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Abstract
We present the systems that we developed
for all three tracks of the CODI-CRAC 2022
shared task, namely the anaphora resolution
track, the bridging resolution track, and the
discourse deixis resolution track. Combin-
ing an effective encoding of the input using
the SpanBERTLarge encoder with an extensive
hyperparameter search process, our systems
achieved the highest scores in all phases of all
three tracks.

1 Introduction

Following the CODI-CRAC 2021 shared task
(Khosla et al., 2021), the CODI-CRAC 2022
shared task (Yu et al., 2022) focuses on resolving
anaphoric references in dialogue. The two shared
tasks are structured in more or less the same way.
Specifically, in order to track progress on resolv-
ing anaphoric references in dialogue made over the
past year, this year’s shared task has essentially
the same format as last year’s, except that a new
Gold Anaphor (Gold A) phase is added to both the
bridging resolution track and the discourse deixis
resolution track. By providing the participants with
gold anaphors, the Gold A phase allows partici-
pants to focus on antecedent selection, thus making
it easier to compare different systems’ resolution
performances.

Similar to last year, this year we participated and
ranked first in all phases of all three tracks. We
believe that our success can largely be attributed
to two factors. First, leveraging the successes
achieved by span-based models in last year’s shared
task (Kobayashi et al., 2021; Xu and Choi, 2021),
we employ SpanBERTLarge (Joshi et al., 2020) as
our encoder in all three tracks. Second, we combine
the resulting effective encoding of the input doc-
uments with an extensive hyperparameter search
process. More specifically:

• for anaphora resolution, we employ a three-
step pipeline approach consisting of mention

extraction, entity coreference resolution, and
removal of non-referring and non-entity men-
tions, pretraining the mention extraction com-
ponent and the entity coreference component
on the OntoNotes 5.0 corpus;

• for discourse deixis resolution, we propose a
number of task-specific extensions to the span-
based model we used in last year’s shared task
(Kobayashi et al., 2021) that involve heuris-
tically extracting candidate anaphors and an-
tecedents, exploiting different types of fea-
tures, and performing distance-based filtering
of candidate antecedents;

• for bridging resolution, we extend Yu and Poe-
sio’s (2020) multi-task learning framework,
which jointly identifies bridging and corefer-
ence links, by replacing its LSTM encoder
with SpanBERTLarge and employing a turn
distance feature.

A brief overview of the approaches we adopted
for the three tracks can be found in Table 1.

The rest of the paper is structured as follows.
The next three sections describe our work for the
three tracks, namely entity coreference (Section 2,
discourse deixis (Section 3), and bridging (Sec-
tion 4). In each section, we describe our approach,
our official results, and a brief analysis of the re-
sults, particularly a discussion of the impact of
hyperparameter tuning on model performance. Fi-
nally, we present our conclusions in Section 5.

2 Anaphora Resolution

Last year we built a span-based entity corefer-
ence model for the Anaphora Resolution track
that achieved competitive performance (Kobayashi
et al., 2021). Since this year’s Anaphora Res-
olution track has the exact same format as last
year’s, we developed this year’s model based on
last year’s model (henceforth UTD2021). Recall that
UTD2021 is an extension of Xu and Choi’s (2020)
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Entity Coreference Resolution
Baseline Kobayashi et al.’s (2021) implementation of Xu and Choi.’s (2020) span-based model
Learning framework A pipeline architecture consisting of a mention detection component, an entity coreference component,

and a non-entity and non-referring mention removal component. The coreference component extends
the baseline by (1) removing the type prediction model; and (2) rescoring the dummy antecedent at
inference time to adjust the likelihood it will be selected as the antecedent.

Markable extraction A mention detection model (adapted from Kobayashi et al. (2021)) is trained to identify the entity
mentions.

Training data The first two steps of our pipelined approach are pretrained on OntoNotes 5.0. All three steps of
our pipelined approach are trained on ARRAU 3.0 (RST, GNOME, TRAINS91, TRAINS93, PEAR,
LIGHTtrain, AMItrain, Persuasiontrain, Switchboardtrain).

Development data For all three steps, LIGHTdev, AMIdev, Persuasiondev, and Switchboarddev are used. Note that after
parameters are tuned on the dev data, we retrain the models on the combined training and dev sets using
the tuned parameters before continuing parameter tuning on the test data. See Section 2.4.3 for details.

Discourse Deixis Resolution
Baseline Xu and Choi’s (2020) implementation of Lee et al.’s (2018) span-based model
Learning framework An extension of Xu and Choi’s model with (1) heuristic extraction of candidate anaphors and antecedents,

(2) an anaphor prediction model with which only those spans predicted as anaphors will be resolved, (3)
a large-scale expansion of statistical features, and (4) filtering of candidate antecedents based on their
distances from the anaphor under consideration. The models developed for the three phases differ w.r.t.
the candidate anaphors they are trained on: in the Predicted phase, the model is trained on heuristically
extracted candidate anaphors; in the Gold Mention phase, the model is trained on gold mentions; and in
the Gold Anaphor phase, the model is trained on gold anaphors with gold mentions as their candidate
antecedents.

Markable extraction For the Predicted phase, markables are heuristically extracted. For the Gold Mention and Gold Anaphor
phases, gold mentions and gold anaphors are used as candidate anaphors respectively. For all phases,
candidate antecedents are extracted heuristically (utterances).

Training data ARRAU 3.0 (RST, GNOME, TRAINS91, TRAINS93, PEAR, LIGHTtrain, LIGHTdev, AMItrain, AMIdev,
Persuasiontrain, Persuasiondev, Switchboardtrain, Switchboarddev).

Development data None: we perform parameter tuning directly on the test data.

Bridging Resolution
Baseline Yu and Poesio’s (2020) multi-task learning (MTL) framework
Learning framework An extension of Yu and Poesio’s framework in which we (1) replace their LSTM encoder with the

SpanBERTLarge encoder and (2) add a turn distance feature. The model for the Predicted phase and the
Gold Mention phrase are both trained on automatically identified spans, while the model for the Gold
Anaphor phase is trained on gold anaphors.

Markable extraction For the Predicted phase, we employ the same mention extractor that we trained for the Anaphora
Resolution track. For the Gold Mention and Gold Anaphor phases, gold mentions and gold anaphors are
used as candidate anaphors respectively whereas gold mentions are used as candidate antecedents.

Training data Three setups: (1) train on all of ARRAU 3.0; (2) pretrain on non-dialogue datasets (RST, GNOME,
TRAINS91, TRAINS93), then train on data from the target (i.e., dialogue) domain (LIGHTtrain, LIGHTdev,
AMItrain, AMIdev, Persuasiontrain, Persuasiondev, Switchboardtrain, Switchboarddev); and (3) for each target
dataset (e.g., LIGHT), first pretrain on non-dialogue datasets (RST, GNOME, TRAINS91, TRAINS93),
then train on only the train split and the development split of the target dataset.

Development data None: we perform parameter tuning directly on the test data.

Table 1: Overview of the approaches we adopted for the three tracks.

coref-hoi model. In order to help the reader
understand the entity coreference model we employ
for this year’s shared task, we will begin by provid-
ing an overview of coref-hoi and UTD2021.

2.1 coref-hoi

coref-hoi (Xu and Choi, 2020) is a re-
implementation of the widely-used end-to-end
coreference model by Lee et al. (2018). This model
enumerates spans of up to a predefined length and,
for computational efficiency reasons, generates a
cultivated list of candidate mention spans that con-
tains only a certain fraction n of the top spans,
where n is a parameter known as the top span ra-

tio. For each candidate mention span x, the model
learns a distribution P (y) over its candidate an-
tecedents y ∈ Y(x). To maintain computational
tractability, Y(x) contains only the top-k candidate
antecedents (computed using the scoring function
sc, as described below) and a dummy antecedent ϵ,
which should be selected when x does not have a
coreferring mention preceding it in the associated
text.

More specifically, P (y) is computed as follows:

P (y) =
es(x,y)∑

y′∈Y(x) e
s(x,y′)

where s(x, y) is a pair-wise score that incorporates
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two types of scores: (1) sm(·), a score that corre-
sponds to the probability of a span being a mention,
(2) sc(·) and sa(·), scores that correspond to the
probability of two spans referring to the same entity
(s(x, ϵ) = 0 for dummy antecedents):

s(x, y) = sm(x) + sm(y) + sc(x, y) + sa(x, y)

sm(x) = FFNNm(gx)

sc(x, y) = g⊤x Wcgy

sa(x, y) = FFNNc(gx, gy, gx ◦ gy, ϕ(x, y))

where gx and gy denote the vector representations
of x and y, Wc is a learned weight matrix for bi-
linear scoring, FFNN(·) denotes a feedforward
neural network, ϕ(·) encodes the distance between
two spans as well as the meta-information such as
speaker information.

While sc(·) and sa(·) both attempt to score a
candidate antecedent given a candidate anaphor,
sa(·) is supposed to provide more accurate candi-
date antecedent scores. The reason is that sa(·) is
calculated using an FFNN while sc(·) is a far less
accurate bilinear scoring function. Nevertheless,
sc(·) is much more efficient to compute than sa(·).
Given its efficiency, sc(·) is being used to score
all candidate antecedents (i.e., all the spans pre-
ceding the candidate anaphor), and only the top-k
scoring spans are used to compute P (y) (where k
is a tunable parameter). In other words, the com-
putationally expensive-to-compute sa(·) function
only needs to be applied to the top-k candidate
antecedents for each candidate anaphor.

2.2 UTD2021

UTD2021 has the following four important exten-
sions to coref-hoi:

Type prediction model Motivated in part by our
previous work (Lu and Ng, 2020), we employ a
type prediction model in UTD2021 that takes as in-
put the span embedding gx and computes the prob-
ability that span x has type t (i.e., otx(t)). The
span type tx is determined by the type with the
highest probability. UTD2021 classifies each span
into two types, NULL and ENTITY, where ENTITY

covers both referring and non-referring mentions
and NULL covers the spans that do not correspond
to entities.

otx = FFNNt(gx)

tx = argmax
t

otx(t)

A cross-entropy loss is computed using otx, which
is then multiplied by a type loss coefficient and
added to the loss function of coref-hoi. Specif-
ically:

Loss = λLt + Lc

where Lt and Lc are the type prediction loss and
the entity coreference loss respectively, and λ is
the type loss coefficient, which specifies the rela-
tive importance of the two losses. In other words,
UTD2021 jointly learns type prediction and entity
coreference resolution. The motivation is to allow
the two tasks to influence and mutually benefit from
each other.

Sentence distance feature We hypothesize that
recency plays a role in resolution, so we add the
utterance distance between two spans as an extra
feature into ϕ(x, y) in UTD2021.

Span speaker constraint UTD2021 enforces a
constraint on spans that is empirically derived from
the training and development data: a span cannot
cover more than one speaker’s utterance.

Resolution constraint UTD2021 enforces a con-
sistency constraint on resolution that will be used
in both training and inference. This constraint uses
simple heuristics designed for conversations to pre-
vent two spans x and y from being posited as coref-
erent if they are conflicting. More specifically, we
check whether a span belongs to one of the follow-
ing eight groups:

1. span is or starts with: I, me, my, mine
2. span is or starts with: you, your, yours
3. span is or starts with: he, him, his
4. span is or starts with: she, her
5. span is: their
6. span is: it, its
7. span is: here
8. span is: there
Three constraints are applied to spans that be-

long to these groups:
C1 When two spans have the same speaker: if

both of them are from groups 1, 2, 3, or 4 but
they are not from the same group, then they
cannot be coreferent.

C2 When two spans have different speakers: if
both of them are from groups 1 or 2 and they
are from the same group, then they cannot be
coreferent.

C3 Regardless of the speakers: (1) here cannot
be coreferent with my, your, his, her. and
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anything in group 5, group 6, and group 8;
and (2) there cannot be coreferent with my,
your, his, her, and anything in group 5, group
6, and group 7.

2.3 Our Approach

This year we develop a model for the Anaphora
Resolution track that employs a three-step
pipelined approach, which is composed of (1) men-
tion extraction; (2) coreference resolution; and (3)
removal of non-entity and non-referring mentions.

2.3.1 Step 1: Mention Extraction
The first step of our pipelined approach is to extract
entity mentions from documents. As discussed be-
fore, UTD2021 performs joint entity coreference res-
olution and type prediction, where type prediction
involves predicting each candidate mention span as
ENTITY (referring/non-referring spans) or NULL

(non-entity spans). We use UTD2021 for mention
extraction as follows: all and only those candi-
date mention spans classified as ENTITY will be
extracted as entity mentions and processed by the
entity coreference model.

Recall that UTD2021 employs a loss function that
is a weighted sum of the type prediction loss and
the entity coreference loss, where the weight is de-
termined by the type loss coefficient. To enable the
model to focus on mention extraction (as opposed
to entity coreference), we use with a large type loss
coefficient. In addition, we disable the resolution
constraints when applying UTD2021 in this step.

2.3.2 Step 2: Coreference Resolution
The second step of our pipelined approach is to
produce coreference links using all and only those
spans that are classified as ENTITY in the first
step. To achieve this goal, we make the follow-
ing changes to UTD2021 while keeping the span
speaker constraint and resolution constraint.

Extracting candidate mention spans Instead of
using span enumeration to generate candidate men-
tion spans of up to a predefined length, we use
the spans corresponding to gold entity mentions
(including both referring or non-referring entity
mentions) as the candidate mention spans during
training and the spans corresponding to the men-
tions extracted in the first step as the candidate
mention spans during testing.

Removing the type prediction model The type
prediction model is no longer needed since the can-

didate mention spans are either gold spans (during
training) or spans extracted in the first step (during
testing). Hence, we simply remove it.

Removing the mention score Recall that in
coref-hoi, the mention score sm(·) indicates
how likely a span corresponds to an entity mention.
Since every candidate mention span is either a gold
span (during training) or a span extracted in the
first step (during testing), the mention score does
not play a role anymore in determining how likely
two candidate mentions are coreferent. Hence, we
remove the mention score from the antecedent-
anaphor pairwise score. So the new pairwise score
s(·) becomes:

s(x, y) = sc(x, y) + sa(x, y)

where sc(·) and sa(·) are the same as those defined
in coref-hoi.

Inference-time-only dummy antecedent re-
scoring Recall that in coref-hoi, the dummy
antecedent is the correct antecedent for non-
entity/non-anaphoric mentions. Based on empir-
ical observations on our development data, our
resolver fails to select the dummy antecedent as
the antecedent for many non-anaphoric mentions.
Consequently, we modify the score for dummy
antecedents to make the model choose dummy an-
tecedents more frequently. Specifically, instead of
having s(x, ϵ) = 0 for dummy antecedents, we
make s(x, ϵ) = c (c > 0) where c is a tunable pa-
rameter. By doing this, any candidate antecedent
y of span x where 0 < s(x, y) < c will not be
selected as an antecedent of x.

2.3.3 Step 3: Non-referring/Non-entity
Mention Removal

The last step of our pipelined approach is to remove
non-entity mentions and non-referring mentions.
This step is motivated in part by our observation
that our model achieves comparatively low CEAFe

scores on the development data. We hypothesize
that this was caused by the large number of er-
roneously identified singletons that correspond to
non-referring or non-entity mentions. To address
this problem, we train a model for identifying non-
referring and non-entity mentions and apply it to
the coreference output produced in Step 2 to re-
move singleton clusters containing these mentions.
Specifically, we reuse our model in the first step,
but instead of using span enumeration to generate
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candidate mention spans, we use gold entity men-
tions, gold non-referring mentions, and entity men-
tions in which the underlying word/phrase has ap-
peared at least once as a gold entity mention in the
training data as the candidate mention spans. The
type prediction model is modified to predict two
types: OTHER (for non-referring/non-entity spans)
and REFERRING (for referring entity spans). Sin-
gletons that are predicted as OTHER are removed
from the output.

2.4 Evaluation

In this subsection, we discuss some implementation
details and the evaluation results of our system.

2.4.1 Corpora
We mainly use the given ARRAU 3.0 dataset
(Uryupina et al., 2019), which contains two text
corpora, RST and GNOME, and seven dialogue
corpora, TRAINS91, TRAINS93, PEAR, LIGHT,
AMI, Persuasion, and Switchboard. Each of
the LIGHT, AMI, Persuasion, and Switchboard
datasets contains a training set and a development
set. Besides ARRAU, we use OntoNotes 5.01 to
pretrain some of our models. We provide details
about how we use these datasets in Section 2.4.2.

2.4.2 Implementation Details
We use SpanBERTLarge as the encoder in all steps.
We use different learning rates for the BERT-
parameters and the task-parameters (1× 10−5 and
3× 10−4 respectively). In all three steps we train
the model for 30 epochs with a dropout rate of
0.3. Each document in the training set is split into
one or more training instances. Each training in-
stance has at most five continuous segments, each
of which contains 512 token pieces. We set n (the
top span ratio) to 0.4 and k, the number of can-
didate antecedents for each candidate anaphor, to
50.

Prior to training on the shared task datasets, we
pretrain both the first- and second-step models on
OntoNotes 5.0. We do not pretrain our third-step
model on OntoNotes because it covers only a por-
tion of non-referring expressions. In fact, the only
non-referring expressions covered by OntoNotes
5.0 are the predicate noun phrases, while we have a
lot more in the shared task datasets (e.g., expletives,
non-referring quantifiers, idioms).

1https://catalog.ldc.upenn.edu/
LDC2013T19

2.4.3 Parameter Tuning

We divide the model parameters into two groups:
those to be tuned on the development data and those
to be tuned on the test data, as described below.2

Parameters tuned on the development data
The set of parameters we tune on the development
sets includes:

• the span width for span enumeration in the
first step: we experiment with span widths out
of {5, 10, 30};

• the number of epochs for pretraining the first-
and second-step models: we search out of {10,
15, 20};

• the type loss coefficients (for the first- and
third-step models): both type loss coefficients
are searched out of {0.5, 1, 10, 100, 500, 800};

• the number of training epochs (for all mod-
els): we save a model checkpoint every five
epochs and use the saved models to perform
inference.

Parameters tuned on the test data In our final
submissions, all development sets are also used as
training data. The set of parameters we tune on
the test set (using the model trained on both the
training and development data) includes:

• the inference-time-only dummy antecedent
re-scoring score (for the second-step model
only): we experiment with integer scores be-
tween 0 and 10.

• the number of training epochs3 (for all mod-
els): we save a model checkpoint every five
epochs. Saved model checkpoints are used to
do inference on test sets and inference output
is evaluated by making a submission to the
shared task competition.

Parameter tuning proceeds as follows. We tune
the parameters associated with the three models in
our pipeline in a sequential manner. Specifically,
we first tune the parameters associated with the

2In principle, we are not supposed to tune parameters on
the test data. We are effectively just exploiting the fact that
we can evaluate our models on the test data by submitting our
results to the submission site. While we could have tuned all
the parameters on the test data, we did not do so because (1) it
would take a lot of time to do so and (2) there is a limit on the
number of submissions.

3Note that the number of training epochs is a parameter
that appears in both groups: this parameter is first tuned on
the development data and subsequently on the test data.

https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
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first-step model. Given the best parameter combi-
nation obtained for the first-step model, we then
tune the parameters associated with the second-step
model. Finally, given the best parameter combina-
tion obtained for the models in the first two steps,
we tune the parameters associated with the third-
step model.

Next, we describe how the parameters associ-
ated with each of the three models are tuned. For
the first-step model, we first jointly tune the four
development-set parameters. Then, using the max
span width, the # of epochs for pretraining, and
type loss coefficient obtained via this tuning pro-
cess, we retrain the first-step model on the com-
bined training and development data, tuning the
number of training epochs on the test data.

Given the parameters tuned for the first-step
model, we tune the parameters in the second-step
model. As in the first-step model, we first jointly
tune the four development-set parameters in the
second-step model, then retrain the model using
the best parameter combination on the combined
training and development data, tuning the number
of training epochs on the test data (assuming a
dummy antecedent re-scoring score of 0). Finally,
we tune the dummy antecedent re-scoring score.

Finally, given the parameters tuned for the mod-
els in the first two steps, we tune the parameters in
the third-step model. The parameter tuning process
for the third step model is the same as that for the
first-step model.

2.4.4 System Variants

So far we have presented our coreference resolver
as a three-step pipelined approach. In our evalua-
tion, however, we test the following four variants
of our approach:

1. S1 corresponds to our model without the last
two steps. In other words, we use only the
first-step model to produce entity coreference
results. Note that while the first-step model is
intended for mention extraction, it performs
joint type prediction and entity coreference
resolution and therefore can be used to pro-
duce entity coreference results.

2. S1,S2 corresponds to our model without the
third step (removal of non-entity and non-
referring mentions from the coreference out-
put).

3. S1,S3 corresponds to the setup where the
coreference output produced by the first-

LIGHT AMI Pers. Swbd.

S1 78.52 59.56 76.43 72.42
S1,S2 79.01 60.64 76.81 71.68
S1,S3 81.40 61.51 78.69 75.81
S1,S2,S3 82.23 62.90 79.20 75.25

Table 2: Anaphora resolution: evaluation results of
the four variants of our approach expressed in terms
of CoNLL score on the four test sets. The boldfaced
results are our strongest results on the four test sets and
hence our final results on the shared task competition
leaderboard.

step model is postprocessed by the third-step
model to remove non-entity and non-referring
mentions; and

4. S1,S2,S3 is our full model.

2.4.5 Results and Discussion
In this subsection, we report evaluation results
obtained by making submissions to the shared
task competition, which employs the Universal
Anaphora Scorer4 to calculate the CoNLL score,
which is the unweighted average of the F-scores
computed using the MUC, B3, and CEAFe metrics.

Table 2 shows the entity coreference results on
the official test data for the aforementioned four
variants of our approach. A few points deserve men-
tion. First, the S1,S3 variant achieves the best re-
sult on Switchboard, while the S1,S2,S3 variant
achieves the best results on the remaining three test
sets. Second, by comparing S1 and S1,S2, we
can see that S2 yields only minor improvements (at
most 1% CoNLL score) on three datasets and even
adversely affects performance on Switchboard. We
attribute the ineffectiveness of S2 to the fact that
S1 has already produced good coreference links
for the mentions it extracted. Thus, merely altering
the coreference links would not bring much per-
formance improvement. Third, by comparing S1
and S1,S3, we can see that S3 brings a 2%-3%
CoNLL score improvement on all three datasets,
which pinpoints one of the weaknesses of S1 – hav-
ing too many non-referring/non-mention spans in
its prediction. The same conclusion can be drawn
for S2 by comparing S1,S2 and S1,S2,S3.

Detailed evaluation results of the best perform-
ing system variant on each dataset in terms of MUC,
B3, and CEAFe precision (P), recall (R), and F-
score (F) are shown in Table 3. As can be seen, the

4https://github.com/juntaoy/
universal-anaphora-scorer

https://github.com/juntaoy/universal-anaphora-scorer
https://github.com/juntaoy/universal-anaphora-scorer
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MUC B3 CEAFe

P R F P R F P R F CoNLL

LIGHT 90.56 86.86 88.67 80.41 82.43 81.41 73.11 80.45 76.60 82.23
AMI 74.08 66.15 69.89 62.43 63.60 63.01 48.10 66.43 55.80 62.90
Persuasion 88.41 83.67 85.97 78.99 81.23 80.10 64.89 79.70 71.54 79.20
Switchboard 90.14 74.64 81.66 80.92 73.77 77.18 62.20 76.42 68.58 75.81

Table 3: Anaphora resolution: detailed evaluation results on the four test sets. These results are obtained using the
system variant that achieves the best result on each test set.

(a) Official CoNLL scores of the system variants.

S1 S1,S2 S1,S2,S3

configuration LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

bestdev 77.95 58.99 75.71 71.79 78.63 59.18 76.33 71.46 82.18 62.72 79.02 74.86
besttest 78.52 59.56 76.43 72.42 78.80 60.64 76.72 71.68 - - - -
besttest+DR - - - - 79.01 60.64 76.81 71.68 82.23 62.90 79.20 75.25

(b) Parameter settings for each system variant in different configurations.

S1 S1,S2 S1,S2,S3

configuration parameter LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

bestdev

Maximum span width 30 30 30 30 - - - - - - - -
# of epochs for pretraining 15 15 15 15 15 15 15 15 - - - -
Type loss coefficient 500 500 500 500 - - - - 500 500 500 500
# of training epochs 15 15 15 15 10 20 10 5 5 5 10 10

besttest

Maximum span width 30 30 30 30 - - - - - - - -
# of epochs for pretraining 15 15 15 15 15 15 15 15 - - - -
Type loss coefficient 500 500 500 500 - - - - - - - -
# of training epochs 10 20 20 10 15 15 25 25 - - - -

besttest+DR

Maximum span width - - - - - - - - - - - -
# of epochs for pretraining - - - - 15 15 15 15 - - - -
Type loss coefficient - - - - - - - - 500 500 500 500
# of training epochs - - - - 15 15 25 25 20 30 5 25
Dummy antecedent re-scoring - - - - 3 0 1 0 - - - -

Table 4: Anaphora resolution: official CoNLL scores and detailed parameter settings of three system variants.

performance on AMI is much worse than the per-
formance on any other datasets. We speculate that
the poor performance on AMI is related to its com-
paratively longer documents, as long dependencies
are hard for the model to learn.

To better understand the impact of parameter
tuning on the resolution performance of the system
variants, we report in Tables 4a and 4b the official
CoNLL scores and parameter settings for three
configurations:

• bestdev corresponds to the configuration
that yields the highest CoNLL score on the
test data when only the development-set pa-
rameters are tuned;

• besttest corresponds to the configuration
that yields the highest CoNLL score on the
test data when the development-set parameters
and one of the test-set parameters (the number

of training epochs) are tuned; and
• besttest+DR corresponds to the configu-

ration that yields the hgihest CoNLL score
on the test data when the development-set
parameters and both of the test-set parame-
ters are tuned. Note that besttest+DR and
besttest differ only in terms of whether
the dummy antecedent re-scoring constant is
tuned after all the remaining parameters are
tuned.

Table 4b reports the parameters as follows.
First, the parameters reported for S1, S1,S2, and
S1,S2,S3 are the parameters obtained for the
first-step model, the second-step model, and the
third-step model, respectively. Since the parame-
ter associated with these three models are tuned
in a sequential fashion, the full set of parameters
for S1,S2,S3 can be recovered from the table
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by combining parameters from S1, S1,S2, and
S1,S2,S3. Second, the first three rows for the
three configurations are the same, as those parame-
ters are tuned on the development data only. Third,
besttest+DR for S1 is not applicable, as dummy
antecedent re-scoring is used in the second-step
model. Moreover, we do not report the results of
S1,S3 in this table. Because of time limitations
we do not perform parameter tuning for this variant:
for the parameters associated with S1 we simply
reuse the parameters we tuned for the S1 variant,
and for the parameters associated with S3 we set
the type loss coefficient to 500 and the number of
training epochs to 10.

Several observations can be made on the re-
sults in Table 4.5 First, besttest outperforms
bestdev consistently for a 0.2-1% in CoNLL
score, showing that parameter tuning on the test
data does lead to performance improvements. Sec-
ond, dummy antecedent re-scoring is not very effec-
tive in improving resolution performance. Compar-
ing besttest and besttest+DR for our S1,S2
model, we see that dummy antecedent re-scoring
brings only a diminutive CoNLL score improve-
ment of 0.1-0.2% on two test sets and no improve-
ment at all on the remaining two.

We conclude this section by mentioning that
while our systems ranked first among all partic-
ipants in the anaphora resolution track, there are
still some weaknesses in our systems. First, our sys-
tems have a hard time handling long dependencies,
which we hypothesize to be the main reason why
our systems performed the worst on AMI. Second,
our system cannot handle cases of plural anaphoric
reference in which the antecedents are introduced
by separate mentions, namely split antecedents.

3 Discourse Deixis Resolution

The Discourse Deixis track in this year’s shared
task has three evaluation phases: (1) the Predicted
phase, where a system needs to extract both an-
tecedents and anaphors and perform discourse
deixis resolution; (2) the Gold Mention phase,
which is the same as the Predicted phase except
that anaphors are to be extracted from the given set
of gold mentions; and (3) the Gold Anaphor phase,
which is the same as the Gold Mention phase ex-
cept that gold anaphors are explicitly given. The
Gold Anaphor phase is introduced in this year’s

5In Table 4a the besttest results for S1,S2,S3 are not
available due to time limitations.

shared task to partially address the difficulty of
comparing different resolvers with respect to their
resolution performance (Li et al., 2021).

3.1 Approach

We cast discourse deixis resolution as identity
anaphora resolution. This allows us to use Xu
and Choi’s (2020) coref-hoi model as our base-
line for discourse deixis resolution. In this section,
we describe our approach to discourse deixis res-
olution, which is composed of six extensions to
coref-hoi.

1. Candidate Anaphor Extraction In the shared
task datasets, most deictic expressions are demon-
strative pronouns (e.g., “that”, “this”) and “it”.
These three pronouns account for more than 80% of
the anaphors in the given datasets. Thus, we impose
a simple heuristic to extract candidate anaphors:
instead of extracting them by span enumeration,
we only allow a span in which the underlying
word/phrase has appeared at least once in the train-
ing set to be a candidate anaphor.

2. Anaphor Prediction Similar to our discourse
deixis resolution system in the CODI-CRAC 2021
shared task (Kobayashi et al., 2021), we use a type
prediction model in our system this year. Different
from last year, however, the type prediction model
is used to identify those candidate anaphors that
correspond to deictic expressions. Thus, only two
types are used: ANAPHOR (the candidate anaphor
is indeed a deictic expression) and NULL (the can-
didate anaphor is not).

3. Candidate Antecedent Extraction Since the
shared task datasets are annotated in a way so that
only utterances can serve as an antecedent of deic-
tic expressions, we extract candidate antecedents
as follows. For each span i that is predicted as
ANAPHOR by the type prediction model, we select
the 10 utterances that are closest to i (including
the utterance in which i appears) as its candidate
antecedents. The motivations are that (1) deictic
expressions are anaphoric expressions, and hence
recency plays an important role in antecedent se-
lection, and (2) using the 10 closest utterances al-
lows us to cover more than 95% of the antecedent-
anaphor pairs in the datasets.

4. Dummy Antecedent Elimination In
coref-hoi, the set of candidate antecedents for
every span includes a dummy antecedent, which



40

Type Features
Anaphor Embedding of the sentence the anaphor is

in
Antecedent # of words; # of nouns; # of verbs; #

of adjectives; # of content word over-
laps between antecedent and the preced-
ing words of the anaphor; whether an an-
tecedent is the longest among all candidate
antecedents; whether an antecedent has the
most content word overlap among all can-
didate antecedents

Pairwise Sentence distance between a candidate an-
tecedent and an anaphor, ignoring sen-
tences that contain only interjections, fill-
ing words, reporting verbs, and punctua-
tion

Table 5: Additional features used in our model.

will be selected as the antecedent of a span i if
(1) i is not an entity mention or (2) i is an entity
mention but it is not anaphoric.

For our model, the situation is different. Since
only those spans predicted as ANAPHOR by the
anaphor prediction model will be passed to the an-
tecedent selection model, the antecedent selection
model only sees spans that have been classified
as anaphoric. Since these spans are anaphoric,
they should presumably not be resolved to the
dummy antecedent. For this reason, we eliminate
the dummy antecedent from the set of candidate
antecedents of every span when training and testing
the antecedent selection model.
5. Features Our next extension involves a large-
scale expansion of features, hypothesizing that
hand-engineered features could be profitably used
by a span-based model. Specifically, we in-
corporate three types of features: (1) anaphor-
based features, which encode the context of an
anaphor, (2) antecedent-based features, which en-
code some statistics computed based on a candidate
antecedent, and (3) pairwise features, which encode
the relationship between an anaphor and a candi-
date antecedent. The list of features is shown in
Table 5. We add these features to both the bilinear
score sc(x, y) and the concatenation-based score
sa(x, y):

sc(x, y) = g⊤x Wcgy + g⊤s Wsgy

sa(x, y) = FFNNc(gx, gy, gx ◦ gy, gs, ϕ(x, y))

where Wc and Ws are learned weight matrices,
gs is the embedding of the sentence s in which
anaphor x appears, and ϕ(x, y) encodes the speaker
information as well as different types of distance
between x and y.

6. Inference-Time-Only Distance-Based Candi-
date Antecedent Filtering Given that we have
fewer training instances for those antecedent-
anaphor pairs that have larger sentence distances
and it is generally harder to learn long-distance de-
pendencies, correctly resolving an anaphor whose
antecedent is far away from it is by no means easy.
Although we use only the 10 closest utterances
during training, we propose to further lower this
number during inference. Specifically, for each
candidate anaphor, the model selects an antecedent
from one of the n closest utterances (1 ≤ n < 10),
where n is a tunable parameter.

3.2 Evaluation

In this subsection, we evaluate our system and dis-
cuss the implementation details.

3.2.1 Implementation Details
The models we use in the three evaluation phases
are similar. Specifically, the only difference be-
tween our models in different phases lies in Ex-
tension 1 (candidate anaphor extraction). In the
Predicted phase, candidate anaphors are selected
using the method stated in Extension 1. In the Gold
Mention phase, the candidate anaphors used for
both training and inference are those words/phrases
in the given set of gold mentions that appeared in
the training set as deictic expressions. In the Gold
Anaphor phase, we use the given anaphors for both
training and inference, so there is no need to extract
anaphors.

We use SpanBERTLarge as the encoder for all
evaluation phases. We use different learning rates
for the BERT-parameters and the task-parameters
(1 × 10−5 and 3 × 10−4 respectively). Each doc-
ument in the training set is split into one or more
training instances. Each training instance has at
most 12 continuous segments, each of which con-
tains 512 tokens. Models are trained for 30 epochs
with a dropout rate of 0.3.

Note that the models used for the later phases
were retrained given the gold mentions and gold
anaphors.

3.2.2 Parameter Tuning
Given that we can make submissions to the shared
task competition and the amount of data we have
is far from abundant, we use all the given datasets
as our training set, and tune the following three pa-
rameters on the test data (by submitting the system
output to the shared task competition):
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MUC B3 CEAFe

P R F P R F P R F CoNLL

Predicted Phase
Light 37.04 31.25 33.90 50.80 33.43 40.32 60.77 26.65 37.05 37.09
AMI 51.67 52.54 52.10 58.76 51.75 55.04 65.06 44.41 52.79 53.31
Persuasion 48.44 59.05 53.22 56.38 57.10 56.74 62.34 47.34 53.82 54.59
Switchboard 63.77 41.12 50.00 70.62 39.28 50.48 76.52 35.82 48.79 49.76

Gold Mention Phase
Light 37.17 32.81 34.85 51.59 35.53 42.08 59.81 28.07 38.21 38.38
AMI 54.46 51.69 53.04 63.15 51.87 56.96 69.31 46.07 55.35 55.12
Persuasion 50.00 58.10 53.74 58.16 56.15 57.13 64.52 46.14 53.80 54.89
Switchboard 66.67 42.99 52.27 71.08 39.35 50.65 72.29 34.35 46.57 49.83

Gold Anaphor Phase
Light 46.88 46.88 46.88 65.13 50.56 56.93 77.02 40.88 53.41 52.40
AMI 71.19 71.19 71.19 81.05 69.12 74.61 87.47 60.76 71.71 72.50
Persuasion 67.62 67.62 67.62 80.42 67.30 73.28 87.10 55.68 67.93 69.61
Switchboard 70.09 70.09 70.09 80.03 69.83 74.58 86.36 61.25 71.67 72.11

Table 6: Discourse deixis resolution: official results on the test sets.

• the type loss coefficient: we search out of {0.5,
1, 5, 10, 100, 500, 800} using grid search.

• the inference-time-only candidate antecedent
filtering constant: we experiment with all in-
tegers between 1 and 10.

• the number of training epochs: we save a
model checkpoint every five epochs and eval-
uate it on the test set.

We jointly tune the type loss coefficient and the
number of training epochs, and determine the can-
didate antecedent filtering constant after the other
two parameters are fixed.

3.2.3 Results and Discussion
We report the detailed official evaluation results of
our system for different phases in Table 6. A few
points deserve mention. First, by comparing the
results in the Predicted phase and the Gold Men-
tion phase, we can see that even though the set
of candidate anaphors is being narrowed down in
the Gold Mention phase, only a small performance
gain (at most 1% CoNLL score) is achieved. We
speculate that our simple heuristic for selecting
candidate anaphors is effective, so the provision
of gold mentions does not eliminate many plau-
sible candidate anaphors. Second, the provision
of gold anaphors has brought huge improvements
(14%-22% CoNLL score) to our system, which
shows that one of the key weaknesses of our sys-
tem is anaphor identification. Third, across all
three phases, our system performs much worse on
LIGHT than on other datasets. Further investiga-
tions are needed to determine the reason.

To better understand the impact of parameter

tuning on the test data, we show in Tables 7a and
7b the CoNLL scores achieved by three system
configurations on the test data:

• worsttest corresponds to the configuration
that yields the worst result on the test data
when only the number of training epochs and
the type loss coefficient are jointly tuned (i.e.,
the antecedent filtering constant is simply set
to 10);

• besttest corresponds to the configuration
that yields the best result on the test data when
only the number of training epochs and the
type loss coefficient are jointly tuned (i.e., the
antecedent filtering constant is simply set to
10);

• besttest+AF corresponds to the configura-
tion that yields the best result on the test data
when the inference-time-only antecedent fil-
tering constant is tuned, with the other two
parameters taken from besttest.

Several observations can be made on the results
shown in Table 7. First, besttest outperforms
worsttest consistently for at most 8% in terms
of CoNLL score. The biggest performance gap
of 7.97% is observed on the Switchboard test set
in the Gold Mention phase: as can be seen, the
parameters associated with the two configurations
differ only with respect to the number of training
epochs. This suggests that the number of epochs
plays an important role in the performance of our
discourse deixis resolver. Similar conclusions can
be drawn by comparing the results in other phases
and on other test sets. Second, inference-time-only
antecedent filtering generally offers little perfor-
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(a) Official CoNLL scores of our models.

Predicted Phase Gold Mention Phase Gold Anaphor Phase

configuration LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

worsttest 34.58 47.36 48.78 45.67 34.07 47.68 49.47 41.86 51.77 68.65 66.78 69.26
besttest 37.09 51.48 50.30 47.96 37.89 55.12 53.40 49.83 52.40 72.50 69.61 72.11
besttest+AF 37.09 51.61 50.42 47.96 38.38 55.12 54.89 49.83 52.40 72.50 69.61 72.11

(b) Parameter settings for each setup in different phases.

Predicted Phase Gold Mention Phase Gold Anaphor Phase

configuration parameter LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

worsttest
Type loss coefficient 0.5 0.5 0.5 0.5 500 100 0.5 500 800 800 800 800
# of training epochs 10 10 15 10 5 15 15 5 10 15 20 15
Antecedent filtering constant 10 10 10 10 10 10 10 10 10 10 10 10

besttest
Type loss coefficient 0.5 0.5 0.5 0.5 800 500 500 500 800 800 800 800
# of training epochs 10 5 20 20 15 10 10 15 15 5 15 10
Antecedent filtering constant 10 10 10 10 10 10 10 10 10 10 10 10

besttest+AF
Type loss coefficient 0.5 0.5 0.5 0.5 800 500 500 500 800 800 800 800
# of training epochs 10 5 20 20 15 10 10 15 15 5 15 10
Antecedent filtering constant 10 7 7 10 7 10 7 10 10 10 10 10

Table 7: Discourse deixis resolution: official CoNLL scores of our models and detailed parameter settings in
different phases.

mance improvement, though it has yielded perfor-
mance gains of 0.2%-1.3% in CoNLL score on
some test sets.

We conclude this section by pointing out that
our system ranked first for all three phases in the
discourse deixis resolution track. While our sys-
tem was 1%-5% CoNLL scores better than the
second-ranked team in the Predicted phase and the
Gold mention phase, our system outperformed the
second-ranked team by large margins of 5%-16%
CoNLL scores in the Gold Anaphor phase, which
shows the effectiveness of our system in discourse
deixis resolution.

4 Bridging Resolution

Like the Discourse Deixis track, the Bridging Res-
olution track in this year’s shared task has three
different phases, namely the Predicted phase, the
Gold Mention phase, and the Gold Anaphor phase.
While discourse deixis resolution has received
fairly little attention in the NLP community in re-
cent years, constant progress has been made for
bridging resolution. Nevertheless, such progress
has thus far limited to a large extent to the Gold
Mention setting, where gold mentions are given,
and the Gold Anaphor setting, where gold anaphors
are given (see Kobayashi and Ng (2020) for a com-
prehensive overview and Kobayashi et al. (2022a)
for state-of-the-art results). In particular, little

progress has been made on end-to-end bridging
resolution, which corresponds to the setup used in
the Predicted phase of the shared task.

Motivated in part by the success of the hybrid
rule-based and learning-based approach to bridging
resolution developed by Kobayashi and Ng (2021),
we adopted a multi-pass sieve approach to bridging
resolution in last year’s shared task, where we em-
ployed a pipeline of sieves consisting of a neural
sieve, which is essentially Yu and Poesio’s span-
based neural model that employs multi-task learn-
ing, and a set of same-head sieves, which were
specifically designed to target the identification of
bridging links between two mentions having the
same head. Given that the improvement offered by
the same-head sieves is small, we abandon them
this year and focus instead on extending Yu and
Poesio’s multi-task learning framework for bridg-
ing resolution. Below we first provide an overview
of Yu and Poesio’s model.

4.1 Yu and Poesio’s (2020) Model
Yu and Poesio’s (Y&P) model is a span-based neu-
ral model that takes gold mentions as input and
jointly performs entity coreference resolution and
bridging resolution. The way Y&P differs from
other end-to-end span-based coreference models
is that it uses two FFNN’s to separately predict
coreference links and bridging links. These two
FFNNs share the first few hidden layers as well as
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the span representation layer. The loss function of
this MTL model is composed of a weighted sum of
the losses of the bridging task and the coreference
task. Unlike feature-based approaches to bridging
resolution, where feature engineering plays a criti-
cal role in performance, this neural model employs
only two features, the length of a mention and the
mention-pair distance.

4.2 Approach

Since Y&P’s model takes gold mentions as input,
we need a mention extractor before we can deploy
it. For this reason, we employ a pipelined approach
to bridging resolution, where we first extract men-
tions using a mention extractor and then perform
bridging resolution using our extended Y&P model.
Below we describe the extensions we made to Y&P.

4.2.1 Extensions to the Y&P Model

We employ two extensions to the Y&P model.

Using SpanBERT as encoder Given the suc-
cessful application of SpanBERT to entity coref-
erence in the past few years, it is natural to think
about applying SpanBERT to bridging resolution.
In fact, SpanBERT has recently been shown to
yield promising results when applied to resolv-
ing bridging references in narratives (Kobayashi
et al., 2022b). Hence, our first extension to Y&P
involves replacing its biLSTM encoder and the
frozen BERT/Glove embeddings used by the biL-
STM with SpanBERTLarge in order to strengthen
Y&P’s performance. We adopt the independent
version of Joshi et al. (2019), where each input
document is split into non-overlapping segments
of length up to Ls.

Adding Turn Distance as a feature As men-
tioned above, Y&P employs only two features,
namely the length of a mention and the mention-
pair distance. Since Y&P is not designed for the
dialogue domain, neither of the two features cap-
tures information regarding the dialogue domain.
We follow our work in last year’s shared task and
add the turn distance between mentions as a fea-
ture, where a turn is defined as a set of contiguous
sentences by the same speaker.

4.3 Evaluation

In this subsection, we evaluate our system and dis-
cuss the implementation details.

4.3.1 Implementation Details
Each document is split into segments of length 384.
The 40% top scoring spans are retained for bridging
resolution. The weight parameter associated with
the weighted sum of losses of the bridging task and
the coreference task is set to 1, meaning that the
two tasks are given equal importance in the learning
process. Below we discuss how the models used
for the three phases differ from each other.

4.3.1.1 Predicted Phase
In the Predicted phase, our system needs to extract
mentions and perform bridging resolution. We first
use our S1 system described in Section 2 to extract
mentions, then use our modified Y&P model to
perform bridging resolution on the extracted men-
tions.

We test our model with the following training
setups as different setups may lead to large perfor-
mance differences:
T1: In this setup, we use all the available datasets

for model training, namely ARRAU RST,
GNOME, TRAINS91, TRAINS93, LIGHT,
AMI, Persuasion, and Switchboard. In partic-
ular, both the training split and the develop-
ment split of LIGHT, AMI, Persuasion, and
Switchboard are used for training. Our system
is trained for at most 25 epochs.

T2: In this setup, we first pretrain our system
on the datasets that are outside of the target
(i.e., dialogue) domain, namely ARRAU RST,
GNOME, TRAINS91, and TRAINS93, for
15 epochs. After that, we train our system
on one dataset that contains all of the data
from the target domain, namely LIGHT, AMI,
Persuasion, and Switchboard, for 25 epochs.

T3: Similar to T2, we first pretrain our system on
the datasets that are outside of the target do-
main for 15 epochs. However, for each dataset
from the target domain, we train our model
for 25 epochs using both the training split and
the development split of that target domain.
For instance, when evaluating our system on
LIGHTtest, we train a model on LIGHTtrain
and LIGHTdev. Hence, the documents used to
train the models in T3 are a subset of those
used to train the models in T2.

In preliminary experiments, we found that mod-
els trained with both predicted mentions and gold
mentions performed better than models trained
with only gold mentions. Thus, for each training
setup, we first extract mentions from the training
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Light AMI Persuasion Switchboard

P R F P R F P R F P R F

Predicted Phase

Recognition
T1 56.80 26.23 35.89 42.46 17.59 24.88 39.35 35.86 37.52 55.30 25.86 35.24
T2 53.37 33.13 40.88 37.44 18.29 24.57 41.46 39.14 40.27 46.48 28.45 35.29
T3 46.20 41.13 43.52 43.87 15.74 23.17 35.09 43.75 38.95 48.93 34.48 40.46

Resolution
T1 34.93 16.13 22.07 22.91 9.49 13.42 27.80 25.33 26.51 27.65 12.93 17.62
T2 30.36 18.84 23.25 18.48 9.03 12.13 28.57 26.97 27.75 22.89 14.01 17.38
T3 24.07 21.43 22.67 22.58 8.10 11.93 24.80 30.92 27.53 23.85 16.81 19.72

Gold Mention Phase

Recognition
T1 61.66 23.77 34.31 52.76 24.31 33.28 44.36 40.13 42.14 53.99 18.97 28.07
T2 57.85 35.84 44.26 43.55 25.00 31.76 46.02 43.75 44.86 49.16 31.47 38.37
T3 56.04 34.85 42.98 40.38 34.49 37.20 41.27 49.01 44.81 49.44 37.72 42.79

Resolution
T1 39.30 15.15 21.87 31.16 14.35 19.65 32.36 29.28 30.74 31.29 10.99 16.27
T2 34.99 21.67 26.77 21.77 12.50 15.88 34.60 32.89 33.73 26.26 16.81 20.50
T3 33.86 21.06 25.97 18.70 15.97 17.23 31.86 37.83 34.59 26.27 20.04 22.74

Gold Anaphor Phase

Recognition
T1 97.78 97.78 97.78 97.69 97.69 97.69 98.03 98.03 98.03 98.49 98.49 98.49
T2 97.78 97.78 97.78 97.69 97.69 97.69 98.03 98.03 98.03 98.49 98.49 98.49
T4 97.78 97.78 97.78 97.69 97.69 97.69 98.03 98.03 98.03 98.49 98.49 98.49

Resolution
T1 46.80 46.80 46.80 39.35 39.35 39.35 56.58 56.58 56.58 43.75 43.75 43.75
T2 40.15 40.15 40.15 31.71 31.71 31.71 51.97 51.97 51.97 37.07 37.07 37.07
T4 46.55 46.55 46.55 38.19 38.19 38.19 56.91 56.91 56.91 44.40 44.40 44.40

Table 8: Bridging resolution: recognition results and resolution results on the test sets. The boldfaced results are the
official F-scores of our system on the shared task leaderboard.

set using our S1 system6 and then use the extracted
mentions along with the gold mentions for model
training.

4.3.1.2 Gold Mention Phase
In the Gold Mention phase, we do not retrain our
models. Instead, we perform bridging resolution
on the given gold mentions in the test data using
the models trained in the Predicted phase.

4.3.1.3 Gold Anaphor Phase
In the Gold Anaphor phase, since gold anaphors
are explicitly given, we constrain our models so
that only gold anaphors can be resolved to other
gold mentions during both training and inference.
We test our models using the T1 and T2 setups
mentioned in Section 4.3.1 as well as a new setup:
T4: After training our model in the T1 setup, we

execute an extra fine-tuning step where we
fine-tune our model for 25 epochs using both
the training split and the development split of
the target domain. For instance, when evaluat-
ing our system on LIGHTtest, we first train a
model using the T1 setup and then fine-tune

6Note that S1, which was trained on the training set, is
applied to the training set to extract mentions.

the resulting model on LIGHTtrain.
T4 serves as an alternative to T3. The only dif-
ference between T3 and T4 is that T3 performs
fine-tuning on the target domain after it finishes
pretraining on datasets outside of the target do-
main, whereas T4 performs extra fine-tuning on
the target domain after a model is trained according
to T1.

4.3.2 Parameter Tuning
We do not tune any parameters on the development
data. The number of training epochs is the only
parameter we tune on the test data. As in anaphora
resolution and discourse deixis resolution, to tune
the number of training epochs we save a model
checkpoint every five epochs and evaluate it on the
test set. Note that the number of training epochs is
tuned separately for each setup.

4.3.3 Results and Discussion
For each test set, the best resolution result achieved
over all setups will be used as our official result.
Table 8 shows the official recognition and reso-
lution results of our bridging resolver on the test
sets. Our system achieves resolution F-scores of
13.42%-27.75% for the Predicted phase. For the
Gold Mention phase and Gold Anaphor phase, our
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(a) Predicted phase

T1, Predicted Phase T2, Predicted Phase T3, Predicted Phase

# epochs LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

5 17.44 13.42 24.78 13.46 23.20 10.73 24.78 19.23 22.67 11.93 25.09 17.68
10 17.75 11.98 25.27 15.76 22.24 10.49 26.05 17.12 22.58 11.17 27.53 19.72
15 22.07 13.27 26.51 17.62 23.25 12.13 26.73 17.38 21.48 11.73 26.64 16.16
20 20.61 11.73 24.59 17.54 22.06 11.91 27.75 17.08 22.66 11.24 26.94 16.24
25 21.43 12.48 22.80 17.33 23.12 11.73 27.42 17.26 21.52 10.88 25.65 17.85

(b) Gold Anaphor phase

T1, Gold Anaphor Phase T2, Gold Anaphor Phase T4, Gold Anaphor Phase

# epochs LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd. LIGHT AMI Pers. Swbd.

5 46.80 37.73 56.58 43.75 38.92 28.47 48.36 32.76 46.55 37.04 53.62 44.40
10 46.31 39.35 48.68 42.67 40.15 31.71 51.32 37.07 46.55 36.11 53.62 42.24
15 45.94 37.04 51.32 42.24 38.55 30.56 50.00 36.21 46.55 37.27 54.93 42.03
20 45.07 37.04 52.63 43.32 36.95 30.79 51.97 35.99 46.55 38.19 56.91 43.10
25 44.83 38.43 52.30 42.46 37.68 29.86 50.33 35.34 - - - -

Table 9: Bridging resolution: official resolution F-scores of our models in terms of the number of training epochs
and the setup for two phases.

system achieves F-scores of 19.65%-34.59% and
39.35%-56.91% respectively. The performance im-
provements in the later phases should not be sur-
prising, as the task becomes progressively easier in
the later phases.

A few points deserve mention. First, the results
show a strong positive correlation between recogni-
tion performance and resolution performance. This
should not be surprising either, as strong recogni-
tion performance lays the foundation for strong res-
olution performance. Second, as mentioned above,
we do not retrain our models in the Gold Mention
phase. Thus, the performance gains we achieve in
the Gold Mention phase over the Predicted phase
can be attributed solely to the difference between
using predicted mentions and using gold mentions.
In particular, almost all setups achieve better per-
formance in the Gold Mention phase except T1 on
Switchboard, where worse results are obtained for
both recognition and resolution performance. We
speculate that, although gold mentions are given,
identifying bridging anaphors is still a non-trivial
task. Additional experiments are needed to de-
termine the reason, however. Third, in the Gold
Anaphor phase, all setups achieve much better re-
sults than those in the Gold Mention phase. In
some setups the results increase by 100%. This
should not be surprising, as anaphor recognition
performance has gone from around 30% F-score to
nearly 100% F-score.

To examine the impact of parameter tuning on

the test data, we show in Tables 9a and 9b how the
resolution F-score of our bridging resolver on the
test data varies with the number of training epochs
for each setup. Note that these results are available
only for the Predicted phase and the Gold Anaphor
phase but not the Gold Mention phase because in
the Gold Mention phase we simply reuse the mod-
els trained during the Predicted phase. As we can
see, the number of training epochs has a large im-
pact on the performance of our bridging resolver:
the difference in resolution F-score between the
worst combination and the best combination can
be as large as 4.63%. The choice of setup can lead
to a even larger difference — an F-score difference
of 11.64% between T2 and T4 on Switchboardtest
in the Gold Anaphor phase.

We conclude this section by mentioning that our
system ranked first in all phases of the bridging
resolution track. In particular, our system outper-
formed the second-ranking team for 4%-9% reso-
lution F-scores in the Gold Anaphor phase.

5 Conclusions

We presented the systems that we developed for all
three tracks of the CODI-CRAC 2022 shared task,
namely the anaphora resolution track, the bridging
resolution track, and the discourse deixis resolu-
tion track. For anaphora resolution, we employed
a three-step approach consisting of mention ex-
traction, coreference resolution, and removal of
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non-referring and non-entity mentions. Our results
demonstrated that the third-step model, the non-
referring/non-entity removal model, contributed a
lot to overall resolution performance. However, our
system is still not able to handle split-antecedents,
which is a direction for future improvements. For
discourse deixis resolution, our results revealed
that one of the key weaknesses in our system is
anaphor detection, as a large performance gain
could be achieved when the model was applied to
gold anaphors. For bridging resolution, our results
showed that the Gold Anaphor phase was much eas-
ier than the Predicted phase and the Gold Mention
phase. The resulting large performance gap pro-
vided suggestive evidence that there is still a lot of
room for improvement in bridging anaphor detec-
tion. Future work should focus on (1) determining
the extent to which performance would deteriorate
when all model parameters are tuned on develop-
ment data and (2) performing a cross-team analysis
to better understand how the resolvers from differ-
ent teams are different from each other.
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