoric relations
that are not annotated in ONTONOTES but are anno-
tated in other corpora. The CODI-CRAC 2021 and
2022 Shared Tasks covered the range of anaphoric
relations included in the first Universal Anaphora
survey of phenomena to be covered (see below)

Split-antecedent anaphora Split-antecedent
anaphors (Eschenbach et al., 1989; Kamp and
Reyle, 1993) are cases of plural identity reference
to sets composed of two or more entities introduced
by separate noun phrases, as in (2).

(2) [John]1 met [Mary]2. [He]1 greeted [her]2.
[They]1,2 went to the movies.

Such references are annotated in, e.g., ARRAU

(Uryupina et al., 2020), GUM (Zeldes, 2017) and
Phrase Detectives (Poesio et al., 2019).

Discourse deixis In ONTONOTES, event
anaphora, a subtype of discourse deixis (Webber,
1991; Kolhatkar et al., 2018) is marked, as in (3)
(where [that] arguably refers to the event of a
white rabbit with pink ears running past Alice)
but not the whole range of abstract anaphora,
illustrated by, e.g., [this] in the same example,
which refers to the fact that the Rabbit was able to
talk. (Both examples from the Phrase Detectives
corpus (Poesio et al., 2019).)

(3) So she was considering in her own mind (as
well as she could, for the hot day made her
feel very sleepy and stupid), whether the
pleasure of making a daisy-chain would be
worth the trouble of getting up and picking
the daisies, when suddenly a White Rab-
bit with pink eyes ran close by her. There
was nothing so VERY remarkable in [that];
nor did Alice think it so VERY much out
of the way to hear the Rabbit say to itself,
’Oh dear! Oh dear! I shall be late!’ (when
she thought it over afterwards, it occurred
to her that she ought to have wondered at
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this, but at the time it all seemed quite nat-
ural); but when the Rabbit actually TOOK
A WATCH OUT OF ITS WAISTCOAT-
POCKET, and looked at it, and then hurried
on, Alice started to her feet, for it flashed
across her mind that she had never before
seen a rabbit with either a waistcoat-pocket,
or a watch to take out of it, and burning
with curiosity, she ran across the field after
it, and fortunately was just in time to see
it pop down a large rabbit-hole under the
hedge.

Bridging references There are other forms of
anaphoric reference besides identity, and there are
now a number of corpora annotating (a subset of)
these forms. Possibly the most studied of non-
identity anaphora is bridging reference or asso-
ciative anaphora (Clark, 1977; Hawkins, 1978;
Prince, 1981) as in (4), where bridging reference
/ associative anaphora the roof refers to an object
which is related to / associated with, but not identi-
cal to, the hall.

(4) There was not a moment to be lost: away
went Alice like the wind, and was just in
time to hear it say, as it turned a corner,
’Oh my ears and whiskers, how late it’s
getting!’ She was close behind it when she
turned the corner, but the Rabbit was no
longer to be seen: she found herself in [a
long, low hall, which was lit up by a row
of lamps hanging from [the roof]].

2.2 Universal Anaphora

The more general types of anaphoric reference
just discussed are now routinely annotated in a
number of corpora, including ANCORA (Recasens
and Martí, 2010), ARRAU (Uryupina et al., 2020),
GNOME (Poesio, 2004), GUM (Zeldes, 2017), IS-
NOTES (Markert et al., 2012), the Prague Depen-
dency Treebank (Nedoluzhko, 2013), and TÜBA-
DZ (Versley, 2008). (See Poesio et al. (2016) for a
more detailed survey and Nedoluzhko et al. (2021)
for a more recent, extensive update.)

Some of these resources are of a sufficient size
to support shared tasks. In particular, the ARRAU

corpus was used as the dataset for the Shared Task
on Anaphora Resolution with ARRAU in the CRAC

2018 Workshop (Poesio et al., 2018).
In order to enable further progress in the empir-

ical study of anaphora by coordinating the many

existing efforts to annotate not just identity coref-
erence, but all aspects of anaphoric interpretation
from identity of sense anaphora to bridging to dis-
course deixis; and not just for English, but all lan-
guages, the Universal Anaphora (UA) initiative
was launched in 2020.2 Progress so far includes a
first proposal concerning the range of phenomena
to be covered, as well as a survey of the range of
existing anaphoric annotations and a proposal for
a markup format extending the CONLL-U format
developed by the Universal Dependencies initia-
tive3 with mechanisms for marking up the range of
anaphoric information covered by UA. Crucially,
a scorer able to evaluate all types of anaphoric
reference in the scope of the proposal was also de-
veloped, which was used in CODI-CRAC 2021 and
for this shared task (Yu et al., 2022).

2.3 Datasets of Anaphora in Dialogue

A limitation of most resources annotated for
anaphora is that they mostly focus on expository
text. The one substantial dataset of anaphoric rela-
tions in dialogue is ANCOR for French (Muzerelle
et al., 2014), in which identity and bridging
anaphora are annotated. Among the small num-
ber of English corpora that cover dialogue include
ONTONOTES (Pradhan et al., 2012), which con-
tains a small number of conversations annotated for
identity anaphora and a small subtype of discourse
deixis (as discussed earlier). ARRAU’s (Poesio and
Artstein, 2008; Uryupina et al., 2020) TRAINS
sub-corpus consists of task-oriented dialogues for
identity, bridging, and discourse deixis. We in-
clude TRAINS in CODI-CRAC 2022 training data.
The more recently released ONTOGUM (Zhu et al.,
2021) builds upon the ONTONOTES schema and
adds several new genres (including more spoken
data) to the ONTONOTES family. Both identity
anaphora and bridging are annotated in the dataset.

3 The CODI-CRAC 2022 Corpus

One of the objectives of the CODI-CRAC shared
tasks was to annotate new data for studying
anaphora in dialogue. The only existing dataset
covering the full range of phenomena and with
some coverage of dialogue, the ARRAU data used
for the CRAC 2018 Shared Task, was made avail-
able as training material. In addition, new data

2https://universalanaphora.github.io/
UniversalAnaphora/

3https://universaldependencies.org/
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from dialogue corpora were annotated for develop-
ment and testing using the same annotation scheme
used in ARRAU.

3.1 ARRAU: Corpus and Annotation Scheme

Genres The ARRAU corpus4 (Poesio and Art-
stein, 2008; Uryupina et al., 2020) was designed
to cover a variety of genres. It includes a substan-
tial amount of news text in a sub-corpus called
RST, consisting of the Penn Treebank (Marcus
et al., 1993). The TRAINS domain of task-oriented
dialogues includes a complete annotation of the
TRAINS-93 corpus5 and the pilot dialogues in the
so-called TRAINS-91 corpus. In addition, ARRAU

includes a complete annotation of the spoken nar-
ratives in the Pear Stories (Chafe, 1980), and doc-
uments in the medical and art history genres from
the GNOME corpus (Poesio, 2004).

Annotation scheme Following the CRAC 2018
shared task, a revised version of the annotation
guidelines was produced, as part of the work on the
ARRAU 3 release of the corpus. The new annotation
guidelines were completed after CODI-CRAC 2021
and made available on the corpus page.6 The new
guidelines were used in CODI-CRAC 2022 to check
the annotation of the documents already annotated
for CODI-CRAC 2021 and to annotate new data.
For more information on the scheme, please consult
the manual or, for a quick summary, (Khosla et al.,
2021).

3.2 New Data

The annotated corpus created for CODI-CRAC

2022 consists of conversations from the same
well-known conversational datasets already used
in CODI-CRAC 2021: the AMI corpus (Carletta,
2006), the LIGHT corpus (Urbanek et al., 2019),
the PERSUASION corpus (Wang et al., 2019) and
SWITCHBOARD (Godfrey et al., 1992). For each
of these datasets, documents for about 15K tokens
were annotated in 2021 for development according
to the ARRAU annotation scheme, and about the
same number of tokens were annotated for testing.
For this year’s shared task, the development data
from 2021 were used as training data; the test data

4http://www.arrauproject.org
5http://www.ldc.upenn.edu/Catalog/

catalogEntry.jsp?catalogId=LDC95S25
6https://github.com/arrauproject/data/

blob/main/ARRAU_3_Annotation_Manual_1.0.
pdf

from 2021 were used as development data; and new
test data were annotated.

Switchboard SWITCHBOARD7 (Godfrey et al.,
1992) is one of the best known dialogue corpora.
It consists of 1,155 five-minute spontaneous tele-
phone conversations between two participants not
previously acquainted with each other. In these con-
versations, callers question receivers on provided
topics, such as child care, recycling, and news me-
dia. 440 speakers participate in these 1,155 con-
versations, producing 221,616 utterances. It was
annotated for dialogue acts by Stolcke et al. (1997)8

and for information status by Nissim et al. (2004).

AMI The AMI corpus9 (Carletta, 2006) is a col-
lection of 100 hours of meeting recordings between
several participants. The recordings include signals
from close-talking and far-field microphones, indi-
vidual and room-view video cameras, and output
from a slide projector and an electronic whiteboard.
Several types of annotation were carried out, in-
cluding dialogue acts, topics, summaries, named
entities, and focus of attention.

Light Amazon, Facebook, Google, and other AI

companies have all created dialogue corpora in
recent years to support their research on conversa-
tional agents. LIGHT (Urbanek et al., 2019) is one
of the many recently created corpora available on
the Parl.ai platform.10 LIGHT is a large-scale
fantasy text adventure game research platform for
training agents that can both talk and act, inter-
acting either with other models or with humans.
The LIGHT corpus was entirely created through
crowdsourcing at different levels. In the first round,
workers created a number of settings (the King’s
palace, the dark forest, etc); then in a second round
workers created fitting characters for each scenario,
providing information about their background his-
tory, their personality, etc. Finally, in a third round,
workers created dialogues between these charac-
ters.

7https://catalog.ldc.upenn.edu/
LDC97S62

8This version is available from https://convokit.
cornell.edu/documentation/switchboard.
html

9https://groups.inf.ed.ac.uk/ami/
corpus/

10https://parl.ai/projects/light/
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Persuasion The Persuasion for Good corpus11

(Wang et al., 2019) is a collection of online con-
versations generated by Amazon Mechanical Turk
workers, where one participant (the persuader) tries
to convince the other (the persuadee) to donate to
a charity. 1017 conversations were collected in to-
tal, along with demographic data and responses to
psychological surveys from users. Several speaker-
level annotations were marked, including, e.g., de-
mographics, the big five personality traits, etc.

3.3 Annotation
The dataset was annotated using the same MMAX2
tool (Müller and Strube, 2006) – indeed, almost
exactly the same MMAX style – used to annotate
and check ARRAU Release 2 and Release 3. But
this time, the annotation work was divided between
the DALI team at Queen Mary University (Maris
Camilleri and Paloma Carretero Garcia, who have
been annotating ARRAU 3), and a team at CMU

coordinated by Lori Levin (Taiqi He and Katherine
Zhang). This division of labor made it possible
to (i) ensure that every new document would be
annotated by at least two annotators, (ii) re-check
the documents already annotated in 2021, and (iii)
test the reliability of the scheme.

3.4 The Corpus
Some basic statistics about the CODI-CRAC 2022
dataset are provided in Table 1. For each dataset,
the Table reports number of documents, size in to-
kens, number of markables, and how many of these
are Discourse Old (Identity Coreference) anaphors
(DO), bridging references, and discourse deixis.
With a total of 214,625 tokens and 60,993, the
CODI-CRAC 2022 dataset is to our knowledge the
largest dataset annotated for anaphoric interpreta-
tion in dialogue. It is also one of the largest datasets
annotated for bridging references.

After annotation, the documents were converted
into the CONLL-UA ‘Extended’ format used by the
scorer, described by a document on the Universal
Anaphora site.12

AMI, LIGHT and PERSUASION are freely avail-
able from the Shared Task Codalab site. ARRAU

and SWITCHBOARD are distributed by LDC.13

11https://convokit.cornell.edu/
documentation/persuasionforgood.html

12https://github.com/UniversalAnaphora/
UniversalAnaphora/blob/main/documents/
UA_CONLL_U_Plus_proposal_v1.0.md

13ARRAU is also freely available to any group that pur-
chased the Penn Treebank and TRAINS-93 corpora from LDC.

4 Task Description

Following the structure of the last year’s Shared
Task, CODI-CRAC 2022 covers three key aspects of
anaphoric interpretation: identity anaphora, bridg-
ing anaphora, and discourse deixis. Participants or
groups could participate in one or more tasks.

4.1 Markable Settings

To address the challenge of the bridging reference
resolution and discourse deixis tasks, in addition
to the predicted (Pred) and gold mention (Gold M)
settings from last year, a gold anaphors (Gold A)
setting is added to those tasks. In total, the Bridging
(Task2) and Discourse Deixis (Task 3) tasks have
three settings: Pred: the system is responsible for
predicting their mentions; Gold M: with the gold
mentions provided and Gold A: both gold anaphors
and gold mentions were provided. The three set-
tings were run in the order of Pred, Gold M and
Gold A – the later settings became available after
the runs under the previous settings had been sub-
mitted. The three settings were scored separately
and independently.

4.2 Evaluation Settings

Same as last year, the Universal Anaphora (UA)
scorer (Yu et al., 2022; Paun et al., 2022) was used
to evaluate the systems. The same settings for last
year’s shared task were used, more specifically, the
settings for the individual tasks are as follows:14

Task 1 For Task 1, we use the default settings of
the scorer where the identity relations (including
split-antecedents) and singletons were evaluated.
Non-referring expressions were excluded from the
evaluation.

python ua-scorer.py key system

Task 2 For Task 2, the scorer was called using
the following command:

python ua-scorer.py key system \
keep_bridging

Task 3 Finally, for Task 3, the scorer was called
using the following command.

python ua-scorer.py key system \
evaluate_discourse_deixis

14For a full description of the task(s), see https:
//github.com/juntaoy/codi-crac2022_
scripts/blob/main/2022_CODI_CRAC_
Introduction.md
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Docs Tokens Markables DO Bridging Disc. Deix

train 20 11495 3907 2132 381 72
LIGHT dev 21 11824 3941 2181 424 84

test 38 22017 7330 3770 812 128

train 7 33741 8918 4579 853 230
AMI dev 3 18260 4870 2350 638 118

test 3 16562 3990 2007 432 118

train 21 9185 2743 1242 248 95
PERSUASION dev 27 12198 3697 1715 316 133

test 33 14719 4233 2111 304 105

train 11 14992 4024 1679 589 128
SWITCHBOARD dev 22 35027 9392 3991 1165 265

test 12 14605 3888 1606 464 107

Total 218 214625 60933 29363 6626 1583

Table 1: Statistics about the CODI-CRAC 2022 corpus (new datasets only)

5 Submission Details

The shared task was hosted on a single CodaLab
page, including evaluations and datasets distribu-
tion. The competition consists of three develop-
ment phases and seven evaluation phases. In the
development phases, a small in-domain training set
for each domain alongside a large out-of-domain
training set (i.e. the ARRAU corpus) is available.
In addition, a validation set for each domain is
also provided. The development phases are handy
tools to get the systems prepared for the evaluation
phases. Apart from the development phases, the
participants can also download the scoring script
to evaluate their systems offline. During the eval-
uation phases, the different versions of the unseen
test sets (Pred, Gold M, Gold A) were released
incrementally to accommodate the needs of the
evaluation phases. The submissions were evaluated
individually on each of the four domains, and then
the macro-average of the four scores are used for
the final ranking of individual tasks. Apart from
the corpora provided by us, additional resources
were also permitted.

6 Baselines

We used the same baseline systems from last year’s
shared task, and further, evaluate those baselines
in the newly introduced phases. More precisely
the baselines for identity anaphora and bridging
reference resolution tasks are derived from state-of-
the-art neural models, whereas the discourse deixis

baseline is a simple but effective system based on
heuristic rules.

For identity anaphora resolution (Task 1), we
used the coreference resolution model provided by
the Xu and Choi (2020)15. More specifically, we
use their SpanBERT setting without any higher-
order inference (SpanBERT + no HOI), The model
was trained with the ONTONOTES (English) dataset
and then evaluated directly on CODI-CRAC 2022
datasets without fine-tuning.

For bridging reference resolution (Task 2), we
use the single-task variant of the Yu and Poesio
(2020) system16. The system is trained on the bridg-
ing annotations of the RST sub-corpus of ARRAU.
Since the system do not predict the mentions itself,
for the predicted mention setting (Pred), we supply
the system with mentions predicted by Yu et al.
(2020a)’s mention detector (BIAFFINE MD)17. The
mention detector was also trained on the same RST

sub-corpus of ARRAU. For Gold M and Gold A
settings, we use the gold mentions and anaphoras
provided respectively. The system is evaluated on
CODI-CRAC 2022 data without further training.

For discourse deixis (Task 3), the baseline for
predicted mention setting (Pred) uses two simple
heuristics: first only considers demonstrative pro-
nouns (this, that) as anaphors and then uses the im-
mediately preceding clause/utterance in the conver-

15https://github.com/lxucs/coref-hoi/
16https://github.com/juntaoy/

dali-bridging
17https://github.com/juntaoy/dali-md
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sation to be their antecedent. For the gold mention
setting (Gold M) we further restrict the anaphors to
be the intersection of the demonstrative pronouns
and the gold mentions and then apply the same rule
for antecedent selection. For the gold anaphor set-
ting (Gold A), the baseline links the gold anaphors
to their immediately preceding clause/utterance.
The heuristic-based baselines are then evaluated on
the CODI-CRAC 2022 data of all four domains.

The performance of our baselines on different
sub-corpora is shown in Tables 3, 4, and 5 along-
side the participant systems.

A helper script developed from last year’s shared
task is available to help participants convert the
CONLL-UA format to and back from the various
JSON format used by our baselines18.

7 Participating Systems

Similar to last year, a total of 54 individual partici-
pants registered for the CODI-CRAC 2022 shared
task on CodaLab. Among them, three teams sub-
mitted results for Task 1, and two submitted results
for Task 2 and Task 3. Apart from Emory_NLP,
all the teams from last year participated in this
year’s shared task, but DFKI and INRIA joined
forces to participate as one team. All three teams
(UTD_NLP, KU_NLP, DFKI-INRIA) submitted
system description papers. We summarize their
approaches below and in Table 2.

UTD_NLP participated in all three tasks. For
identity anaphora, the authors built a pipeline sys-
tem consisting of three components: a mention
detector, an entity coreference resolver and a non-
referring/entity classifier. All three components use
the same underlining system they used in last year’s
shared task (Kobayashi et al., 2021), a multi-task
learning approach adapted from the Xu and Choi
(2020) system for mention detector and coreference
resolution. The training objectives and priorities,
however, were configured differently to maximise
the performance of the individual tasks. Finally,
those components were used in a pipeline fashion
to deliver their final results. For discourse deixis, a
system similar to Xu and Choi (2020)’s was used.
They use both heuristics and a binary classifier to
supply the anaphors. For each anaphor, antecedents
were selected from up to 10 immediate previous ut-
terances. The team based their bridging resolution
system on the Yu and Poesio (2020)’s model, with

18https://github.com/juntaoy/
codi-crac2022_scripts

additional dialogue-specific features included. The
main focus of this year was on exploring the differ-
ent pre-training and fine-tuning strategy. In total,
four different training strategies were evaluated by
them..

KU_NLP submitted results for identity anaphora
resolution (task 1). The team proposed a pipeline
system that resolves the mentions separately from
the coreference resolution. The mention detection
part solves the problem by classifying all possible
mentions into mentions and non-mentions. The
predicted mentions then feed into the coreference
part of the system that solves the task in a mention-
pair fashion. Additional speaker features were used
to leverage the mention representations.

DFKI-INRIA participated in all three tasks.
For the identity anaphora task, they utilise the
Workspace Coreference System (WCS) (Anikina
et al., 2021) they introduced in last year’s shared
task with the Xu and Choi (2020) system. The sin-
gletons predicted by the WCS system are added to
the Xu and Choi (2020) to create their final results.
Similar to the WCS system, the mentions are pre-
dicted separately using SpaCy. For bridging, they
build their system on a simplified Joshi et al. (2019)
system with mention pruning and coarse-to-fine
steps removed. They only submitted to the Gold
A phase, where gold mentions and gold anaphors
were provided. For discourse deixis, the team em-
ploy a multi-task learning approach based on the
Xu and Choi (2020) system, the system first uses
heuristics to find the candidate anaphors, then re-
solve the antecedents and finally uses an anaphora
type classifier to filter out the identity, non-referring
anaphors. The system also used several linguistic
features (e.g. PoS, dependency relations) to aid the
anaphora type classification.

8 Results and Discussion

8.1 Task 1 – Identity Anaphora

All three teams participated the task 1, in total they
made 55 runs to the official leaderboard. For this
task, we report the CoNLL average F1 scores for
each sub-corpus and take the macro-average of
them to rank the participating systems.

As shown in Table 3, all the participating sys-
tems outperform the baseline by large margins (up
to 27% on the macro-average scores). The best
result was achieved by the UTD_NLP team, with
large improvements over the baseline by more than
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Team LIGHT AMI PERS. SWBD. Avg.

Eval AR

UTD_NLP 82.23 62.90 79.20 75.81 75.04
DFKI-INRIA 72.06 51.41 69.87 60.61 63.49
KU_NLP 68.27 48.87 69.06 60.99 61.80

Baseline 54.23 34.14 53.16 49.30 47.71

Table 3: Performance on Task 1 (Evaluation Phase) –
Identity Anaphora (CoNLL Avg. F1)

Team LIGHT AMI PERS. SWBD. Avg.

Eval Br (Gold A)

UTD_NLP 46.80 39.35 56.91 44.40 46.87
DFKI-INRIA 37.68 35.23 50.99 35.78 39.92

Baseline 29.93 22.69 37.83 30.39 30.21

Eval Br (Gold M)

UTD_NLP 26.77 19.65 34.59 22.74 25.94

Baseline 4.99 8.77 11.49 7.08 8.08

Eval Br (Pred)

UTD_NLP 23.25 13.42 27.75 19.72 21.04

Baseline 4.01 4.66 8.45 4.00 5.28

Table 4: Performance on Task 2 (Evaluation Phase) –
Bridging Anaphora (Entity F1)

25% for all four sub-corpora. For LIGHT and PER-
SUASION, the system achieved CoNLL Avg. F1
scores of 80% or more, the result on the SWITCH-
BOARD followed closely with an F1 of 76%. The
system performance on the toughest sub-corpus
(AMI) is way below the other sub-corpora a large
20% gap between LIGHT and AMI are visible across
all the participant system as well as the baseline.
The reason leads to the large gaps in performance
between AMI and other sub-corpora is mainly due
to the conversations in AMI being substantially
longer than the other corpora. This challenged
the systems with a much longer distance between
the anaphors and their antecedents.

8.2 Task 2 – Bridging Anaphora

Two teams submitted their results to Task 2, with
UTD_NLP participating in all three phases and
DFKI-INRIA only participating in the antecedent
selection (Gold A) setting. The entity F1 scores for
each sub-corpora together with the macro-average
of those scores, the latter was used for ranking the
systems.

Two teams submitted a total of 102 runs to the
leaderboard for three different settings (67 runs for
Pred, 5 runs for Gold M and 30 runs for Gold A).

Team LIGHT AMI PERS. SWBD. Avg.

Eval DD (Gold A)

UTD_NLP 52.40 72.50 69.61 72.11 66.66
DFKI-INRIA 44.95 56.54 62.79 0.00 41.07

Baseline 40.07 39.89 51.43 37.72 42.28

Eval DD (Gold M)

UTD_NLP 38.38 55.12 54.89 49.83 49.56
DFKI-INRIA 35.91 47.13 48.24 0.00 32.82

Baseline 18.14 22.95 30.15 21.37 23.15

Eval DD (Pred)

UTD_NLP 37.09 53.31 54.59 49.76 48.69
DFKI-INRIA 36.82 50.09 47.04 0.00 33.49

Baseline 10.94 17.39 16.61 13.30 14.56

Table 5: Performance on Task 3 (Evaluation Phase) –
Discourse Deixis (CoNLL Avg. F1)

This makes bridging (Task 2) overtaking the iden-
tity resolution (Task 1) becomes the most popular
task of this year’s shared task in terms number of
runs submitted to the leaderboard. Table 4 intro-
duces the results of each phases. For the predicted
mention setting (Pred), where the systems need
to predict both the mentions and the bridging re-
lations, the baseline only achieved a score of 5%
on average. The task is very challenging given
that only a limited amount of training data is avail-
able and the complexity of the bridging task itself.
Yet the best result from UTD_NLP quadrupled the
ones of the baseline. With the help of available
gold mention (Gold M), both the baseline and the
UTD_NLP performance further improved slightly
by 3-5%. The small improvements achieved by
using the gold mentions indicate that 1. the men-
tions predicted by the systems are not substantially
different from the gold mentions; 2. the bridging
task remains very challenging even though the gold
mentions are provided. In the gold anaphor set-
ting (Gold A) where the gold bridging anaphors are
made available in addition to the gold mentions, the
system performance increased dramatically. The
baseline performance is more than tripled and the
best results are 20% higher than the ones of the
gold mention (Gold M) setting. Over the four sub-
corpora, the PERSUASION seems to be the easiest
corpus, both baseline and the participating systems
achieved the best results on this corpus. The sys-
tem results on the other three sub-corpus vary from
system to system, in general, no clear distinction
between them.
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8.3 Task 3 – Discourse Deixis

For Task 3, two teams (UTD_NLP and DFKI-
INRIA) participated in all three phases. In total,
we received 72 runs from them, in which 30 runs
were submitted to the predicted mention setting
(Pred), 34 runs for the gold mention setting (Gold
M) and 8 runs for the gold anaphor setting (Gold
A). The UTD_NLP team submitted results for all
four sub-corpora whereas the DFKI-INRIA team
submitted predictions for three sub-corpora leaving
the SWITCHBOARD behind. We report the CoNLL
average F1 for each sub-corpora and rank the sys-
tems using the mean of those scores (see Table
5).

For the predicted mention setting, the baseline
system achieved a score of around 15% for all four
sub-corpora, both participating systems achieved
much better results than the baseline. The perfor-
mances are relatively close for LIGHT and AMI,
and for PERSUASION, the UTD_NLP is 7% better
than the DFKI-INRIA team. The best perform-
ing system achieved CoNLL average F1 scores
on or above 50% for all sub-corpora evaluated,
the only exception is the LIGHT which is more
than 10% lower than other corpora. In the gold
mention setting (Gold M), the baseline does im-
prove largely (9%) by further filtering the heuristic
anaphors with the gold mentions. However, the ad-
ditionally available gold mentions do not improve
largely the performance of the participating sys-
tems. The performance of the DFKI-INRIA team
on LIGHT and AMI even dropped slightly. Finally,
in the gold anaphor setting (Gold A), the naive
baseline already achieved a score above 40%, and
the best participating system achieved an F1 above
66% on average. This suggests the identification
of discourse deixis anaphor remains challenging.
Overall, all the systems outperform the baseline by
a large margin in all the sub-corpora they partici-
pated.

8.4 Discussion

Since this is the second year of the shared task, we
adopted many valuable assets from the first year,
such as the scorer, the code to set up the CodaLab
and the baselines etc. For this year, one of the
main focus becomes to improve the quality of the
annotation. We managed to release the revised
version of the RST portion of the ARRAU 3 data
that serves as the main training data for the shared
task. In addition, we also annotated brand new

test sets for all sub-corpora and revised the dev/test
sets from last year to make them train/dev sets
respectively. The consistency of the annotation has
been largely improved for this year’s shared task
data and this makes the corpus of higher quality.
We also managed to release most of the data as
scheduled. Apart from the data, we also introduced
the gold anaphor settings for bridging and discourse
deixis tasks to allow the participants to develop
systems focused on the antecedent selection sub-
task. To adapt to the new phase, we extended the
baselines from last year to the gold settings.

In terms of the results, although the test sets
are not the same as last year, the baseline perfor-
mance remains similar is a good indication that the
hardness of the tasks does not change much. In
comparison with last year, we noticed some im-
provements for both bridging and discourse deixis
tasks. The performance on the bridging task im-
proved 3-5% on average and for discourse deixis,
we saw large improvements of 6% and 10% for the
gold/predicted mention settings respectively. Apart
from more advanced systems being used, the ad-
ditional in-domain training set available this year
might also play a role in the improvements. By
contrast, the best performances on identity reso-
lution are similar to last year’s. This might as a
result of the development set that was already used
for training by the best-performing system from
last year. Hence the settings are not that different
between the two years.

Finally, we would like to thank all participants
for making a great effort to push further the perfor-
mances on all the individual tasks. And congratu-
late them for outperforming the baselines by large
margins.

9 Conclusion and Future Work

In this paper we presented a general overview of the
CODI-CRAC 2022 shared task. Like the first shared
task in this series, CODI-CRAC 2022 focused on
resolving three types of anaphoric relations in dia-
logues: identity, bridging reference, and discourse
deixis.

Based on the feedback from participants to the
first task, in this second event we released the an-
notation guidelines beforehand so that participants
could know exactly how the data had been anno-
tated. In addition, we re-checked the data newly
annotated for the first edition (now available for
training and development, so that participants could
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do some in-domain training as well), and using a
larger group of annotators, which resulted in an
hopefully more objective annotation. New test data
in the four new dialogue domains was also anno-
tated.

The participant systems outperformed the base-
lines on virtually all tasks and settings, although a
clear difference in performance could be observed
for bridging reference between pure resolution and
resolution + identification. (Interestingly, we didn’t
observe much difference in performance between
the ‘Gold Mention’ and ’Predicted’ settings for
either bridging nor discourse deixis.) A clear dif-
ference was observed between the results on the
AMI datasets and on the other datasets for identity
anaphora and bridging reference, possibly due to
greater length of the documents in AMI.
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Abstract

We describe three models submitted for the
CODI-CRAC 2022 shared task. To perform
identity anaphora resolution, we test several
combinations of the incremental clustering ap-
proach based on the Workspace Coreference
System (WCS) with other coreference models.
The best result is achieved by adding the “clus-
ter merging” version of the coref-hoi model,
which brings up to 10.33% improvement1 over
vanilla WCS clustering. Discourse deixis reso-
lution is implemented as multi-task learning:
we combine the learning objective of coref-
hoi with anaphor type classification. We adapt
the higher-order resolution model introduced in
Joshi et al. (2019) for bridging resolution given
gold mentions and anaphors.

1 Introduction

In this paper we present our systems submitted for
the CODI-CRAC 2022 Shared Task (CCST) on
Anaphora, Bridging, and Discourse Deixis in Di-
alogue2 (Yu et al., 2022). The task is a follow-up
to the one held last year and described in Khosla
et al. (2021). As its name suggests, besides iden-
tity anaphora this shared task tries to cover other,
less-studied, anaphoric phenomena, and offers new
multi-genre data that combines several types of
annotations in Universal Anaphora3 format.

Main focus of the shared task is on dialogue.
Dialogue data offers new challenges, like grammat-
ically incorrect utterances, disfluencies, more deic-
tic references, speaker grounding and long-distance
conversation structure (Khosla et al., 2021). While
coreference resolution in text has been very ac-
tively studied in the recent years, it is much less
researched in dialogue, especially such forms as
bridging, or discourse deixis. Descriptions of early

1An average improvement over all 4 datasets is 7.95%.
2https://codalab.lisn.upsaclay.fr/

competitions/614#learn_the_details
3https://universalanaphora.github.io/

UniversalAnaphora/

systems implemented for the resolution of ‘stan-
dard’ and discourse deictic pronouns in dialogue
can be found, e.g., in Byron (2002), Strube and
Müller (2003), Müller (2008). More approaches
(not implemented), together with some useful find-
ings are presented, e.g., in Rocha (1999), Eckert
and Strube (2000), and Navarretta (2004).

CCST 2021 stirred new interest in coreference
resolution in dialogue. The majority of systems
submitted for it represent various modifications
of either the higher-order coreference resolution
model (coref-hoi) by Xu and Choi (2020), or one
of the earlier models by Joshi et al. (2019) and Lee
et al. (2018). These models were originally trained
on the text data, and are span-based - each span gets
associated with a score, and anaphor-antecedent
pairs are established based on the pairwise scores.
Designed for identity anaphora resolution, these
models were also adapted for bridging and dis-
course deixis resolution. Examples of span-based
models submitted for CCST 2021 include systems
by Kobayashi et al. (2021), Renner et al. (2021),
Xu and Choi (2021). Other participants presented
different approaches. Thus, Kim et al. (2021) per-
form identity anaphora and bridging resolution us-
ing pointer networks. Anikina et al. (2021) cast
anaphora resolution as a clustering problem, and
discourse deixis resolution - as a Siamese Net based
scoring function.

Inspired by the success of the span-based coref-
erence resolution models, we submit three indepen-
dent systems for CCST 2022. Our system for iden-
tity anaphora resolution uses both the Workspace
Coreference System by Anikina et al. (2021) and
the coref-hoi model as described in Section 2. The
model for discourse deixis extends coref-hoi with
shallow linguistic features and aims at resolving
three types of potential anaphors. It is described in
Section 3. The model for bridging resolution is a
modification of the system by Renner et al. (2021).
The approach is explained in Section 4.
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2 Anaphora Resolution

For the anaphora resolution track we trained and
combined the outputs of the Workspace Corefer-
ence System (WCS) and the coref-hoi system (see
Table 1). While working on the shared task we
realized that a combination of different models per-
forms better than a single model and we explored
various settings to find an optimal solution.

2.1 Data

For training of the WCS system we used the
datasets recommended by the shared task or-
ganizers. These include the ARRAU corpus
(Gnome, Trains_91, Trains_93, RST_DTreeBank,
Pear_stories), AMI, Switchboard, Light and Persua-
sion data. We used the development sets of AMI,
Light and Persuasion for the internal evaluation and
comparison of different configurations. We trained
our system using the gold mention spans to avoid
any mistakes introduced by the mention extraction
module and used SpaCy (Honnibal et al., 2020) for
mention extraction during the test phase.

For training of the coref-hoi system, we uti-
lized the CoNLL 2012 English Shared Task dataset
(Pradhan et al., 2012) to supplement the datasets
listed in the previous paragraph. Note that this
CoNLL 2012 data does not include singleton coref-
erence clusters, but the current dialogue shared task
datasets do.

2.2 Model architecture

WCS Our model is based on the implementa-
tion described in Anikina et al. (2021). It creates
coreference clusters incrementally and compares
each new mention to the clusters that are available
in the workspace. The general flow of the model
is presented in Figure 1. The model uses sepa-
rate layers to encode each pair of mentions where
one mention represents a workspace cluster and an-
other mention is a candidate that is being clustered.
WCS passes the concatenated embeddings of the
candidate mention and the cluster member through
several feed-forward neural layers with the input
and output dimensions shown in Table 2.

The network also encodes the absolute position
of each mention within the document and gener-
ates a separate embedding for each speaker. The
model combines this information with different
word embeddings. For each mention it extracts
the head and encodes it with a combination of con-
textual BERT embeddings (Devlin et al., 2018)

mention

workspace
clusters

referring/non-referring
classification

clustering probabilities clustering
loss

cluster
coherence
loss

referring
loss

cluster
assignment

workspace
clusters
update

history
clusters

Figure 1: Workspace Coreference System Overview

(bert-base-cased) together with GloVe (Pen-
nington et al., 2014) and Numberbatch (Speer et al.,
2017) embeddings. Unlike Anikina et al. (2021) we
do not generate a new random embedding for each
unknown word, but take an average embedding
based on all words in the GloVe and Numberbatch
vocabularies. This gave us slightly better results in
the pilot experiments.

In order to represent the spans we take an aver-
age of all individual word embeddings based on
BERT and GloVe correspondingly. We also exper-
imented with SpanBERT embeddings but did not
observe any improvements. E.g., when we replaced
our span embeddings with SpanBERT and left the
rest of the system unchanged we achieved 66.68%
CoNLL F1 score when training and evaluating on
the Light dataset. After replacing SpanBERT with
standard BERT and simply averaging span em-
beddings we achieved 67.23% CoNLL F1 score
on the same data. Removing GloVe embeddings
and leaving only BERT, SpanBERT and Number-
batch or training on more data samples also did
not help. We suspect that since SpanBERT em-
beddings have high dimensionality (representing
span start, span end and span head) they dominate
mention representation in WCS and allow some
vague semantic matches. E.g., with SpanBERT we
generated clusters that included mentions like ‘war’
and ‘peace’ or ‘the jamaica tourist board’ and ‘ja-
maican’. Training for more epochs or adjusting hy-
perparameters might help to improve clustering but
the configurations that we tested have not shown
an improvement.

The WCS system combines three cross-entropy
losses that are added in each forward pass. The
main clustering loss compares the true cluster prob-
abilities vs. the computed ones. The true probabili-
ties are computed with respect to the mentions that
are currently in the workspace. For each mention
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Track Resolution of anaphoric identities
Setting Predicted mentions
Baseline WCS (Anikina et al., 2021) and coref-hoi model (Xu and Choi, 2020)

Approach

1) Extract all nominal phrases with SpaCy
2) Run WCS trained on the Shared Task dialogue data
3) Run coref-hoi with cluster merging trained on the CoNLL 2012 data
4) Combine the outputs of WCS and coref-hoi

Train data
ARRAU corpus (Gnome, Trains_91, Trains_93, RST_DTreeBank, Pear_stories), AMI,
Switchboard, Light and Pesuasion, CoNLL 2012 English dataset

Dev data AMI, Light, Persuasion, ARRAU (dev splits)

Table 1: Anaphora resolution: approach summary

Encoder Input dim Hidden dim Output dim

BERT head 2*768 900 600
BERT span 2*768 900 600
Numberbatch 2*300 600 300
GloVe head 2*100 600 200
GloVe span 2*100 600 200
BERT masked LM 2*768 600 200

Table 2: Separate encoders are used to represent men-
tion pairs in WCS. Additionally, distance between the
mentions, their positions in the document and corre-
sponding speakers are encoded and added to the final
representation.

the probability of being in that cluster is defined
as the ratio of mentions that are in the same gold
cluster and the current cluster over all mentions
in that cluster. The coherence loss computes the
difference between the gold cluster assignments
and the system assignments. Basically, we create
two matrices that align mentions to each other and
check the overlap between these matrices in the
gold annotations vs. the generated outputs (the ma-
trix has ones if two mentions belong to the same
cluster and zeros otherwise). The referring loss
is used for the referring expression classification
which is a binary classification task. It is needed
since not all mention spans extracted by SpaCy are
valid referring expressions.

After computing clustering probabilities for each
mention and clusters in the workspace we apply
softmax and select the cluster with the highest prob-
ability. After that the workspace is updated and
some clusters are moved to the history if they have
not been updated for more than 100 steps. After the
initial clustering we apply some post-processing as
explained in Anikina et al. (2021).

We have also evaluated WCS in combination
with a Crosslingual Coreference System (CCS)

based on AllenNLP and SpaCy pipelines4. We no-
ticed that WCS performs quite well on identifying
singletons and clusters with personal pronouns but
has more difficulties with other nominal phrases.
Hence, in one of the experiments we combined the
output of the CCS model trained on OntoNotes
that uses MiniLM (Wang et al., 2020) for mention
representation with the outputs of WCS trained on
the shared task data. Among the clusters generated
with CCS we selected only those that do not con-
tain any personal pronouns and from WCS we took
singletons and clusters with pronouns.

We also experimented with some compatibility
checks. E.g., we checked whether the first and sec-
ond mentions in the cluster have the same number
and we removed the first mention from the WCS
cluster if the embedding similarity between the first
pronoun and the first noun in that cluster was too
low (compared to the cosine similarity between
the first pronoun and other mentions in the clus-
ter). E.g., mentions such as ‘a presenter’ and ‘I’
could belong to the same cluster with pronouns
but mentions like ‘table’ and ‘I’ should not. We
run WCS with these modifications on the shared
task test set and report our results in Table 3. The
final version that was submitted to the leaderboard
combines WCS outputs with the coref-hoi system
as described in the next section.

Coref-HOI Combination We trained a “cluster
merging” variant of the coref-hoi model. As this
model was developed using the data from 2012
CoNLL dataset, which does not include singleton
clusters, the model does not output singleton pre-
dictions off the shelf (one could potentially use the
scores for the “dummy” antecedent as a proxy, but
this could be noisy as the model is not trained to dif-
ferentiate singleton clusters from simple mentions

4https://pypi.org/project/
crosslingual-coreference/
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Setting Light AMI Persuasion Swbd.

Vanilla WCS 65.96 46.04 59.54 50.63
WCS + CCS 67.27 46.68 63.46 53.92
WCS + CCS + filter 67.46 46.70 63.51 54.07
WCS + coref-hoi 72.06 51.41 69.87 60.61

Table 3: Evaluation of WCS in combination with other
coreference systems on the shared task test set. Filter in
the third row refers to the incompatibility check

that are not part of any cluster).
Using the development sets of the shared task

datasets, we evaluated WCS and the coref-hoi
model. Results are shown in Table 4. Looking
at these scores, we found that coref-hoi struggled
with singleton clusters (as expected), as the CoNLL
F1 score of these predictions was much higher af-
ter removing the singletons from the annotations.
WCS, on the other hand, seemed to do better on
singletons than non-singletons, as evidenced by the
higher scores on annotations that contain singletons
vs. those without. As a result, we combined the
strengths of the two systems by simply adding the
singletons predictions of WCS to the cluster pre-
dictions of coref-hoi. This resulted in the highest
test set scores (as shown in Table 3).

2.3 Training
WCS The WCS system was trained for 5 epochs
on Nvidia GeForce RTX 2080. We use teacher
forcing for the coreference clusters with a ratio
of 30%. The learning rate is set to 1e-4 and the
dropout rate is 0.3. We use Adam as optimizer. It
took about 26 hours to train the whole system on
the complete training set.

Coref-HOI The coref-hoi system was trained for
24 epochs on a Nvidia Quadro RTX 6000. We use
a pretrained SpanBERTLarge model to initialize the
base language model. We use a learning rate of
1e-5 for the base model and 3e-4 for the fine tuning
layers. We follow all other hyperparameters found
in the train_spanbert_large_ml0_cm_fn1000 train-
ing configuration of the coref-hoi system. Training
took about 24 hours.

2.4 Results and discussion
Our results on the internal development set as well
as on the official test set are reported in Tables 3
and 4. Based on the final cluster assignments we
can recognize 4 common types of mistakes made
by WCS: partial word overlaps (e.g., ‘mute button’
and ‘volume button’), embedded mentions (e.g.,

‘a power supply which we get’ and ‘we’), wrong
span boundaries (e.g., ‘ok good knight’) and con-
fusing candidates that have similar surface forms
but different meanings (e.g., ‘the minutes of uh this
meeting’ and ‘forty minutes’). Some of these mis-
takes were probably caused by the over-reliance of
WCS on the head embeddings. Interestingly, when
using SpanBERT instead of GloVe and standard
BERT for span encoding we observed that many
generated clusters contain mentions with spurious
connections (e.g., ‘the spirits of our people’ and

‘such dark superstitions’ or ‘the executive’ and ‘the
company’).

Judging from the scores on the development set
reported in Table 4, WCS shows better performance
than coref-hoi when the evaluation is done on all
clusters including singletons. However, when sin-
gletons are excluded coref-hoi outperforms WCS
and this was the main motivation to combine the
outputs of both models. We also evaluated the
span extraction performance of WCS vs. the com-
bined system using the gold mention span annota-
tions provided by the shared task organizers. We
found that WCS had consistently higher recall but
lower precision on mention span detection com-
pared to the combined model. E.g., on the AMI
dataset WCS achieved precision 82% and recall
68% whereas the combined model achieved pre-
cision 84% and recall 63%. Similar results were
observed on the other two datasets that we tested
(Light and Persuasion).

Looking at the mistakes of the combined model
we found that some mentions have incorrect spans,
e.g., ‘half’ and ‘hour’ are annotated as two sepa-
rate mentions in ‘see you in half and hour’. Some-
times the annotated spans are longer than the gold
ones, e.g., ‘close tabs on you’ instead of ‘close
tabs’ or ‘Of course , good Monk’ instead of ‘good
Monk’. This can also result in incorrect clustering
such as in case of putting ‘this realm’ and ‘this
realm, stories, population’ in the same cluster. The
combined model also struggles with the cases like

‘some’ and ‘they’ in the following example: ‘Some
don’t give the money out like they are suppose to.
Did you heard that they now do every payment
taken from people transparent?’ Both mentions
were assigned to the same coreference chain al-
though ‘some’ should refer to the people who give
the money and ‘they’ to those who receive it. De-
spite some problems with the mention span de-
tection the combined model shows overall better
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Setting Light Light NS AMI AMI NS Persuasion Persuasion NS ARRAU ARRAU NS

WCS 65.39 61.48 43.33 35.85 61.23 56.55 45.02 32.93
coref-hoi 59.84 76.89 43.30 54.70 60.60 81.00 48.32 66.97

Table 4: Evaluation of WCS and coref-hoi on dev sets. NS (No Singletons) refers to annotations with singleton
clusters removed. Scores presented are CoNLL F1 scores. Note that the scores are from an internal development set.

clustering performance compared to vanilla WCS.
Experimenting with various combinations of the

coreference systems we found that combining the
strengths of different systems helps to improve
the results. In the future we plan to investigate
whether adding coreference signal from the pre-
trained models also helps boost the performance
and reduce training time for systems like WCS.

For the current submission we combined the
model outputs based on some simple heuristics
but it would be interesting to see whether this pro-
cess could be also learned by a model. Training
a new model from scratch or even fine-tuning it
on a new dataset might be sub-optimal or even not
feasible in some cases. E.g., when we deal with
dialogues instead of narrative texts or if the anno-
tation schemes differ significantly. In such cases
we believe that using a smart coreference editor
that combines and checks outputs of different sys-
tems and applies some constraints or filters would
be beneficial and we would like to work on such
project in the future.

3 Discourse Deixis Resolution

CCST 2022 offers three different tracks for dis-
course deixis resolution. First track (Eval-DD Pred)
assumes finding antecedents for discourse deixis
anaphors predicted by models given unannotated
data. The second one (Eval-DD Gold M) aims at
identification of discourse deixis anaphors among
all types of annotated anaphors and non-referential
mentions, and their subsequent resolution. The
goal of the last track (Eval-DD Gold A) is to find
antecedents for already annotated discourse deixis
anaphors. Our team participated in all three tracks.

The core of our approach relies on the coref-
hoi model, because it was successfully adopted for
CCST 2021 discourse deixis track by Kobayashi
et al. (2021). Their model was able to achieve the
CoNLL F1 score of 35.4% - 52.1% depending on
the dataset and shared task track, and ranked first
for discourse deixis (Kobayashi et al., 2021). The
summary of our system can be found in Table 5.

3.1 Data

We use training and development data presented
in Section 2.1. Coref-hoi splits input data into
segments of a set length to limit the number of
mention candidates. Given a segment, all possible
spans/potential mentions are created. Next, this
‘pool’ of mentions is used to form valid anaphor-
antecedent pairs. In contrast to that, we only
consider the occurrences of ‘this’, ‘that’, ‘it’ and

‘which’ as potential anaphors and treat all other
spans in the segment as antecedent candidates.
These four markables were chosen based on our ob-
servation that they often occur as discourse deixis
anaphors in our training data: they make about
72.3% of all annotated discourse deictic anaphors5.
Similar statistical findings (however, for other di-
alogue corpora) were reported, e.g., by Webber
(1988), Müller (2008), Kolhatkar et al. (2018). Be-
sides being discourse deictic, the markables in fo-
cus can also be non-referential (e.g., ‘it’ in exple-
tive constructions, ‘that’ as a relative pronoun), or
anaphoric (e.g., ‘this’ as a determiner in a noun
phrase).

Because we focus only on certain anaphor candi-
dates, we build segments in a slightly different way
than coref-hoi does. Instead of splitting the input
into non-overlapping chunks of approximately the
same length, we go through the input data word by
word until any of our anaphors occurs, and then
create a segment. Our segment typically includes
all (sub)tokens up to the current sentence end to
the right of the anaphor, as well as one or more
sentences to the left of it. We limit the segment’s
length by 256 (sub)tokens. Thus, given the same
input, we build more segments than coref-hoi does,
our segments are mostly overlapping, and each one
contains only one anaphor candidate.

In total we build 9,827 segments/examples from
training data, of which 44% contain non-referential

‘this’, ‘that’, ‘it’ and ‘which’, 41.2% - anaphoric,
and only 14.8% - discourse deictic ones. To make
our training data balanced, we perform undersam-

5We treat all discourse deictic markables with semantic
type ‘discourse old’ as anaphors.
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Track Resolution of discourse deixis
Setting Predicted mentions / Gold mentions / Gold anaphors
Baseline The coref-hoi model adopted for discourse deixis by Kobayashi et al. (2021)

Approach

1) Consider all mentions of this, that, it and which potential anaphors
2) Consider all spans in the given segment potential antecedents
3) Represent both anaphor and antecedent candidates as embeddings with additional shallow
linguistic features
4) Calculate pairwise anaphor-antecedent scores similar to coref-hoi and choose
the antecedent based on the largest score
5) Use anaphor-antecedent pair representation to classify the anaphor type and discard
non-discourse deictic anaphors

Train data
ARRAU corpus (Gnome, Trains_91, Trains_93, RST_DTreeBank, Pear_stories), AMI,
Switchboard, Light and Persuasion

Dev data AMI, Light, Persuasion (dev splits)

Table 5: Discourse deixis resolution: approach summary

pling and decrease the number of examples from
the first two classes. We end up having 1,454 train-
ing samples of each anaphor class. For the sake of
simplicity, undersampling is done blindly, i.e. we
do not take into consideration how the instances of
our three classes are distributed given each of the
four markables.

3.2 Model architecture

We perform discourse deixis resolution using a
multi-task learning approach - besides finding the
antecedents, we also need to identify the types of
potential anaphors (discourse deictic, anaphoric or
non-referential). Type classification is performed
after the antecedent (if any) is found. It is also
important to emphasize that we try to resolve any
potential anaphor regardless of its type. Thus, our
model also learns to resolve ‘standard’ coreference
as a by-product. To our knowledge, our model is
the first one doing that.

To perform the resolution, coref-hoi first asso-
ciates each span (represented as an embedding)
with a score indicating how likely this span is a
valid mention (anaphor or antecedent). To speed
up the training process, certain number of spans
with the low scores get pruned. Next, the model
learns to find the most probable antecedent for each
anaphor based on their pairwise scores.

We modify their approach as follows. First, as
we know exactly which span our anaphor x is, and
it is the same for all antecedent candidates y, we do
not score anaphors or calculate pairwise mention
scores. An antecedent score sm(y) is produced
by a feedforward neural network FFNNm taking
as input a vector representation of span y, like in
coref-hoi. Second, as shown in Table 6, anaphors

kx = px, ρ(x) and antecedents qy = gy, ψ(y) are
composed differently. Main representations px and
gy are concatenated with shallow linguistic features
ρ(x) andψ(y) to help our model better differentiate
between types of anaphors and antecedent candi-
dates. Our approach to mention representation and
motivation behind it are explained in more detail in
Section 3.3. Third, we do not prune any unlikely
antecedents due to the fact that each segment only
contains one anaphor, which often has only one
antecedent (if mention is anaphoric, there can be
more). If we apply pruning, this only antecedent is
very likely to be lost at the early stages of training.

s(x, y) = sm(y) + sf (x, y) + ss(x, y)

sm(y) = FFNNm(qy)

qy = gy, ψ(y)

kx = px, ρ(x)

sf (x, y) = kx · qy
ss(x, y) = FFNNc(kx, qy, ϕ(x, y))

(1)

As shown in Equation group 1, the final anaphor-
antecedent score is the sum of three components:
(1) anaphor score sm(y); (2) fast score sf (x, y),
which is an inner product of vectors kx and qy rep-
resenting anaphor and antecedent, respectively; (3)
slow score ss(x, y), which is an output of a dif-
ferent network FFNNc taking as input an anaphor-
antecedent pair and pairwise features ϕ(x, y). Two
of pairwise features are borrowed from the coref-
hoi model. They are distance feature, showing how
many sentences/utterances lie between the start-
ing tokens of two mentions, and similarity feature,
which is simply a result of am element-wise mul-
tiplication of anaphor and antecedent candidate
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px, ρ(x) gy, ψ(y) ϕ(x, y)

token emb. start emb. sentence dist. emb.
parent emb. end emb. token dist. emb.

local context emb. weighted avg. emb. similarity emb.

POS tag emb. span width emb.
DEP tag emb. span type emb.

end token POS emb.
end token DEP emb.

Table 6: Representations of anaphor and antecedent
candidates, and pairwise features

vectors. Finally, we add a token distance feature
that shows how many (sub)tokens lie between the
starting tokens of the two mentions. This feature
is used to help our model learn that in case both
anaphor and its antecedent are parts of the same
sentence, their starting tokens cannot be close to
each other.

The largest s(x, y) score is used to predict the
best antecedent candidate. The antecedent gets
concatenated with the anaphor and is used as input
for an anaphor type classifier, which is a multi-
layer perceptron (MLP) network consisting of two
linear layers with a ReLU activation function in-
between. Similar to coref-hoi, to account for the
case of non-referential ‘anaphors’, a dummy zero
score is always prepended to the row of s(x, y)
scores.

3.3 Mention representation
Potential anaphors and antecedents have different
representations. While the main part of an an-
tecedent candidate embedding gy is constructed
similar to coref-hoi, the main part of an anaphor
embedding px is a concatenation of the embedding
of the token itself, embedding of the parent token
and local context embedding, which includes eight
(sub)tokens to the left and right of the anaphor.

Our decision to include the last two embeddings
was motivated by the following observations. De-
pending on the mention type, mentions’ parents
have to certain extent different distributions, e.g.,
discourse deictic mentions more often have forms
of the verb ‘to be’ as parents than mentions of other
two types (see Table 11 in Appendix A). More-
over, in our data about 60% of anaphor candidates
have verbal parents. And certain verbs (e.g., ‘as-
sume’, ‘say’) are only compatible with discourse
deixis (Eckert and Strube, 2000). We use SpaCy
to identify tokens’ parents, and SpanBERTLarge en-
coder to acquire tokens’ embeddings. The usage of
context helps capture various useful patterns that

may be characteristic of discourse deixis or iden-
tity anaphora. These patterns may include, e.g.,
adjective-copula constructions. Subjects of such
constructions with adjectives applicable to abstract
entities (e.g., ‘correct’, ‘true’) usually refer to dis-
course entities (Eckert and Strube, 2000). Other
examples are certain types of complement construc-
tions (like ‘that is why/because/what/how’), ‘do-
object’ expressions, which also may point at verbal
antecedents (Müller, 2008). The inclusion of con-
text may also be useful for capturing any tokens
that point at abstract/concrete character of refer-
ence. The size of the context window was chosen
intuitively, we did not conduct any separate experi-
ments for finding the optimal window size, but may
do it in the future.

Additional linguistic features used to represent
anaphors ρ(x) and antecedent candidates ψ(y) are
also different. Again, we use SpaCy to extract
part of speech (POS) and dependency edge (DEP)
tags for tokens in segments, and Berkeley Neural
Parser (Kitaev et al., 2019) to get syntactic con-
stituents (nominal, verbal, or other). We use POS
and DEP tags for anaphors. According to our sta-
tistical findings (see Table 12 in AppendixA), there
are some differences in distributions of (POS, DEP)
combination depending on the mention type. E.g.,
the (PRON, nsubj) combination is especially fre-
quent in case of discourse deictic anaphors, while
(DET, det) is not. Our antecedent candidates en-
compass four additional features, of which only
span width is borrowed from coref-hoi. Other
features include span type (verbal, noun, other),
POS and DEP tags of the last token. The span
type feature was introduced based on the observa-
tion that discourse deictic anaphors mostly have
verbal phrases or sentences as antecedents, and
‘standard’ anaphors - noun phrases. The other two
features are meant to help identify discourse en-
tities, which often encompass the whole sentence
and thus end with a punctuation mark. Note that
none of our shallow linguistic features is decisive.
Moreover, both SpaCy and Berkeley Neural Parser
may not function properly on dialogue data. Still,
our experiments on the toy dataset (consisting of
a single light_train 2022 file) show that without
all these features the model is only able to achieve
29.41% CoNLL F1 score on the light_dev 2022
data. Adding features helps increase this score up
to 36.44%.

All linguistic features described in this section
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are represented as trainable embeddings of length
100.

3.4 Training

To train our model we kept the hyperparameters
reported by coref-hoi, namely BERT- and task-
specific learning rates (1e-5 and 3e-4, respectively),
optimizers (AdamW and Adam), schedulers and
dropout rate of 0.3. The number of training epochs
was set to 24, but we had to stop training after 17
epochs. Currently the model is computationally in-
efficient (it is able to process only a single training
example at a time), so we did not have enough time
to complete the training.

The model was trained using a combination of
several loss functions: (i) marginal log-likelihood
of possibly correct antecedents; (ii) anaphor type
loss checking how well the model distinguishes be-
tween discourse deixis, identity and non-referential
anaphors; (iii) label loss that punishes the model
if it tends to reject all antecedent candidates while
having a referential anaphor; (iv) constituent type
loss checking how well the model can differenti-
ate between valid (verbal and nominal) and invalid
(various fragments) antecedents. The addition of la-
bel loss is motivated by the fact that at early stages
of training our model always tends to reject all
antecedents by assigning negative scores to them.
Constituent type loss is inspired by the mention
loss in coref-hoi. The idea is that the model should
assign larger scores to valid constituents. This loss
is used with a coefficient λ = 0.02 to account for
a big number of constituents and prevent it from
dominating over all other losses.

3.5 Results and discussion

We used the same model for all three discourse
deixis tracks. Table 7 illustrates the scores achieved
by our model on the official test sets. Because the
model is designed to resolve only four potential
antecedents, there is no big difference in scores
between the (Pred) and (Gold M) tracks. The scores
for the latter are even slightly worse, as the model
has to deal with numerous anaphor candidates it
has not seen before. The best scores are reached for
the (Gold A) track. It should be noted that here the
model tries to resolve all annotated anaphors, not
only the four target ones. Still, we tend to attribute
the increase in performance not to a wider coverage
of anaphors, but to the fact that the model does not
have to classify the anaphor types.

Track Light AMI Persuasion Swbd.

Eval-DD (Pred) 36.82 50.09 47.04 n/a
Eval-DD (Gold M) 35.91 47.13 48.24 n/a
Eval-DD (Gold A) 44.95 56.54 62.79 n/a

Table 7: CoNLL F1 scores on the official test sets

Data
2021 2022

Our model Winner Our model Winner

Light 48.04 42.7 36.82 37.09
AMI 40.34 35.4 50.09 53.31
Persuasion 56.68 39.6 47.04 54.59
Swbd. n/a 35.4 n/a 49.76

Table 8: Model comparison: CoNLL F1 scores on offi-
cial tests 2021 and 2022 for the Eval-DD (Pred) track

Table 8 shows the CoNLL F1 scores achieved by
our system and the winning model on the official
test data 2022 for the Eval-DD (Pred) track. Our
model ranks second for all the datasets with a score
difference ranging from 0.27 to 7.55 points. To
compare our model with the baseline model by
Kobayashi et al. (2021), we also evaluate it on
the test partitions of Light, AMI and Persuasion
datasets without gold annotations released for the
CCST 2021. We see that our approach beats the
baseline on all the datasets.

To see the limitations of our model and have a
better understanding of what it can/cannot learn,
we additionally evaluate it on the test partitions of
Light, AMI and Persuasion datasets from CCST
2021 containing gold annotations. Our analysis
(see Table 13 in Appendix A) shows that the model
struggles with the anaphor type identification: out
of 292 true discourse deictic ‘this’, ‘that’, ‘it’ and

‘which’ only 212 (72.6%) are classified as having
the same type, 62 (21.25%) - as anaphoric, and 18
(6.16%) as non-referential ones. Interestingly, only
one of all misclassified anaphors is linked to the
correctly predicted antecedent. Also, all anaphors
incorrectly classified as non-referential get associ-
ated with empty spans. At the same time the model
successfully finds antecedents for 144 (67.92%)
out of 212 correctly identified discourse deictic
anaphors. It looks like anaphor type is important
for the model to be able to perform resolution.

Looking at Table 13, we can conclude that our
model also has difficulties finding split antecedents:
41 anaphors (14.04%) out of 292 refer to them,
but our model only finds 7. In general, the model
demonstrates a tendency to choose discourse deixis

22



antecedents consisting of single sentences. We
hypothesize that it happens for the following rea-
sons. First, there are not enough training examples
with split antecedents. Second, our model lacks
mechanisms to capture relations between split an-
tecedents making them a coherent piece relative to
a discourse deictic anaphor.

The following points should also be emphasized.
So far we have not evaluated the performance of
our model separately for each of the four anaphor
candidates. We have not analyzed the ability of our
model to resolve identity anaphora. However, such
analysis would be useful, so we plan on conduct-
ing it in the future. Also, using a lot of features
slows down the training process. Therefore we are
planning to perform experiments testing different
combinations of features and various feature em-
beddings sizes. Additional experiments on how
the usage of features influences the model trained
on all available training data are also necessary.
Furthermore, an investigation of the quality of the
constituent types, POS and DEP tags would be ben-
eficial, considering that we use SpaCy and Berkeley
Neural Parser on dialogue data, while they were
trained on text corpora.

4 Bridging Resolution

In this section we introduce our submission for the
resolution of bridging references. We submitted to
the Eval-Br (Gold A) track, in which gold mentions
and anaphors are given. This reduces the problem
to the selection of antecedent (from gold mention
candidates) for each given anaphor.

Track Resolution of bridging
Setting Gold mentions and anaphors

Baseline
Higher order coreference resolution
(Joshi et al., 2019)

Approach

Modify baseline to match setting:
1) Batch size from one document to
one anaphor
2) Remove span enumeration step and
simple pairwise scorer
3) Use cross entropy loss instead of
marginal log-likelihood

Train data
AMI, Switchboard, Light, Persuasion,
BASHI, ISNotes

Dev data AMI, Light, Persuasion (dev splits)

Table 9: Bridging resolution: approach summary

4.1 Data

In addition to the shared task dialogue datasets of
AMI (851 bridging instances across 7 documents),

Switchboard (603 instances, 11 documents), Light
(381 instances, 20 documents), and Persuasion
(245 instances, 21 documents), we also utilize the
bridging anaphora resolution datasets of BASHI
(Rösiger, 2018) and ISNotes (Markert et al., 2012)
to train our models. BASHI is a corpus of 50 Wall
Street Journal articles, containing 57,709 tokens
and 410 bridging pair annotations. ISNotes is a cor-
pus of Wall Street Journal articles as well, contain-
ing 663 bridging pair annotations. The inclusion of
these supplementary datasets was important, as the
shared task datasets are relatively small, and the
model architecture is fairly complex and expressive,
making it easy to overfit.

4.2 Model architecture

Our approach is based on “independent” vari-
ant of the higher-order coreference architecture
introduced in Joshi et al. (2019). We make a
number of modifications to the architecture and
training procedure (an overview of the original
model/architecture can be found in Joshi et al.
(2019) and the system it is built on, introduced
in Lee et al. (2018). Note that the coref-hoi system
proposed alternatives to the original higher-order
system presented in Joshi et al. (2019), but these
alternatives (such as the cluster merging model vari-
ant) are not relevant for our system, as we are not
finding clusters of coreferent mentions.

Our modifications follow that of the bridg-
ing resolution system introduced in Renner et al.
(2021). The first modification is a result of the
gold anaphors being given: since we do not need
to detect anaphors from the text, we can pass one
anaphor at a time into the model (together with
the document text and gold mentions) instead of
passing the whole document at once and detect-
ing and resolving potential anaphors. While this
means potentially processing each document mul-
tiple times if there are multiple bridging anaphors
in the document, this is done to decrease memory
requirements significantly, as the pairwise scoring
function is run for just one anaphor with its candi-
dates, instead of many anaphors with all of their
candidates. This decrease in memory usage allows
for changes to the architecture that make it simpler
and more accurate (see next paragraph). Also, in
practice, the bridging datasets are relatively small,
so this extra processing of the same document re-
sults in a negligible decrease in computational effi-
ciency.
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The architecture modifications are made pos-
sible by the decrease in memory usage allowed
from having the mentions given and processing
one anaphor at a time. Recall that in the origi-
nal architecture by (Lee et al., 2018), they use a
“two stage beam search” when detecting mentions
and finding coreferent pairs: first, they prune po-
tential mentions based on a span scoring function,
then they prune antecedents for each span based
on a “fast” bilinear scorer (the “coarse” part of
the coarse-to-fine scorer), before sending the re-
maining spans and their list of antecedent candi-
dates to the more computation- and memory-heavy
“fine” scorer. This beam search was proposed to al-
low the system to scale better to longer documents.
By having the gold mentions, we can remove the
“fast” span scorer from the original model, as we no
longer need to enumerate all possible spans. Also,
since the pairwise memory restraints are reduced
by passing just one anaphor into the model at a
time, we can remove the “coarse” pairwise scorer
and skip directly to the “fine” scorer. We make
these changes in order to use the more expressive
“fine” scorer directly on all pairs, without having to
filter possible mentions and antecedents based on
the less expressive ‘fast” span scorer and “coarse”
pairwise scorer.

After these modifications, the model architec-
ture is as follows: pass entire document through
the base contextual language model, obtain span
representations for the gold mentions and anaphors,
compute antecedents via the higher-order mecha-
nism introduced in Lee et al. (2018). Also, this
allows the use of cross entropy loss over all pos-
sible antecedents for each anaphor, instead of the
original marginal log-likelihood, leading to a more
direct optimization of the pairwise scorer.

We use bert-base-uncased as our base
language model. We use this instead of
bert-large-uncased because the resulting
embedding is of smaller dimensionality, leading to
less parameters in our token attention and span pair
scoring layers. We experimented with the Span-
BERT variant as well, but this led to slightly lower
scores in preliminary experiments.

4.3 Training

We trained the system for 5 epochs on a single
Tesla P100 GPU. The learning rate was set to 3e-3
and we used Adam optimizer. We froze the base
BERT model to prevent overfitting as the dataset is

Switchboard Light Persuasion AMI

35.78 37.68 50.99 35.23

Table 10: Test set results for the bridging task (gold
anaphors)

relatively small even with the supplementary data,
set the dropout to 0.3 in the fine tuning layers, and
used a higher-order depth of 2. It took about 1 hour
to complete training.

4.4 Results and discussion

The submission Entity-F1 scores are shown in Ta-
ble 10. Overall, we report scores slightly higher
than reported in Renner et al. (2021) for bridging
resolution, with scores on the Persuasion dataset
being significantly higher than on the other three
datasets. This setting allows for a more direct eval-
uation of the span embedding and pairwise scoring
mechanisms from Joshi et al. (2019) and Lee et al.
(2018), as we can remove steps in the fine tuning
architecture that are only needed to manage mem-
ory usage. These results show the effectiveness of
the span embedding and pairwise score on span
comparisons tasks such as gold mention/anaphor
bridging resolution.

5 Conclusion and Outlook

In this paper we presented our systems for identity
anaphora, bridging and discourse deixis resolution.

Our system for the identity anaphora resolution
combines the outputs of WCS and the coref-hoi
system trained with “cluster merging”. It ranked
second in the shared task competition. When exper-
imenting with WCS we tested different settings and
tried replacing and adding different embeddings for
mention representations (e.g., SpanBERT). How-
ever, the configuration reported in Anikina et al.
(2021) turned out to work best on our develop-
ment set. We also tested a combination of WCS
trained on the shared task data and CCS trained
on OntoNotes as well as coref-hoi trained on a
combination of dialogue and non-dialogue datasets.
The analysis of the model outputs shows that WCS
works reasonably well for detecting singletons and
pronominal clusters but performs worse when clus-
tering noun phrases. Hence, we combine the out-
puts of WCS and the coref-hoi model and achieve
an average improvement of 7.95% CoNLL score
over vanilla clustering with WCS.

In the future we would like to do a more fine-
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grained analysis of the combined model outputs
and test if one could use automatic coreference an-
notations from other pre-trained models as a weak
supervision signal for WCS. In particular, we are
interested in evaluating this model on the domain
adaptation task and in the low resource setting. We
would also like to perform more experiments with
coreference chain editing based on the outputs of
several models.

The system for discourse deixis resolution
ranked second for all three tracks of the shared
task. It was able to reach the CoNLL F1 scores
ranging from 35.91% to 62.79% depending on the
track and dataset. Some of these scores are close
to the scores achieved by the winning team.

The model is based on a novel idea that it is
possible to combine the tasks of discourse deixis
and anaphora resolution. It is our first attempt at
implementing this idea, so there is much space for
improvement and additional analysis. First, we
plan on making our model computationally more
efficient, namely, we are going to perform some
experiments with adaptive span pruning and check
the influence of linguistic features given a larger
training set. Second, it is possible to expand the
set of potential anaphors. Before doing that, we
need to analyse the ability of our model to resolve
identity anaphora. Depending on the results, we
may use our discourse deixis resolution model to
enhance the coreference resolution performed by
the WCS model. Finally, the phenomenon of split
antecedents requires more investigation, namely,
how we can model coherence/relations between
them.

The system for the resolution of gold bridging
anaphors is based on a higher order coreference
system adapted for the setting. While the gold men-
tions/anaphors setting is much simpler than full
bridging (mention/anaphor detection and resolu-
tion), the results show how well the span embed-
ding and pairwise scoring mechanisms from Joshi
et al. (2019) and Lee et al. (2018) work for bridging
pairs.
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A Appendix: Discourse Deixis

Here we present statistical findings used to pick out
features to represent anaphor candidates. Table 11
shows the relative frequencies of parent tokens’
lemmas for three types of ‘anaphors’: discourse
deictic, anaphoric and non-referential. Table 12
illustrates the joint distribution of POS and DEP la-
bels of possible anaphor candidates, also depending
on their type. All numbers were extracted from the
CCST 2021 training data, namely ARRAU, Light,
AMI, Persuasion, and Switchboard.

Anaphor’s parent

DD ID non-ref

L
em

m
a

s 0.329 be 0.139 be 0.202
be 0.235 s 0.117 s 0.078
do 0.040 have 0.048 have 0.031
about 0.037 do 0.038 like 0.022
sound 0.020 use 0.027 make 0.022
like 0.020 ... ...
...
have 0.017
...
make 0.013
...
use 0.003

Table 11: Distribution of anaphors’ parents depending
on the anaphors’ types

Mention

DD ID non-ref

PO
S+

D
E

P (PRON, nsubj) 0.664 (PRON, nsubj) 0.46 (PRON, nsubj) 0.390
(PRON, dobj) 0.148 (PRON, dobj) 0.249 (SCONJ, mark) 0.173
(PRON, pobj) 0.117 (DET, det) 0.139 (DET, det) 0.138
(DET, det) 0.03 (PRON, pobj) 0.074 (PRON, pobj) 0.110
(PRON, mark) 0.013 (PRON, dep) 0.02 (PRON, dobj) 0.097

Table 12: Distribution of anaphors’ POS and depen-
dency edges tags depending on the anaphors’ types

Table 13 presents an error analysis of our dis-
course deixis resolution model on the test Light,
AMI and Persuasion data from CCST 2021. We
analyze the antecedent predictions made by our
model as follows. If they are not empty, all pre-
dicted antecedents are divided into split and not
split, depending on a simple heuristics: if a pre-
dicted sequence of (sub)tokens (the very last token
is always excluded) contains a dot, a question or
an exclamation mark), it is considered to be split.
Next, we check if the antecedents’ borders are cor-
rect. Here, four cases are possible: (i) only the left
border is wrong; (ii) only the right border is wrong;
(iii) both borders are wrong; (iv) both borders are
correct.

The table also shows the anaphor type predicted
by the model for all 292 gold discourse deictic
anaphors.

Gold ant. not spl. Gold ant. spl.
Predictions non-ref DD ID non-ref DD ID

no
ts

pl
it left border wr. 0 3 3 0 16 0

right border wr. 0 1 2 0 0 1
all borders wr. 0 34 45 0 4 7
all borders cor. 0 137 0 0 0 0

sp
lit

left border wr. 0 1 0 0 2 0
right border wr. 0 3 0 0 0 0
all borders wr. 0 0 0 0 0 0
all borders cor. 0 0 0 0 7 1

empty 16 3 3 2 1 0

Table 13: Performance on the test partitions of AMI,
Light & Persuasion datasets from CODI-CRAC 2021
Shared Task
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Abstract

CODI-CRAC 2022 Shared Task in Dialogues
consists of three sub-tasks: Sub-task 1 is the res-
olution of anaphoric identity, sub-task 2 is the
resolution of bridging references, and sub-task
3 is the resolution of discourse deixis/abstract
anaphora. Anaphora resolution is the task of
detecting mentions from input documents and
clustering the mentions of the same entity. The
end-to-end model proceeds with the pruning
of the candidate mention, and the pruning has
the possibility of removing the correct men-
tion. Also, the end-to-end anaphora resolution
model has high model complexity, which takes
a long time to train. Therefore, we proceed
with the anaphora resolution as a two-stage
pipeline model. In the first mention detection
step, the score of the candidate word span is
calculated, and the mention is predicted with-
out pruning. In the second anaphora resolution
step, the pair of mentions of the anaphora reso-
lution relationship is predicted using the men-
tions predicted in the mention detection step.
We propose a two-stage anaphora resolution
pipeline model that reduces model complexity
and training time, and maintains similar perfor-
mance to end-to-end models. As a result of the
experiment, the anaphora resolution showed a
performance of 68.27% in Light, 48.87% in
AMI, 69.06% in Persuasion, and 60.99% on
Switchboard. Our final system ranked 3rd on
the leaderboard of sub-task 1.

1 Introduction

Anaphora resolution(Kim et al., 2021; Yu et al.,
2022) is the task of detecting mentions from in-
put documents and clustering the mentions of the
same entity. It is used for various natural lan-
guage processing tasks such as document sum-
marization, question answering, and knowledge
extraction. Mention detection is the task of ex-
tracting candidate word spans that are likely to be
mentions within a sentence. Mention refers to a
span of candidate words that are highly likely to

have a anaphora relationship in a sentence. Most
of the anaphora resolution models being studied
recently are end-to-end models. The end-to-end
model extracts and learns all candidate word spans
that are likely to be a mention and prunes them
at a fixed ratio. The mention pairs are made from
pruned mentions and are clustered into final men-
tion pairs based on calculated scores. However,
fixing the prune ratio is inefficient. A high pruning
ratio increases the number of non-correct candidate
mentions, increasing the amount and complexity
of calculations. Conversely, a low ratio increases
the possibility of removing correct answers instead
of lowering the amount and complexity. Finding
the optimal pruning ratio is important because the
pruning ratio of the mention detection can directly
affect the anaphora resolution performance. There-
fore, we propose a two-stage anaphora resolution
pipeline model to speed up training and reduce
model complexity without pruning. Table 1 sum-
marizes the description of the system and experi-
ment.

In the first mention detection step, the mention
is trained by calculating scores of all possible can-
didate word spans in the input sentence. In the
second anaphora resolution step, a mention pair
consists of the mentions predicted in the detection
step. Then, the mention pair score is calculated to
train the mention pair, which is a anaphora relation-
ship. The proposed model shows high performance
in the mention detection. Moreover, compared with
the self-reimplemented end-to-end anaphora reso-
lution model, it shows similar performance and fast
training speed.

2 Related Works

Recently, anaphora resolution has been studied us-
ing an end-to-end model that learns pairwise scores
of entity mentions(Lee et al., 2017). The end-to-
end model calculate mention score with all possible
spans in a given text. The pruning step proceeds
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Track Resolution of anaphoric identities

Setting Predicted mentions

Baseline -

Approach Sec. 3.1 and 3.2

Train Data Sec. 4.1

Dev Data Sec. 4.1

Table 1: System summary

with the calculated mention scores. The anaphora
score is calculated by a pair of mentions made with
current and antecedent mentions(Lee et al., 2018;
Devlin et al., 2018; Joshi et al., 2020).

Before Dobrovolskii (2021) was introduced, the
end-to-end models mainly achieved a state-of-the-
art anaphora resolution. Dobrovolskii (2021) pro-
ceeded with a pipeline to resolve anaphora reso-
lution. As a result, they reduced the complexity
of the model from O(n4) to O(n2) and improved
its performance. Unlike the existing end-to-end
models, it is possible to efficiently detect mentions
because it does not calculate mention scores and
perform the pruning step. We propose a two-stage
anaphora resolution model that utilizes not only the
information of the current speaker but also of the
previous speaker, considering the anaphora resolu-
tion characteristics of the dialogue domain. The
proposed model is faster in training and evaluation
compared to end-to-end models.

3 Model

3.1 Mention Detection
The mention detection model consists of a pre-
trained language model, a mention representation
generation layer, and a mention score generation
layer.

X = {x1, x2, · · · , xT } (1)

Pre-trained language model receives input tokens in
a sentence and outputs the token representation X .
T denotes the number of tokens. N = T (T +1)/2
is the number of possible text spans.

gm(i) = [xSTART (i), xEND(i)] (2)

Mention representation gm(i) is generated by con-
necting START (i) and END(i), which are the
start and end index token representations of span
i. The mention score Sm(i) is calculated through
FNN (feed-forward neural network):

Sm(i) =Wm · FNNm(gm(i)) (3)

Sm(i) is calculated by multiplying the mention rep-
resentation by the learnable weight Wm. It trains
to minimize the cross-entropy between predicted
and correct mentions, as follows:

lossm = −
∑

i

Y m
i log

(
Ŷ m
i

)
(4)

3.2 Anaphora Resolution
Anaphora resolution model can be divided into a
pre-trained language model, a mention representa-
tion generation layer, and a pairwise score genera-
tion layer. The pre-trained language model receives
input tokens in a document and outputs the token
representation X . D denotes the number of tokens
in the document. We segment a document into the
maximum size of pre-trained language model to
process documents that are longer than this. The
segmented documents are used independently as in-
put. The outputs of the pre-trained language model
are concatenated and reconstructed to be a docu-
ment.

X = {x1, x2, ..., xD} (5)

Mention representation gc(i) is generated using the
predicted mentions in the mention detection model.
The token representations of span boundaries, the
average of token representations in span, and the
feature vector are concatenated to generate gc(i).
The feature vector ϕ(i) contains speaker informa-
tion of current and previous sentences and is initial-
ized by random embedding. This helps eliminate
the ambiguity of personal pronouns such as ’you’
and ’I’ when there are multiple speakers.

gc(i) = [xSTART (i), xEND(i)

, avg(xSTART (i);xEND(i)), ϕ(i)]
(6)

Mention pair uses mention representations to gener-
ate all possible pairs without duplicate ones. Next,
pairwise score Sc(i, j) is calculated through FNN
by connecting gc(i) and gc(j), which are mention
representation pairs:

Sc (i, j) =Wc · FNNc (gc (i) , gc (j)) (7)

Sc(i) is calculated by multiplying the mention rep-
resentation pair by the learnable weight Wc. It
trains to minimize the cross-entropy between pre-
dicted pairwise scores of mention pairs and correct
mention pairs:

lossc = −
∑

i

Y c
i log

(
Ŷ c
i

)
(8)
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4 Experiments

4.1 Datasets
We use datasets provided by CODICRAC 2022
Shared-Task for learning and evaluation. We use
the train and dev dataset of Light, AMI, Persua-
sion, Switchboard and train, dev, and test dataset
of ARRAU for training, and use the test dataset
of Light, AMI, Persuasion, and Switchboard for
evaluation. All datasets are dialogue domains and
consist of Universal Anaphora(Poesio et al., 2004)
annotations. The statistics of the datasets used for
training and validation are shown in Table 2 and
3. #D is the total number of documents, #S is the
total number of sentences, #W is the total number
of words, #M is the total number of mentions, #C
is the total number of clusters, and #SPK is the
average number of speakers per document.

Light AMI PSUA SWBD ARRAU

#D 20 7 21 11 202

#S 909 4,140 813 1,343 4,230

#W 11,495 33,741 9,185 14,992 110,440

#M 3,907 8,918 2,743 4,024 34,454

#C 1,803 4,391 1,513 2,362 23,238

#SPK 2,95 4 2 2 -

Table 2: Statistics for train datasets.

Light AMI PSUA SWBD ARRAU

#D 21 3 27 22 18

#S 924 1,968 1,110 3,653 479

#W 11,824 18,260 12,198 35,027 12,845

#M 3,941 4,870 3,697 9,392 3,961

#C 1,789 2,551 1,996 5,436 2,640

#SPK 3 4 2 2 -

Table 3: Statistics for dev datasets.

4.2 Evaluation Metrics
The Mention Detection Model measures perfor-
mance using F1-score, the harmonic mean of preci-
sion and recall, as follows:

Precision =
TruePositive

TruePositive+ False Positive

Recall =
TruePositive

TruePositive+ FalseNegative

F1− score =
2 ∗ Precision ∗Recall

Precision+Recall

(9)

The evaluation of the anaphora resolution model
is conducted with the SemEval evaluation pro-
gram. We measure CoNLL F1 score(Pradhan
et al., 2014) which averages three performances
in the official evaluation process since CoNLL-
2011: B3(Bagga and Baldwin, 1998), a mention-
based method, CEAFe(Luo, 2005), an entity-based
method and MUC(Vilain et al., 1995), a link-based
method.

4.3 Experiments on Mention Detection
As shown in Table 4, our mention detection
model shows F1 performance of 92.17% on Light,
80.46% on AMI, 89.67% on Persuasion(PSUA),
and 85.02% on Switchboard(SWBD).

Precision Recall F1-score

Light 94.76 89.72 92.17

AMI 88.15 74.01 80.46

PSUA 90.67 88.70 89.67

SWBD 92.60 78.58 85.02

Table 4: Results on mention detection for test datasets.

4.4 Experiments on Anaphora Resolution
As shown in Table 5, our anaphora resolution
model shows a CoNLL F1 performance of 68.27%
on Light, 48.87% on AMI, 69.06% on Persuasion,
and 60.99% on Switchboard.

Light AMI PUSA SWBD

P 73.45 36.05 70.04 53.83

MUC R 83.31 77.67 83.23 83.12

F1 78.07 49.24 76.07 65.34

P 76.72 46.22 70.00 58.46

B3 R 55.14 64.06 69.97 69.08

F1 64.16 53.70 69.99 63.33

P 63.08 70.76 76.31 70.73

CEAFe R 62.07 31.57 51.00 44.07

F1 62.27 43.66 61.14 54.31

CoNLL F1 F1 68.27 48.87 69.06 60.99

Table 5: Results on anaphora resolution for test datasets.

In Table 6, the proposed model shows simi-
lar performance to the self-implemented end-to-
end anaphora resolution model(Lee et al., 2017).
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We also show the effectiveness of the two-stage
pipeline model because the model complexity is re-
duced from O(n4) to O(n2), and the total training
time is reduced by about 1/10.

model Light AMI PSUA SWBD

end-to-end 70.45 35.34 67.52 61.27

ours 68.27 48.87 69.06 60.99

Table 6: CoNLL F1-score of pipeline(proposed model)
and end-to-end model

5 Conclusion

We propose a pipeline model for anaphora reso-
lution. Our proposed model consists of a men-
tion detection model and an anaphora resolution
model. The mention detection model predicts men-
tions by the span prediction method. The anaphora
resolution model predicts a pair of mentions of
an anaphora relation by the mention pair method
based on results from the mention detection model.
In subtask 1, our model achieved 68.3%, 48.8%,
69.1%, and 61.0% performance on Light, AMI,
Persuasion, and Switchboard (ranked in the top 3).
We will study a mention detection model robust
in noun phrases by reflecting the context of the
document and an anaphora resolution model by us-
ing GNN to reflect structural information between
mentions.
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Abstract
We present the systems that we developed
for all three tracks of the CODI-CRAC 2022
shared task, namely the anaphora resolution
track, the bridging resolution track, and the
discourse deixis resolution track. Combin-
ing an effective encoding of the input using
the SpanBERTLarge encoder with an extensive
hyperparameter search process, our systems
achieved the highest scores in all phases of all
three tracks.

1 Introduction

Following the CODI-CRAC 2021 shared task
(Khosla et al., 2021), the CODI-CRAC 2022
shared task (Yu et al., 2022) focuses on resolving
anaphoric references in dialogue. The two shared
tasks are structured in more or less the same way.
Specifically, in order to track progress on resolv-
ing anaphoric references in dialogue made over the
past year, this year’s shared task has essentially
the same format as last year’s, except that a new
Gold Anaphor (Gold A) phase is added to both the
bridging resolution track and the discourse deixis
resolution track. By providing the participants with
gold anaphors, the Gold A phase allows partici-
pants to focus on antecedent selection, thus making
it easier to compare different systems’ resolution
performances.

Similar to last year, this year we participated and
ranked first in all phases of all three tracks. We
believe that our success can largely be attributed
to two factors. First, leveraging the successes
achieved by span-based models in last year’s shared
task (Kobayashi et al., 2021; Xu and Choi, 2021),
we employ SpanBERTLarge (Joshi et al., 2020) as
our encoder in all three tracks. Second, we combine
the resulting effective encoding of the input doc-
uments with an extensive hyperparameter search
process. More specifically:

• for anaphora resolution, we employ a three-
step pipeline approach consisting of mention

extraction, entity coreference resolution, and
removal of non-referring and non-entity men-
tions, pretraining the mention extraction com-
ponent and the entity coreference component
on the OntoNotes 5.0 corpus;

• for discourse deixis resolution, we propose a
number of task-specific extensions to the span-
based model we used in last year’s shared task
(Kobayashi et al., 2021) that involve heuris-
tically extracting candidate anaphors and an-
tecedents, exploiting different types of fea-
tures, and performing distance-based filtering
of candidate antecedents;

• for bridging resolution, we extend Yu and Poe-
sio’s (2020) multi-task learning framework,
which jointly identifies bridging and corefer-
ence links, by replacing its LSTM encoder
with SpanBERTLarge and employing a turn
distance feature.

A brief overview of the approaches we adopted
for the three tracks can be found in Table 1.

The rest of the paper is structured as follows.
The next three sections describe our work for the
three tracks, namely entity coreference (Section 2,
discourse deixis (Section 3), and bridging (Sec-
tion 4). In each section, we describe our approach,
our official results, and a brief analysis of the re-
sults, particularly a discussion of the impact of
hyperparameter tuning on model performance. Fi-
nally, we present our conclusions in Section 5.

2 Anaphora Resolution

Last year we built a span-based entity corefer-
ence model for the Anaphora Resolution track
that achieved competitive performance (Kobayashi
et al., 2021). Since this year’s Anaphora Res-
olution track has the exact same format as last
year’s, we developed this year’s model based on
last year’s model (henceforth UTD2021). Recall that
UTD2021 is an extension of Xu and Choi’s (2020)
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Entity Coreference Resolution
Baseline Kobayashi et al.’s (2021) implementation of Xu and Choi.’s (2020) span-based model
Learning framework A pipeline architecture consisting of a mention detection component, an entity coreference component,

and a non-entity and non-referring mention removal component. The coreference component extends
the baseline by (1) removing the type prediction model; and (2) rescoring the dummy antecedent at
inference time to adjust the likelihood it will be selected as the antecedent.

Markable extraction A mention detection model (adapted from Kobayashi et al. (2021)) is trained to identify the entity
mentions.

Training data The first two steps of our pipelined approach are pretrained on OntoNotes 5.0. All three steps of
our pipelined approach are trained on ARRAU 3.0 (RST, GNOME, TRAINS91, TRAINS93, PEAR,
LIGHTtrain, AMItrain, Persuasiontrain, Switchboardtrain).

Development data For all three steps, LIGHTdev, AMIdev, Persuasiondev, and Switchboarddev are used. Note that after
parameters are tuned on the dev data, we retrain the models on the combined training and dev sets using
the tuned parameters before continuing parameter tuning on the test data. See Section 2.4.3 for details.

Discourse Deixis Resolution
Baseline Xu and Choi’s (2020) implementation of Lee et al.’s (2018) span-based model
Learning framework An extension of Xu and Choi’s model with (1) heuristic extraction of candidate anaphors and antecedents,

(2) an anaphor prediction model with which only those spans predicted as anaphors will be resolved, (3)
a large-scale expansion of statistical features, and (4) filtering of candidate antecedents based on their
distances from the anaphor under consideration. The models developed for the three phases differ w.r.t.
the candidate anaphors they are trained on: in the Predicted phase, the model is trained on heuristically
extracted candidate anaphors; in the Gold Mention phase, the model is trained on gold mentions; and in
the Gold Anaphor phase, the model is trained on gold anaphors with gold mentions as their candidate
antecedents.

Markable extraction For the Predicted phase, markables are heuristically extracted. For the Gold Mention and Gold Anaphor
phases, gold mentions and gold anaphors are used as candidate anaphors respectively. For all phases,
candidate antecedents are extracted heuristically (utterances).

Training data ARRAU 3.0 (RST, GNOME, TRAINS91, TRAINS93, PEAR, LIGHTtrain, LIGHTdev, AMItrain, AMIdev,
Persuasiontrain, Persuasiondev, Switchboardtrain, Switchboarddev).

Development data None: we perform parameter tuning directly on the test data.

Bridging Resolution
Baseline Yu and Poesio’s (2020) multi-task learning (MTL) framework
Learning framework An extension of Yu and Poesio’s framework in which we (1) replace their LSTM encoder with the

SpanBERTLarge encoder and (2) add a turn distance feature. The model for the Predicted phase and the
Gold Mention phrase are both trained on automatically identified spans, while the model for the Gold
Anaphor phase is trained on gold anaphors.

Markable extraction For the Predicted phase, we employ the same mention extractor that we trained for the Anaphora
Resolution track. For the Gold Mention and Gold Anaphor phases, gold mentions and gold anaphors are
used as candidate anaphors respectively whereas gold mentions are used as candidate antecedents.

Training data Three setups: (1) train on all of ARRAU 3.0; (2) pretrain on non-dialogue datasets (RST, GNOME,
TRAINS91, TRAINS93), then train on data from the target (i.e., dialogue) domain (LIGHTtrain, LIGHTdev,
AMItrain, AMIdev, Persuasiontrain, Persuasiondev, Switchboardtrain, Switchboarddev); and (3) for each target
dataset (e.g., LIGHT), first pretrain on non-dialogue datasets (RST, GNOME, TRAINS91, TRAINS93),
then train on only the train split and the development split of the target dataset.

Development data None: we perform parameter tuning directly on the test data.

Table 1: Overview of the approaches we adopted for the three tracks.

coref-hoi model. In order to help the reader
understand the entity coreference model we employ
for this year’s shared task, we will begin by provid-
ing an overview of coref-hoi and UTD2021.

2.1 coref-hoi

coref-hoi (Xu and Choi, 2020) is a re-
implementation of the widely-used end-to-end
coreference model by Lee et al. (2018). This model
enumerates spans of up to a predefined length and,
for computational efficiency reasons, generates a
cultivated list of candidate mention spans that con-
tains only a certain fraction n of the top spans,
where n is a parameter known as the top span ra-

tio. For each candidate mention span x, the model
learns a distribution P (y) over its candidate an-
tecedents y ∈ Y(x). To maintain computational
tractability, Y(x) contains only the top-k candidate
antecedents (computed using the scoring function
sc, as described below) and a dummy antecedent ϵ,
which should be selected when x does not have a
coreferring mention preceding it in the associated
text.

More specifically, P (y) is computed as follows:

P (y) =
es(x,y)∑

y′∈Y(x) e
s(x,y′)

where s(x, y) is a pair-wise score that incorporates
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two types of scores: (1) sm(·), a score that corre-
sponds to the probability of a span being a mention,
(2) sc(·) and sa(·), scores that correspond to the
probability of two spans referring to the same entity
(s(x, ϵ) = 0 for dummy antecedents):

s(x, y) = sm(x) + sm(y) + sc(x, y) + sa(x, y)

sm(x) = FFNNm(gx)

sc(x, y) = g⊤xWcgy

sa(x, y) = FFNNc(gx, gy, gx ◦ gy, ϕ(x, y))

where gx and gy denote the vector representations
of x and y, Wc is a learned weight matrix for bi-
linear scoring, FFNN(·) denotes a feedforward
neural network, ϕ(·) encodes the distance between
two spans as well as the meta-information such as
speaker information.

While sc(·) and sa(·) both attempt to score a
candidate antecedent given a candidate anaphor,
sa(·) is supposed to provide more accurate candi-
date antecedent scores. The reason is that sa(·) is
calculated using an FFNN while sc(·) is a far less
accurate bilinear scoring function. Nevertheless,
sc(·) is much more efficient to compute than sa(·).
Given its efficiency, sc(·) is being used to score
all candidate antecedents (i.e., all the spans pre-
ceding the candidate anaphor), and only the top-k
scoring spans are used to compute P (y) (where k
is a tunable parameter). In other words, the com-
putationally expensive-to-compute sa(·) function
only needs to be applied to the top-k candidate
antecedents for each candidate anaphor.

2.2 UTD2021

UTD2021 has the following four important exten-
sions to coref-hoi:

Type prediction model Motivated in part by our
previous work (Lu and Ng, 2020), we employ a
type prediction model in UTD2021 that takes as in-
put the span embedding gx and computes the prob-
ability that span x has type t (i.e., otx(t)). The
span type tx is determined by the type with the
highest probability. UTD2021 classifies each span
into two types, NULL and ENTITY, where ENTITY

covers both referring and non-referring mentions
and NULL covers the spans that do not correspond
to entities.

otx = FFNNt(gx)

tx = argmax
t

otx(t)

A cross-entropy loss is computed using otx, which
is then multiplied by a type loss coefficient and
added to the loss function of coref-hoi. Specif-
ically:

Loss = λLt + Lc

where Lt and Lc are the type prediction loss and
the entity coreference loss respectively, and λ is
the type loss coefficient, which specifies the rela-
tive importance of the two losses. In other words,
UTD2021 jointly learns type prediction and entity
coreference resolution. The motivation is to allow
the two tasks to influence and mutually benefit from
each other.

Sentence distance feature We hypothesize that
recency plays a role in resolution, so we add the
utterance distance between two spans as an extra
feature into ϕ(x, y) in UTD2021.

Span speaker constraint UTD2021 enforces a
constraint on spans that is empirically derived from
the training and development data: a span cannot
cover more than one speaker’s utterance.

Resolution constraint UTD2021 enforces a con-
sistency constraint on resolution that will be used
in both training and inference. This constraint uses
simple heuristics designed for conversations to pre-
vent two spans x and y from being posited as coref-
erent if they are conflicting. More specifically, we
check whether a span belongs to one of the follow-
ing eight groups:

1. span is or starts with: I, me, my, mine
2. span is or starts with: you, your, yours
3. span is or starts with: he, him, his
4. span is or starts with: she, her
5. span is: their
6. span is: it, its
7. span is: here
8. span is: there
Three constraints are applied to spans that be-

long to these groups:
C1 When two spans have the same speaker: if

both of them are from groups 1, 2, 3, or 4 but
they are not from the same group, then they
cannot be coreferent.

C2 When two spans have different speakers: if
both of them are from groups 1 or 2 and they
are from the same group, then they cannot be
coreferent.

C3 Regardless of the speakers: (1) here cannot
be coreferent with my, your, his, her. and
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anything in group 5, group 6, and group 8;
and (2) there cannot be coreferent with my,
your, his, her, and anything in group 5, group
6, and group 7.

2.3 Our Approach

This year we develop a model for the Anaphora
Resolution track that employs a three-step
pipelined approach, which is composed of (1) men-
tion extraction; (2) coreference resolution; and (3)
removal of non-entity and non-referring mentions.

2.3.1 Step 1: Mention Extraction
The first step of our pipelined approach is to extract
entity mentions from documents. As discussed be-
fore, UTD2021 performs joint entity coreference res-
olution and type prediction, where type prediction
involves predicting each candidate mention span as
ENTITY (referring/non-referring spans) or NULL

(non-entity spans). We use UTD2021 for mention
extraction as follows: all and only those candi-
date mention spans classified as ENTITY will be
extracted as entity mentions and processed by the
entity coreference model.

Recall that UTD2021 employs a loss function that
is a weighted sum of the type prediction loss and
the entity coreference loss, where the weight is de-
termined by the type loss coefficient. To enable the
model to focus on mention extraction (as opposed
to entity coreference), we use with a large type loss
coefficient. In addition, we disable the resolution
constraints when applying UTD2021 in this step.

2.3.2 Step 2: Coreference Resolution
The second step of our pipelined approach is to
produce coreference links using all and only those
spans that are classified as ENTITY in the first
step. To achieve this goal, we make the follow-
ing changes to UTD2021 while keeping the span
speaker constraint and resolution constraint.

Extracting candidate mention spans Instead of
using span enumeration to generate candidate men-
tion spans of up to a predefined length, we use
the spans corresponding to gold entity mentions
(including both referring or non-referring entity
mentions) as the candidate mention spans during
training and the spans corresponding to the men-
tions extracted in the first step as the candidate
mention spans during testing.

Removing the type prediction model The type
prediction model is no longer needed since the can-

didate mention spans are either gold spans (during
training) or spans extracted in the first step (during
testing). Hence, we simply remove it.

Removing the mention score Recall that in
coref-hoi, the mention score sm(·) indicates
how likely a span corresponds to an entity mention.
Since every candidate mention span is either a gold
span (during training) or a span extracted in the
first step (during testing), the mention score does
not play a role anymore in determining how likely
two candidate mentions are coreferent. Hence, we
remove the mention score from the antecedent-
anaphor pairwise score. So the new pairwise score
s(·) becomes:

s(x, y) = sc(x, y) + sa(x, y)

where sc(·) and sa(·) are the same as those defined
in coref-hoi.

Inference-time-only dummy antecedent re-
scoring Recall that in coref-hoi, the dummy
antecedent is the correct antecedent for non-
entity/non-anaphoric mentions. Based on empir-
ical observations on our development data, our
resolver fails to select the dummy antecedent as
the antecedent for many non-anaphoric mentions.
Consequently, we modify the score for dummy
antecedents to make the model choose dummy an-
tecedents more frequently. Specifically, instead of
having s(x, ϵ) = 0 for dummy antecedents, we
make s(x, ϵ) = c (c > 0) where c is a tunable pa-
rameter. By doing this, any candidate antecedent
y of span x where 0 < s(x, y) < c will not be
selected as an antecedent of x.

2.3.3 Step 3: Non-referring/Non-entity
Mention Removal

The last step of our pipelined approach is to remove
non-entity mentions and non-referring mentions.
This step is motivated in part by our observation
that our model achieves comparatively low CEAFe

scores on the development data. We hypothesize
that this was caused by the large number of er-
roneously identified singletons that correspond to
non-referring or non-entity mentions. To address
this problem, we train a model for identifying non-
referring and non-entity mentions and apply it to
the coreference output produced in Step 2 to re-
move singleton clusters containing these mentions.
Specifically, we reuse our model in the first step,
but instead of using span enumeration to generate
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candidate mention spans, we use gold entity men-
tions, gold non-referring mentions, and entity men-
tions in which the underlying word/phrase has ap-
peared at least once as a gold entity mention in the
training data as the candidate mention spans. The
type prediction model is modified to predict two
types: OTHER (for non-referring/non-entity spans)
and REFERRING (for referring entity spans). Sin-
gletons that are predicted as OTHER are removed
from the output.

2.4 Evaluation

In this subsection, we discuss some implementation
details and the evaluation results of our system.

2.4.1 Corpora
We mainly use the given ARRAU 3.0 dataset
(Uryupina et al., 2019), which contains two text
corpora, RST and GNOME, and seven dialogue
corpora, TRAINS91, TRAINS93, PEAR, LIGHT,
AMI, Persuasion, and Switchboard. Each of
the LIGHT, AMI, Persuasion, and Switchboard
datasets contains a training set and a development
set. Besides ARRAU, we use OntoNotes 5.01 to
pretrain some of our models. We provide details
about how we use these datasets in Section 2.4.2.

2.4.2 Implementation Details
We use SpanBERTLarge as the encoder in all steps.
We use different learning rates for the BERT-
parameters and the task-parameters (1× 10−5 and
3× 10−4 respectively). In all three steps we train
the model for 30 epochs with a dropout rate of
0.3. Each document in the training set is split into
one or more training instances. Each training in-
stance has at most five continuous segments, each
of which contains 512 token pieces. We set n (the
top span ratio) to 0.4 and k, the number of can-
didate antecedents for each candidate anaphor, to
50.

Prior to training on the shared task datasets, we
pretrain both the first- and second-step models on
OntoNotes 5.0. We do not pretrain our third-step
model on OntoNotes because it covers only a por-
tion of non-referring expressions. In fact, the only
non-referring expressions covered by OntoNotes
5.0 are the predicate noun phrases, while we have a
lot more in the shared task datasets (e.g., expletives,
non-referring quantifiers, idioms).

1https://catalog.ldc.upenn.edu/
LDC2013T19

2.4.3 Parameter Tuning

We divide the model parameters into two groups:
those to be tuned on the development data and those
to be tuned on the test data, as described below.2

Parameters tuned on the development data
The set of parameters we tune on the development
sets includes:

• the span width for span enumeration in the
first step: we experiment with span widths out
of {5, 10, 30};

• the number of epochs for pretraining the first-
and second-step models: we search out of {10,
15, 20};

• the type loss coefficients (for the first- and
third-step models): both type loss coefficients
are searched out of {0.5, 1, 10, 100, 500, 800};

• the number of training epochs (for all mod-
els): we save a model checkpoint every five
epochs and use the saved models to perform
inference.

Parameters tuned on the test data In our final
submissions, all development sets are also used as
training data. The set of parameters we tune on
the test set (using the model trained on both the
training and development data) includes:

• the inference-time-only dummy antecedent
re-scoring score (for the second-step model
only): we experiment with integer scores be-
tween 0 and 10.

• the number of training epochs3 (for all mod-
els): we save a model checkpoint every five
epochs. Saved model checkpoints are used to
do inference on test sets and inference output
is evaluated by making a submission to the
shared task competition.

Parameter tuning proceeds as follows. We tune
the parameters associated with the three models in
our pipeline in a sequential manner. Specifically,
we first tune the parameters associated with the

2In principle, we are not supposed to tune parameters on
the test data. We are effectively just exploiting the fact that
we can evaluate our models on the test data by submitting our
results to the submission site. While we could have tuned all
the parameters on the test data, we did not do so because (1) it
would take a lot of time to do so and (2) there is a limit on the
number of submissions.

3Note that the number of training epochs is a parameter
that appears in both groups: this parameter is first tuned on
the development data and subsequently on the test data.

36



first-step model. Given the best parameter combi-
nation obtained for the first-step model, we then
tune the parameters associated with the second-step
model. Finally, given the best parameter combina-
tion obtained for the models in the first two steps,
we tune the parameters associated with the third-
step model.

Next, we describe how the parameters associ-
ated with each of the three models are tuned. For
the first-step model, we first jointly tune the four
development-set parameters. Then, using the max
span width, the # of epochs for pretraining, and
type loss coefficient obtained via this tuning pro-
cess, we retrain the first-step model on the com-
bined training and development data, tuning the
number of training epochs on the test data.

Given the parameters tuned for the first-step
model, we tune the parameters in the second-step
model. As in the first-step model, we first jointly
tune the four development-set parameters in the
second-step model, then retrain the model using
the best parameter combination on the combined
training and development data, tuning the number
of training epochs on the test data (assuming a
dummy antecedent re-scoring score of 0). Finally,
we tune the dummy antecedent re-scoring score.

Finally, given the parameters tuned for the mod-
els in the first two steps, we tune the parameters in
the third-step model. The parameter tuning process
for the third step model is the same as that for the
first-step model.

2.4.4 System Variants

So far we have presented our coreference resolver
as a three-step pipelined approach. In our evalua-
tion, however, we test the following four variants
of our approach:

1. S1 corresponds to our model without the last
two steps. In other words, we use only the
first-step model to produce entity coreference
results. Note that while the first-step model is
intended for mention extraction, it performs
joint type prediction and entity coreference
resolution and therefore can be used to pro-
duce entity coreference results.

2. S1,S2 corresponds to our model without the
third step (removal of non-entity and non-
referring mentions from the coreference out-
put).

3. S1,S3 corresponds to the setup where the
coreference output produced by the first-

LIGHT AMI Pers. Swbd.

S1 78.52 59.56 76.43 72.42
S1,S2 79.01 60.64 76.81 71.68
S1,S3 81.40 61.51 78.69 75.81
S1,S2,S3 82.23 62.90 79.20 75.25

Table 2: Anaphora resolution: evaluation results of
the four variants of our approach expressed in terms
of CoNLL score on the four test sets. The boldfaced
results are our strongest results on the four test sets and
hence our final results on the shared task competition
leaderboard.

step model is postprocessed by the third-step
model to remove non-entity and non-referring
mentions; and

4. S1,S2,S3 is our full model.

2.4.5 Results and Discussion
In this subsection, we report evaluation results
obtained by making submissions to the shared
task competition, which employs the Universal
Anaphora Scorer4 to calculate the CoNLL score,
which is the unweighted average of the F-scores
computed using the MUC, B3, and CEAFe metrics.

Table 2 shows the entity coreference results on
the official test data for the aforementioned four
variants of our approach. A few points deserve men-
tion. First, the S1,S3 variant achieves the best re-
sult on Switchboard, while the S1,S2,S3 variant
achieves the best results on the remaining three test
sets. Second, by comparing S1 and S1,S2, we
can see that S2 yields only minor improvements (at
most 1% CoNLL score) on three datasets and even
adversely affects performance on Switchboard. We
attribute the ineffectiveness of S2 to the fact that
S1 has already produced good coreference links
for the mentions it extracted. Thus, merely altering
the coreference links would not bring much per-
formance improvement. Third, by comparing S1
and S1,S3, we can see that S3 brings a 2%-3%
CoNLL score improvement on all three datasets,
which pinpoints one of the weaknesses of S1 – hav-
ing too many non-referring/non-mention spans in
its prediction. The same conclusion can be drawn
for S2 by comparing S1,S2 and S1,S2,S3.

Detailed evaluation results of the best perform-
ing system variant on each dataset in terms of MUC,
B3, and CEAFe precision (P), recall (R), and F-
score (F) are shown in Table 3. As can be seen, the

4https://github.com/juntaoy/
universal-anaphora-scorer
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MUC B3 CEAFe

P R F P R F P R F CoNLL

LIGHT 90.56 86.86 88.67 80.41 82.43 81.41 73.11 80.45 76.60 82.23
AMI 74.08 66.15 69.89 62.43 63.60 63.01 48.10 66.43 55.80 62.90
Persuasion 88.41 83.67 85.97 78.99 81.23 80.10 64.89 79.70 71.54 79.20
Switchboard 90.14 74.64 81.66 80.92 73.77 77.18 62.20 76.42 68.58 75.81

Table 3: Anaphora resolution: detailed evaluation results on the four test sets. These results are obtained using the
system variant that achieves the best result on each test set.

(a) Official CoNLL scores of the system variants.

S1 S1,S2 S1,S2,S3

configuration LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

bestdev 77.95 58.99 75.71 71.79 78.63 59.18 76.33 71.46 82.18 62.72 79.02 74.86
besttest 78.52 59.56 76.43 72.42 78.80 60.64 76.72 71.68 - - - -
besttest+DR - - - - 79.01 60.64 76.81 71.68 82.23 62.90 79.20 75.25

(b) Parameter settings for each system variant in different configurations.

S1 S1,S2 S1,S2,S3

configuration parameter LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

bestdev

Maximum span width 30 30 30 30 - - - - - - - -
# of epochs for pretraining 15 15 15 15 15 15 15 15 - - - -
Type loss coefficient 500 500 500 500 - - - - 500 500 500 500
# of training epochs 15 15 15 15 10 20 10 5 5 5 10 10

besttest

Maximum span width 30 30 30 30 - - - - - - - -
# of epochs for pretraining 15 15 15 15 15 15 15 15 - - - -
Type loss coefficient 500 500 500 500 - - - - - - - -
# of training epochs 10 20 20 10 15 15 25 25 - - - -

besttest+DR

Maximum span width - - - - - - - - - - - -
# of epochs for pretraining - - - - 15 15 15 15 - - - -
Type loss coefficient - - - - - - - - 500 500 500 500
# of training epochs - - - - 15 15 25 25 20 30 5 25
Dummy antecedent re-scoring - - - - 3 0 1 0 - - - -

Table 4: Anaphora resolution: official CoNLL scores and detailed parameter settings of three system variants.

performance on AMI is much worse than the per-
formance on any other datasets. We speculate that
the poor performance on AMI is related to its com-
paratively longer documents, as long dependencies
are hard for the model to learn.

To better understand the impact of parameter
tuning on the resolution performance of the system
variants, we report in Tables 4a and 4b the official
CoNLL scores and parameter settings for three
configurations:

• bestdev corresponds to the configuration
that yields the highest CoNLL score on the
test data when only the development-set pa-
rameters are tuned;

• besttest corresponds to the configuration
that yields the highest CoNLL score on the
test data when the development-set parameters
and one of the test-set parameters (the number

of training epochs) are tuned; and
• besttest+DR corresponds to the configu-

ration that yields the hgihest CoNLL score
on the test data when the development-set
parameters and both of the test-set parame-
ters are tuned. Note that besttest+DR and
besttest differ only in terms of whether
the dummy antecedent re-scoring constant is
tuned after all the remaining parameters are
tuned.

Table 4b reports the parameters as follows.
First, the parameters reported for S1, S1,S2, and
S1,S2,S3 are the parameters obtained for the
first-step model, the second-step model, and the
third-step model, respectively. Since the parame-
ter associated with these three models are tuned
in a sequential fashion, the full set of parameters
for S1,S2,S3 can be recovered from the table
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by combining parameters from S1, S1,S2, and
S1,S2,S3. Second, the first three rows for the
three configurations are the same, as those parame-
ters are tuned on the development data only. Third,
besttest+DR for S1 is not applicable, as dummy
antecedent re-scoring is used in the second-step
model. Moreover, we do not report the results of
S1,S3 in this table. Because of time limitations
we do not perform parameter tuning for this variant:
for the parameters associated with S1 we simply
reuse the parameters we tuned for the S1 variant,
and for the parameters associated with S3 we set
the type loss coefficient to 500 and the number of
training epochs to 10.

Several observations can be made on the re-
sults in Table 4.5 First, besttest outperforms
bestdev consistently for a 0.2-1% in CoNLL
score, showing that parameter tuning on the test
data does lead to performance improvements. Sec-
ond, dummy antecedent re-scoring is not very effec-
tive in improving resolution performance. Compar-
ing besttest and besttest+DR for our S1,S2
model, we see that dummy antecedent re-scoring
brings only a diminutive CoNLL score improve-
ment of 0.1-0.2% on two test sets and no improve-
ment at all on the remaining two.

We conclude this section by mentioning that
while our systems ranked first among all partic-
ipants in the anaphora resolution track, there are
still some weaknesses in our systems. First, our sys-
tems have a hard time handling long dependencies,
which we hypothesize to be the main reason why
our systems performed the worst on AMI. Second,
our system cannot handle cases of plural anaphoric
reference in which the antecedents are introduced
by separate mentions, namely split antecedents.

3 Discourse Deixis Resolution

The Discourse Deixis track in this year’s shared
task has three evaluation phases: (1) the Predicted
phase, where a system needs to extract both an-
tecedents and anaphors and perform discourse
deixis resolution; (2) the Gold Mention phase,
which is the same as the Predicted phase except
that anaphors are to be extracted from the given set
of gold mentions; and (3) the Gold Anaphor phase,
which is the same as the Gold Mention phase ex-
cept that gold anaphors are explicitly given. The
Gold Anaphor phase is introduced in this year’s

5In Table 4a the besttest results for S1,S2,S3 are not
available due to time limitations.

shared task to partially address the difficulty of
comparing different resolvers with respect to their
resolution performance (Li et al., 2021).

3.1 Approach

We cast discourse deixis resolution as identity
anaphora resolution. This allows us to use Xu
and Choi’s (2020) coref-hoi model as our base-
line for discourse deixis resolution. In this section,
we describe our approach to discourse deixis res-
olution, which is composed of six extensions to
coref-hoi.

1. Candidate Anaphor Extraction In the shared
task datasets, most deictic expressions are demon-
strative pronouns (e.g., “that”, “this”) and “it”.
These three pronouns account for more than 80% of
the anaphors in the given datasets. Thus, we impose
a simple heuristic to extract candidate anaphors:
instead of extracting them by span enumeration,
we only allow a span in which the underlying
word/phrase has appeared at least once in the train-
ing set to be a candidate anaphor.

2. Anaphor Prediction Similar to our discourse
deixis resolution system in the CODI-CRAC 2021
shared task (Kobayashi et al., 2021), we use a type
prediction model in our system this year. Different
from last year, however, the type prediction model
is used to identify those candidate anaphors that
correspond to deictic expressions. Thus, only two
types are used: ANAPHOR (the candidate anaphor
is indeed a deictic expression) and NULL (the can-
didate anaphor is not).

3. Candidate Antecedent Extraction Since the
shared task datasets are annotated in a way so that
only utterances can serve as an antecedent of deic-
tic expressions, we extract candidate antecedents
as follows. For each span i that is predicted as
ANAPHOR by the type prediction model, we select
the 10 utterances that are closest to i (including
the utterance in which i appears) as its candidate
antecedents. The motivations are that (1) deictic
expressions are anaphoric expressions, and hence
recency plays an important role in antecedent se-
lection, and (2) using the 10 closest utterances al-
lows us to cover more than 95% of the antecedent-
anaphor pairs in the datasets.

4. Dummy Antecedent Elimination In
coref-hoi, the set of candidate antecedents for
every span includes a dummy antecedent, which
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Type Features
Anaphor Embedding of the sentence the anaphor is

in
Antecedent # of words; # of nouns; # of verbs; #

of adjectives; # of content word over-
laps between antecedent and the preced-
ing words of the anaphor; whether an an-
tecedent is the longest among all candidate
antecedents; whether an antecedent has the
most content word overlap among all can-
didate antecedents

Pairwise Sentence distance between a candidate an-
tecedent and an anaphor, ignoring sen-
tences that contain only interjections, fill-
ing words, reporting verbs, and punctua-
tion

Table 5: Additional features used in our model.

will be selected as the antecedent of a span i if
(1) i is not an entity mention or (2) i is an entity
mention but it is not anaphoric.

For our model, the situation is different. Since
only those spans predicted as ANAPHOR by the
anaphor prediction model will be passed to the an-
tecedent selection model, the antecedent selection
model only sees spans that have been classified
as anaphoric. Since these spans are anaphoric,
they should presumably not be resolved to the
dummy antecedent. For this reason, we eliminate
the dummy antecedent from the set of candidate
antecedents of every span when training and testing
the antecedent selection model.
5. Features Our next extension involves a large-
scale expansion of features, hypothesizing that
hand-engineered features could be profitably used
by a span-based model. Specifically, we in-
corporate three types of features: (1) anaphor-
based features, which encode the context of an
anaphor, (2) antecedent-based features, which en-
code some statistics computed based on a candidate
antecedent, and (3) pairwise features, which encode
the relationship between an anaphor and a candi-
date antecedent. The list of features is shown in
Table 5. We add these features to both the bilinear
score sc(x, y) and the concatenation-based score
sa(x, y):

sc(x, y) = g⊤xWcgy + g⊤s Wsgy

sa(x, y) = FFNNc(gx, gy, gx ◦ gy, gs, ϕ(x, y))

where Wc and Ws are learned weight matrices,
gs is the embedding of the sentence s in which
anaphor x appears, and ϕ(x, y) encodes the speaker
information as well as different types of distance
between x and y.

6. Inference-Time-Only Distance-Based Candi-
date Antecedent Filtering Given that we have
fewer training instances for those antecedent-
anaphor pairs that have larger sentence distances
and it is generally harder to learn long-distance de-
pendencies, correctly resolving an anaphor whose
antecedent is far away from it is by no means easy.
Although we use only the 10 closest utterances
during training, we propose to further lower this
number during inference. Specifically, for each
candidate anaphor, the model selects an antecedent
from one of the n closest utterances (1 ≤ n < 10),
where n is a tunable parameter.

3.2 Evaluation

In this subsection, we evaluate our system and dis-
cuss the implementation details.

3.2.1 Implementation Details
The models we use in the three evaluation phases
are similar. Specifically, the only difference be-
tween our models in different phases lies in Ex-
tension 1 (candidate anaphor extraction). In the
Predicted phase, candidate anaphors are selected
using the method stated in Extension 1. In the Gold
Mention phase, the candidate anaphors used for
both training and inference are those words/phrases
in the given set of gold mentions that appeared in
the training set as deictic expressions. In the Gold
Anaphor phase, we use the given anaphors for both
training and inference, so there is no need to extract
anaphors.

We use SpanBERTLarge as the encoder for all
evaluation phases. We use different learning rates
for the BERT-parameters and the task-parameters
(1 × 10−5 and 3 × 10−4 respectively). Each doc-
ument in the training set is split into one or more
training instances. Each training instance has at
most 12 continuous segments, each of which con-
tains 512 tokens. Models are trained for 30 epochs
with a dropout rate of 0.3.

Note that the models used for the later phases
were retrained given the gold mentions and gold
anaphors.

3.2.2 Parameter Tuning
Given that we can make submissions to the shared
task competition and the amount of data we have
is far from abundant, we use all the given datasets
as our training set, and tune the following three pa-
rameters on the test data (by submitting the system
output to the shared task competition):
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MUC B3 CEAFe

P R F P R F P R F CoNLL

Predicted Phase
Light 37.04 31.25 33.90 50.80 33.43 40.32 60.77 26.65 37.05 37.09
AMI 51.67 52.54 52.10 58.76 51.75 55.04 65.06 44.41 52.79 53.31
Persuasion 48.44 59.05 53.22 56.38 57.10 56.74 62.34 47.34 53.82 54.59
Switchboard 63.77 41.12 50.00 70.62 39.28 50.48 76.52 35.82 48.79 49.76

Gold Mention Phase
Light 37.17 32.81 34.85 51.59 35.53 42.08 59.81 28.07 38.21 38.38
AMI 54.46 51.69 53.04 63.15 51.87 56.96 69.31 46.07 55.35 55.12
Persuasion 50.00 58.10 53.74 58.16 56.15 57.13 64.52 46.14 53.80 54.89
Switchboard 66.67 42.99 52.27 71.08 39.35 50.65 72.29 34.35 46.57 49.83

Gold Anaphor Phase
Light 46.88 46.88 46.88 65.13 50.56 56.93 77.02 40.88 53.41 52.40
AMI 71.19 71.19 71.19 81.05 69.12 74.61 87.47 60.76 71.71 72.50
Persuasion 67.62 67.62 67.62 80.42 67.30 73.28 87.10 55.68 67.93 69.61
Switchboard 70.09 70.09 70.09 80.03 69.83 74.58 86.36 61.25 71.67 72.11

Table 6: Discourse deixis resolution: official results on the test sets.

• the type loss coefficient: we search out of {0.5,
1, 5, 10, 100, 500, 800} using grid search.

• the inference-time-only candidate antecedent
filtering constant: we experiment with all in-
tegers between 1 and 10.

• the number of training epochs: we save a
model checkpoint every five epochs and eval-
uate it on the test set.

We jointly tune the type loss coefficient and the
number of training epochs, and determine the can-
didate antecedent filtering constant after the other
two parameters are fixed.

3.2.3 Results and Discussion
We report the detailed official evaluation results of
our system for different phases in Table 6. A few
points deserve mention. First, by comparing the
results in the Predicted phase and the Gold Men-
tion phase, we can see that even though the set
of candidate anaphors is being narrowed down in
the Gold Mention phase, only a small performance
gain (at most 1% CoNLL score) is achieved. We
speculate that our simple heuristic for selecting
candidate anaphors is effective, so the provision
of gold mentions does not eliminate many plau-
sible candidate anaphors. Second, the provision
of gold anaphors has brought huge improvements
(14%-22% CoNLL score) to our system, which
shows that one of the key weaknesses of our sys-
tem is anaphor identification. Third, across all
three phases, our system performs much worse on
LIGHT than on other datasets. Further investiga-
tions are needed to determine the reason.

To better understand the impact of parameter

tuning on the test data, we show in Tables 7a and
7b the CoNLL scores achieved by three system
configurations on the test data:

• worsttest corresponds to the configuration
that yields the worst result on the test data
when only the number of training epochs and
the type loss coefficient are jointly tuned (i.e.,
the antecedent filtering constant is simply set
to 10);

• besttest corresponds to the configuration
that yields the best result on the test data when
only the number of training epochs and the
type loss coefficient are jointly tuned (i.e., the
antecedent filtering constant is simply set to
10);

• besttest+AF corresponds to the configura-
tion that yields the best result on the test data
when the inference-time-only antecedent fil-
tering constant is tuned, with the other two
parameters taken from besttest.

Several observations can be made on the results
shown in Table 7. First, besttest outperforms
worsttest consistently for at most 8% in terms
of CoNLL score. The biggest performance gap
of 7.97% is observed on the Switchboard test set
in the Gold Mention phase: as can be seen, the
parameters associated with the two configurations
differ only with respect to the number of training
epochs. This suggests that the number of epochs
plays an important role in the performance of our
discourse deixis resolver. Similar conclusions can
be drawn by comparing the results in other phases
and on other test sets. Second, inference-time-only
antecedent filtering generally offers little perfor-
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(a) Official CoNLL scores of our models.

Predicted Phase Gold Mention Phase Gold Anaphor Phase

configuration LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

worsttest 34.58 47.36 48.78 45.67 34.07 47.68 49.47 41.86 51.77 68.65 66.78 69.26
besttest 37.09 51.48 50.30 47.96 37.89 55.12 53.40 49.83 52.40 72.50 69.61 72.11
besttest+AF 37.09 51.61 50.42 47.96 38.38 55.12 54.89 49.83 52.40 72.50 69.61 72.11

(b) Parameter settings for each setup in different phases.

Predicted Phase Gold Mention Phase Gold Anaphor Phase

configuration parameter LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

worsttest
Type loss coefficient 0.5 0.5 0.5 0.5 500 100 0.5 500 800 800 800 800
# of training epochs 10 10 15 10 5 15 15 5 10 15 20 15
Antecedent filtering constant 10 10 10 10 10 10 10 10 10 10 10 10

besttest
Type loss coefficient 0.5 0.5 0.5 0.5 800 500 500 500 800 800 800 800
# of training epochs 10 5 20 20 15 10 10 15 15 5 15 10
Antecedent filtering constant 10 10 10 10 10 10 10 10 10 10 10 10

besttest+AF
Type loss coefficient 0.5 0.5 0.5 0.5 800 500 500 500 800 800 800 800
# of training epochs 10 5 20 20 15 10 10 15 15 5 15 10
Antecedent filtering constant 10 7 7 10 7 10 7 10 10 10 10 10

Table 7: Discourse deixis resolution: official CoNLL scores of our models and detailed parameter settings in
different phases.

mance improvement, though it has yielded perfor-
mance gains of 0.2%-1.3% in CoNLL score on
some test sets.

We conclude this section by pointing out that
our system ranked first for all three phases in the
discourse deixis resolution track. While our sys-
tem was 1%-5% CoNLL scores better than the
second-ranked team in the Predicted phase and the
Gold mention phase, our system outperformed the
second-ranked team by large margins of 5%-16%
CoNLL scores in the Gold Anaphor phase, which
shows the effectiveness of our system in discourse
deixis resolution.

4 Bridging Resolution

Like the Discourse Deixis track, the Bridging Res-
olution track in this year’s shared task has three
different phases, namely the Predicted phase, the
Gold Mention phase, and the Gold Anaphor phase.
While discourse deixis resolution has received
fairly little attention in the NLP community in re-
cent years, constant progress has been made for
bridging resolution. Nevertheless, such progress
has thus far limited to a large extent to the Gold
Mention setting, where gold mentions are given,
and the Gold Anaphor setting, where gold anaphors
are given (see Kobayashi and Ng (2020) for a com-
prehensive overview and Kobayashi et al. (2022a)
for state-of-the-art results). In particular, little

progress has been made on end-to-end bridging
resolution, which corresponds to the setup used in
the Predicted phase of the shared task.

Motivated in part by the success of the hybrid
rule-based and learning-based approach to bridging
resolution developed by Kobayashi and Ng (2021),
we adopted a multi-pass sieve approach to bridging
resolution in last year’s shared task, where we em-
ployed a pipeline of sieves consisting of a neural
sieve, which is essentially Yu and Poesio’s span-
based neural model that employs multi-task learn-
ing, and a set of same-head sieves, which were
specifically designed to target the identification of
bridging links between two mentions having the
same head. Given that the improvement offered by
the same-head sieves is small, we abandon them
this year and focus instead on extending Yu and
Poesio’s multi-task learning framework for bridg-
ing resolution. Below we first provide an overview
of Yu and Poesio’s model.

4.1 Yu and Poesio’s (2020) Model
Yu and Poesio’s (Y&P) model is a span-based neu-
ral model that takes gold mentions as input and
jointly performs entity coreference resolution and
bridging resolution. The way Y&P differs from
other end-to-end span-based coreference models
is that it uses two FFNN’s to separately predict
coreference links and bridging links. These two
FFNNs share the first few hidden layers as well as
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the span representation layer. The loss function of
this MTL model is composed of a weighted sum of
the losses of the bridging task and the coreference
task. Unlike feature-based approaches to bridging
resolution, where feature engineering plays a criti-
cal role in performance, this neural model employs
only two features, the length of a mention and the
mention-pair distance.

4.2 Approach

Since Y&P’s model takes gold mentions as input,
we need a mention extractor before we can deploy
it. For this reason, we employ a pipelined approach
to bridging resolution, where we first extract men-
tions using a mention extractor and then perform
bridging resolution using our extended Y&P model.
Below we describe the extensions we made to Y&P.

4.2.1 Extensions to the Y&P Model

We employ two extensions to the Y&P model.

Using SpanBERT as encoder Given the suc-
cessful application of SpanBERT to entity coref-
erence in the past few years, it is natural to think
about applying SpanBERT to bridging resolution.
In fact, SpanBERT has recently been shown to
yield promising results when applied to resolv-
ing bridging references in narratives (Kobayashi
et al., 2022b). Hence, our first extension to Y&P
involves replacing its biLSTM encoder and the
frozen BERT/Glove embeddings used by the biL-
STM with SpanBERTLarge in order to strengthen
Y&P’s performance. We adopt the independent
version of Joshi et al. (2019), where each input
document is split into non-overlapping segments
of length up to Ls.

Adding Turn Distance as a feature As men-
tioned above, Y&P employs only two features,
namely the length of a mention and the mention-
pair distance. Since Y&P is not designed for the
dialogue domain, neither of the two features cap-
tures information regarding the dialogue domain.
We follow our work in last year’s shared task and
add the turn distance between mentions as a fea-
ture, where a turn is defined as a set of contiguous
sentences by the same speaker.

4.3 Evaluation

In this subsection, we evaluate our system and dis-
cuss the implementation details.

4.3.1 Implementation Details
Each document is split into segments of length 384.
The 40% top scoring spans are retained for bridging
resolution. The weight parameter associated with
the weighted sum of losses of the bridging task and
the coreference task is set to 1, meaning that the
two tasks are given equal importance in the learning
process. Below we discuss how the models used
for the three phases differ from each other.

4.3.1.1 Predicted Phase
In the Predicted phase, our system needs to extract
mentions and perform bridging resolution. We first
use our S1 system described in Section 2 to extract
mentions, then use our modified Y&P model to
perform bridging resolution on the extracted men-
tions.

We test our model with the following training
setups as different setups may lead to large perfor-
mance differences:
T1: In this setup, we use all the available datasets

for model training, namely ARRAU RST,
GNOME, TRAINS91, TRAINS93, LIGHT,
AMI, Persuasion, and Switchboard. In partic-
ular, both the training split and the develop-
ment split of LIGHT, AMI, Persuasion, and
Switchboard are used for training. Our system
is trained for at most 25 epochs.

T2: In this setup, we first pretrain our system
on the datasets that are outside of the target
(i.e., dialogue) domain, namely ARRAU RST,
GNOME, TRAINS91, and TRAINS93, for
15 epochs. After that, we train our system
on one dataset that contains all of the data
from the target domain, namely LIGHT, AMI,
Persuasion, and Switchboard, for 25 epochs.

T3: Similar to T2, we first pretrain our system on
the datasets that are outside of the target do-
main for 15 epochs. However, for each dataset
from the target domain, we train our model
for 25 epochs using both the training split and
the development split of that target domain.
For instance, when evaluating our system on
LIGHTtest, we train a model on LIGHTtrain
and LIGHTdev. Hence, the documents used to
train the models in T3 are a subset of those
used to train the models in T2.

In preliminary experiments, we found that mod-
els trained with both predicted mentions and gold
mentions performed better than models trained
with only gold mentions. Thus, for each training
setup, we first extract mentions from the training
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Light AMI Persuasion Switchboard

P R F P R F P R F P R F

Predicted Phase

Recognition
T1 56.80 26.23 35.89 42.46 17.59 24.88 39.35 35.86 37.52 55.30 25.86 35.24
T2 53.37 33.13 40.88 37.44 18.29 24.57 41.46 39.14 40.27 46.48 28.45 35.29
T3 46.20 41.13 43.52 43.87 15.74 23.17 35.09 43.75 38.95 48.93 34.48 40.46

Resolution
T1 34.93 16.13 22.07 22.91 9.49 13.42 27.80 25.33 26.51 27.65 12.93 17.62
T2 30.36 18.84 23.25 18.48 9.03 12.13 28.57 26.97 27.75 22.89 14.01 17.38
T3 24.07 21.43 22.67 22.58 8.10 11.93 24.80 30.92 27.53 23.85 16.81 19.72

Gold Mention Phase

Recognition
T1 61.66 23.77 34.31 52.76 24.31 33.28 44.36 40.13 42.14 53.99 18.97 28.07
T2 57.85 35.84 44.26 43.55 25.00 31.76 46.02 43.75 44.86 49.16 31.47 38.37
T3 56.04 34.85 42.98 40.38 34.49 37.20 41.27 49.01 44.81 49.44 37.72 42.79

Resolution
T1 39.30 15.15 21.87 31.16 14.35 19.65 32.36 29.28 30.74 31.29 10.99 16.27
T2 34.99 21.67 26.77 21.77 12.50 15.88 34.60 32.89 33.73 26.26 16.81 20.50
T3 33.86 21.06 25.97 18.70 15.97 17.23 31.86 37.83 34.59 26.27 20.04 22.74

Gold Anaphor Phase

Recognition
T1 97.78 97.78 97.78 97.69 97.69 97.69 98.03 98.03 98.03 98.49 98.49 98.49
T2 97.78 97.78 97.78 97.69 97.69 97.69 98.03 98.03 98.03 98.49 98.49 98.49
T4 97.78 97.78 97.78 97.69 97.69 97.69 98.03 98.03 98.03 98.49 98.49 98.49

Resolution
T1 46.80 46.80 46.80 39.35 39.35 39.35 56.58 56.58 56.58 43.75 43.75 43.75
T2 40.15 40.15 40.15 31.71 31.71 31.71 51.97 51.97 51.97 37.07 37.07 37.07
T4 46.55 46.55 46.55 38.19 38.19 38.19 56.91 56.91 56.91 44.40 44.40 44.40

Table 8: Bridging resolution: recognition results and resolution results on the test sets. The boldfaced results are the
official F-scores of our system on the shared task leaderboard.

set using our S1 system6 and then use the extracted
mentions along with the gold mentions for model
training.

4.3.1.2 Gold Mention Phase
In the Gold Mention phase, we do not retrain our
models. Instead, we perform bridging resolution
on the given gold mentions in the test data using
the models trained in the Predicted phase.

4.3.1.3 Gold Anaphor Phase
In the Gold Anaphor phase, since gold anaphors
are explicitly given, we constrain our models so
that only gold anaphors can be resolved to other
gold mentions during both training and inference.
We test our models using the T1 and T2 setups
mentioned in Section 4.3.1 as well as a new setup:
T4: After training our model in the T1 setup, we

execute an extra fine-tuning step where we
fine-tune our model for 25 epochs using both
the training split and the development split of
the target domain. For instance, when evaluat-
ing our system on LIGHTtest, we first train a
model using the T1 setup and then fine-tune

6Note that S1, which was trained on the training set, is
applied to the training set to extract mentions.

the resulting model on LIGHTtrain.
T4 serves as an alternative to T3. The only dif-
ference between T3 and T4 is that T3 performs
fine-tuning on the target domain after it finishes
pretraining on datasets outside of the target do-
main, whereas T4 performs extra fine-tuning on
the target domain after a model is trained according
to T1.

4.3.2 Parameter Tuning
We do not tune any parameters on the development
data. The number of training epochs is the only
parameter we tune on the test data. As in anaphora
resolution and discourse deixis resolution, to tune
the number of training epochs we save a model
checkpoint every five epochs and evaluate it on the
test set. Note that the number of training epochs is
tuned separately for each setup.

4.3.3 Results and Discussion
For each test set, the best resolution result achieved
over all setups will be used as our official result.
Table 8 shows the official recognition and reso-
lution results of our bridging resolver on the test
sets. Our system achieves resolution F-scores of
13.42%-27.75% for the Predicted phase. For the
Gold Mention phase and Gold Anaphor phase, our
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(a) Predicted phase

T1, Predicted Phase T2, Predicted Phase T3, Predicted Phase

# epochs LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

5 17.44 13.42 24.78 13.46 23.20 10.73 24.78 19.23 22.67 11.93 25.09 17.68
10 17.75 11.98 25.27 15.76 22.24 10.49 26.05 17.12 22.58 11.17 27.53 19.72
15 22.07 13.27 26.51 17.62 23.25 12.13 26.73 17.38 21.48 11.73 26.64 16.16
20 20.61 11.73 24.59 17.54 22.06 11.91 27.75 17.08 22.66 11.24 26.94 16.24
25 21.43 12.48 22.80 17.33 23.12 11.73 27.42 17.26 21.52 10.88 25.65 17.85

(b) Gold Anaphor phase

T1, Gold Anaphor Phase T2, Gold Anaphor Phase T4, Gold Anaphor Phase

# epochs LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

5 46.80 37.73 56.58 43.75 38.92 28.47 48.36 32.76 46.55 37.04 53.62 44.40
10 46.31 39.35 48.68 42.67 40.15 31.71 51.32 37.07 46.55 36.11 53.62 42.24
15 45.94 37.04 51.32 42.24 38.55 30.56 50.00 36.21 46.55 37.27 54.93 42.03
20 45.07 37.04 52.63 43.32 36.95 30.79 51.97 35.99 46.55 38.19 56.91 43.10
25 44.83 38.43 52.30 42.46 37.68 29.86 50.33 35.34 - - - -

Table 9: Bridging resolution: official resolution F-scores of our models in terms of the number of training epochs
and the setup for two phases.

system achieves F-scores of 19.65%-34.59% and
39.35%-56.91% respectively. The performance im-
provements in the later phases should not be sur-
prising, as the task becomes progressively easier in
the later phases.

A few points deserve mention. First, the results
show a strong positive correlation between recogni-
tion performance and resolution performance. This
should not be surprising either, as strong recogni-
tion performance lays the foundation for strong res-
olution performance. Second, as mentioned above,
we do not retrain our models in the Gold Mention
phase. Thus, the performance gains we achieve in
the Gold Mention phase over the Predicted phase
can be attributed solely to the difference between
using predicted mentions and using gold mentions.
In particular, almost all setups achieve better per-
formance in the Gold Mention phase except T1 on
Switchboard, where worse results are obtained for
both recognition and resolution performance. We
speculate that, although gold mentions are given,
identifying bridging anaphors is still a non-trivial
task. Additional experiments are needed to de-
termine the reason, however. Third, in the Gold
Anaphor phase, all setups achieve much better re-
sults than those in the Gold Mention phase. In
some setups the results increase by 100%. This
should not be surprising, as anaphor recognition
performance has gone from around 30% F-score to
nearly 100% F-score.

To examine the impact of parameter tuning on

the test data, we show in Tables 9a and 9b how the
resolution F-score of our bridging resolver on the
test data varies with the number of training epochs
for each setup. Note that these results are available
only for the Predicted phase and the Gold Anaphor
phase but not the Gold Mention phase because in
the Gold Mention phase we simply reuse the mod-
els trained during the Predicted phase. As we can
see, the number of training epochs has a large im-
pact on the performance of our bridging resolver:
the difference in resolution F-score between the
worst combination and the best combination can
be as large as 4.63%. The choice of setup can lead
to a even larger difference — an F-score difference
of 11.64% between T2 and T4 on Switchboardtest
in the Gold Anaphor phase.

We conclude this section by mentioning that our
system ranked first in all phases of the bridging
resolution track. In particular, our system outper-
formed the second-ranking team for 4%-9% reso-
lution F-scores in the Gold Anaphor phase.

5 Conclusions

We presented the systems that we developed for all
three tracks of the CODI-CRAC 2022 shared task,
namely the anaphora resolution track, the bridging
resolution track, and the discourse deixis resolu-
tion track. For anaphora resolution, we employed
a three-step approach consisting of mention ex-
traction, coreference resolution, and removal of
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non-referring and non-entity mentions. Our results
demonstrated that the third-step model, the non-
referring/non-entity removal model, contributed a
lot to overall resolution performance. However, our
system is still not able to handle split-antecedents,
which is a direction for future improvements. For
discourse deixis resolution, our results revealed
that one of the key weaknesses in our system is
anaphor detection, as a large performance gain
could be achieved when the model was applied to
gold anaphors. For bridging resolution, our results
showed that the Gold Anaphor phase was much eas-
ier than the Predicted phase and the Gold Mention
phase. The resulting large performance gap pro-
vided suggestive evidence that there is still a lot of
room for improvement in bridging anaphor detec-
tion. Future work should focus on (1) determining
the extent to which performance would deteriorate
when all model parameters are tuned on develop-
ment data and (2) performing a cross-team analysis
to better understand how the resolvers from differ-
ent teams are different from each other.
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