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Abstract

Codenames is a popular board game, in which
knowledge and cooperation between players
play an important role. The task of a player
playing as a spymaster is to find words (clues)
that a teammate finds related to as many of
some given words as possible, but not to other
specified words. This is a hard challenge even
with today’s advanced language technology
methods.

In our study, we create spymaster agents us-
ing four types of relatedness measures that re-
quire only a raw text corpus to produce. These
include newly introduced ones based on co-
occurrences, which outperform FastText cosine
similarity on gold standard relatedness data.
To generate clues in Codenames, we combine
relatedness measures with four different scor-
ing functions, for two languages, English and
Hungarian. For testing, we collect decisions of
human guesser players in an online game, and
our configurations outperform previous agents
among methods using raw corpora only.

1 Introduction

One of the central subjects of artificial intelligence
research has long been the development of agents
that play various games at the human level or better.
Most studies in the field focus on combinatorial
games, that can be easily formalized mathemati-
cally, such as chess and go (see, for example, Allis
et al., 1994). The popular board game Codenames
is different from these in many aspects and may
provide an excellent experimental ground in areas
such as predicting human behavior or implement-
ing human-machine cooperation.

In the original game, two teams compete against
each other. A board of 25 word cards contains
cards belonging to the blue or red team, neutral
cards, and an instant defeat card (black). A team
wins if all cards of their team are revealed earlier
than the cards of the other team, or if the opponent
reveals the black card. However, only one person

(the spymaster) from both teams knows which card
is of what color. Therefore, the spymasters give
the team a clue each turn, which consists of a clue
word and a number. The other members of the team
(guessers), in consultation with each other, reveal
cards on the board they think are related to the clue
word, until they bet on a wrong card, or reach the
limit given by the spymaster as a number.

This means it is possible to create two types of
agents for the game, spymasters and guessers. The
main task of both agents is to be able to cooperate
with human players. To create agents capable of
such high-level cooperation, we need to be able
to predict human behavior in the game. This task
includes modeling the relatedness of words, with
the aim of obtaining relatedness measures that rep-
resent human perception well.

This task is highly related to word association
modeling, which has been studied extensively in
psycholinguistics for a long time (Palermo and
Jenkins, 1964; McNeill, 1966), but is by no means
equivalent to it. In word association experiments,
subjects should name any word associated with a
given word as quickly as possible, but in this case,
the spymaster’s task is to find a word that is related
to as many words from a given set as possible, but
not or significantly less closely to a set of other
words. The time allotted for the task is also limited
at most very loosely (by the patience of the other
players), and based on personal experiences, spy-
masters often use several minutes of thinking time
to come up with the right clue. For this reason, con-
nected words are often related in a complex way,
even indirectly. The task of agents – to find words
in the table related to the clue word – is more like
simple associations, but time is not dominant here
either, and more complex, indirect relations also
matter. In a game between people, the relationship
and common knowledge between the players can
also count, but this is not an influencing factor in a
game with an agent.

43



2 A Mathematical Model of the Game

Suppose that for a dictionary V , a similarity matrix
S ∈ R|V |×|V | exists in which Sij = s(wi, wj)
is the exact measure of the relationship between
any two words wi, wj , that is, the relationships are
just as strong according to every person. Then
the implementation of the guesser agent is simple:
from the words on the board, always choose the
one that is most closely related to the clue word.
This way, a greedy spy-agent is also simple: let vi
be the i-th word of the dictionary, and for every i,
let [wi1, wi2, ..., win] be the unrevealed words on
the board, ordered by the relatedness to vi, from the
most closely related to the least related one. Then
we look for i for which the largest number k exists,
such that wi1, wi2, ..., wik are all words belonging
to the agent’s team. Then vi will be the clue word,
and k the number of targeted words.

However, under such conditions, the behavior
of the guessers is deterministic, which means the
two spymasters are playing against each other. The
dictionary, that is, the number of their possible
decisions is finite, and spymasters know the out-
come of each decision, which means they know
each other’s possible strategies. Thus, the game be-
comes a sequential game with perfect information,
like e.g. chess, go, or tic-tac-toe. A greedy deci-
sion is not necessarily optimal, since a spymaster
needs to consider what options they will have later,
depending on their own and the other spymasters’
decisions, and should optimize their move based on
that. Within such a framework, the development of
an optimal strategy may be the subject of further re-
search, but is no more connected to computational
and cognitive linguistics, so we will not discuss
this further in this article.

The above conditions are, of course, far from
reality, since such a distance function, which per-
fectly corresponds to the mental representations
of all people, certainly does not exist. This is
clear from the fact that in classical association tests,
where the actual task is to find nearest neighbors,
the subjects never give the same answer (Palermo
and Jenkins, 1964; Postman and Keppel, 2014).
However, it is a meaningful task to create a sim-
ilarity function and construct a similarity matrix
S ∈ RV×V , in which Sij = s(wi, wj) approxi-
mates the average similarity perceived by people.

Furthermore, based on the similarity approxima-
tions, we can define a scoring function for possible
clues, which realistically ranks them according to

how many correct guesses a human guesser player
is expected to give. Our distance matrix and our
scoring function together determine a greedy spy-
master agent. Since this task is challenging in itself,
we disregard the possible non-greedy strategies and
focus on optimizing similarity approximations and
clue scoring functions for one round only.

3 Related Work

3.1 Associations

Word associations have been a subject of active
research for a long time in cognitive science and
psycholinguistics for various reasons. They were
used to study mental functioning, memory, and cer-
tain diseases. Word associations were also applied
for modeling the cognitive lexicon and some lin-
guistic processes (summarized by Bel-Enguix et al.,
2019).

One can create a graph (Bel-Enguix, 2014), and
its transformation to a word embedding model (Bel-
Enguix et al., 2019), specifically for modeling as-
sociations, but these require difficult-to-obtain as-
sociation data. This would be a high resource re-
quirement and would make it difficult to apply such
methods in various languages.

Instead, we can use methods that require only
raw corpora. For this, the results of Spence and
Owens (1990) are the most important studies of
associations. They have shown that the amount
of co-occurrences of words in a corpus is a good
indicator of the semantic relationship between them
and is also suitable for measuring the strength of
associations. Bel Enguix et al. (2014) also predict
associations from co-occurrences, using a network
of bigram counts. Similar to their methods, we use
weighted co-occurrences explicitly to model the
connection of words (for details, see 4.1.).

3.2 Language graphs

Although the canonical way to represent words is
to assign them to vectors, if the goal is to model
connections between words, a graph structure is at
least as suitable. When each word is represented by
a vector, the similarity between them is most often
calculated as the cosine of the angle of the two
vectors. In the case of graph representations, all
words in the dictionary correspond to the vertices
of a large graph, and the distance between them can
be defined in many ways depending on the graph.
One option is the length or weight of the shortest
path between the two vertices. Knowledge graphs
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(Miller, 1992; Speer and Havasi, 2012; Navigli and
Ponzetto, 2010a) were already used to model word
connections in previous Codenames agents, but
other types of language graphs also exist, which
could be utilized for this task as well.

Hope and Keller (2013), for example, use a
graph of co-occurrences for word sense induction.
Later Pelevina et al. (2016) use a similar method to
disambiguate word embedding models.

Another graph, created as an alternative for word
embeddings, is GraphGlove (Ryabinin et al., 2020),
where the edges of the graph are optimized by the
cost function of GloVe (Pennington et al., 2014b),
so that the shortest path between two vertices gives
the distance of the corresponding words.

3.3 Codenames agents

To the best of our knowledge, the first algorithms
similar to Codenames agents have been created
by Shen et al. (2018) specifically to model human
associations. In their simplified game, the board
always consists of three nouns, and the agent gives
a clue that must be one of three adjectives, and
refers to exactly two of the board words. Their
clues were generated based on the following five
similarity functions:

• probability of bigrams relative to word fre-
quency,

• cosine similarity in Skip-gram (Mikolov et al.,
2013),

• cosine similarity in GloVe (Pennington et al.,
2014a),

• connection according to the knowledge graph
ConceptNet5 (Speer and Havasi, 2012),

• similarity in topic modeling.

They found that the behavior of human players
is best modeled on the probabilities of bigrams,
which is in line with the results of (Spence and
Owens, 1990) (although the latter calculated co-
occurrences with much larger window size).

Kim et al. (2019) were the first to build agents
designed explicitly to play the game. As a back-
ground to their relatedness measure, they used

• CBOW, Skip-gram and GloVe word embed-
dings (in multiple configurations),

• and the WordNet database (Miller, 1992) with
a number of different distance functions.

However, in their study, they do not evaluate the
performance of agents with human data, but by pair-

ing spymaster and guesser agents, which reveals
only the similarity of the two agents, regardless of
their ability to interact with humans.

Jaramillo et al. (2020) calculated similarity func-
tions from the following representations:

• TF-IDF similarity calculated from Wikipedia
articles and dictionary definitions,

• a naive-Bayesian classification of words, and

• word embeddings extracted from the first
layer of the GPT2 language model (Radford
et al., 2019).

Of these methods, they find GPT2 vectors best
suited to model word relatedness.

The latest article on the topic is (Koyyalagunta
et al., 2021), in which, in addition to the previously
used Skip-gram and GloVe word embeddings, to
produce their similarity matrices they use

• FastText (Bojanowski et al., 2017),

• the BERT model (Devlin et al., 2018),

• and the BabelNet knowledge graph (Navigli
and Ponzetto, 2010b), with a framework that
associates words according to special rules,
developed specifically for this purpose.

In addition to calculating the relatedness be-
tween words, the above works also differ in the
scoring functions of the possible clues. Without
limiting the generality, we assume that our agent
plays in the blue team, that is, our clues refer to the
blue words. Using the notations of Koyyalagunta
et al. (2021), let c̃ be a possible clue word, In a set
of targeted (intended) words, that is, the n closest
blue words to c̃, R the set of all bad words that
do not belong to the team (red words), and s(·, ·) a
function that calculates the similarity or relatedness
of two words. The scoring function of Kim et al.
(2019) is then

gKim(c̃, n) =





minb∈In s(c̃, b),
if minb∈In s(c̃, b) > maxr∈R s(c̃, r)

0, otherwise.
(1)

Jaramillo et al. (2020) takes the same function,
but adds penalties based on the color of the cards.
Koyyalagunta et al. (2021), on the other hand, de-
fine another scoring function:

gKoyy(c̃, n) =

( ∑

b∈In
s(c̃, b)

)
− λ

(
max
r∈R

s(c̃, r)
)
,

(2)
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where λ is configurable parameter.
In addition, they introduce another method to

score clues not only on the basis of word similari-
ties, but also on the basis of their frequency and the
similarity of Dict2vec vectors (Tissier et al., 2017)
– but this is actually a modification of the original
distance matrix.

Their results show that relatedness calculated
by GloVe performs best in combination with dic-
tionary definitions and frequency, but without the
latter, cosine similarity in FastText proves to be the
best measure.

Furthermore, Kumar et al. (2021) studied if the
decisions of human players can be predicted in an
amended version of Codenames. For the predic-
tions, they used word2vec and GloVe word em-
beddings, as well as several similarity measures
on free association datasets, in particular SWOW
(De Deyne et al., 2019) and USF (Nelson et al.,
2004). They found that similarity based on random
walks in SWOW performed the best, from which
they concluded that not only direct associations,
but indirect connections are also important in this
game.

4 Our Codenames Agents

Building on the studies of Spence and Owens
(1990), we introduce several word relatedness mea-
sures based on co-occurrences, which we expect
to be more suitable for modeling the human per-
ception of word connections than representation
methods created for other NLP tasks. We create
spymaster agents with several new clue scoring
functions combined to our relatedness measures.
This way, our methods only require a raw text cor-
pus of appropriate size, so they can be used for
any language. We evaluate them in two languages
(English and Hungarian), in an online game with
human players.1

4.1 Relatedness measures

Considering the previous results on the relationship
between associations and co-occurrences (Spence
and Owens, 1990; Shen et al., 2018), we create
our distance matrices not from the latest neural
methods of NLP, but from co-occurrences counted

1The game:
http://spymasters.herokuapp.com/

Source code and data:
https://github.com/xerevity/
CodeNamesAgent

in raw text. As English corpora we use the con-
catenation of the English Wikipedia and the En-
glish OpenSubtitles corpus, consisting of 5.692
billion tokens in total. For Hungarian, we use the
lemmatized version of the Hungarian Webcorpus
(Nemeskey, 2020), also including the Hungarian
Wikipedia (1.414 billion tokens). We work with
vocabulary sizes 15K in English and 10K in Hun-
garian, and remove stopwords.

4.1.1 FastText
Among the similarity measures of Koyyalagunta
et al. (2021), generally FastText seems to be the
best model. So, following the cited work, we create
a relatedness matrix based on the cosine similarity
of FastText vectors. That is, if vi, vj are vectors
corresponding to words wi, wj , then

sF (wi, wj) = cos(vi, vj).

For comparability with the other methods, we train
our FastText models on the above corpora for En-
glish and Hungarian in 300 dimensions, using win-
dow size 10.

4.1.2 Normalized PMI
A standard and probably the most common method
to calculate word relatedness from co-occurrences
is computing the pointwise mutual information
(PMI) of two words. However, PMI has well-
known shortcomings, such as overvaluing the re-
latedness of rare words, and lacking a fixed upper
and lower bound. Bouma (2009) introduced nor-
malized PMI as

PMInorm(x, y) =

(
ln

p(x, y)

p(x)p(y)

)/
− ln p(x, y),

(3)
which has 1 and −1 as upper and lower bounds, and
works well empirically as an association measure.
According to a known practice, we keep positive
values only.

Comparing this relatedness measure to data ob-
tained from humans (MEN, Bruni et al., 2012 and
WS-353 relatedness, Agirre et al., 2009), we found
that taking the square root of PMInorm increases the
Pearson correlation coefficient between human an-
notations and our calculated relatedness from 0.72
to 0.76 for MEN, and from 0.57 to 0.63 for WS-353.
Additionally, in our following methods, it is bene-
ficial if the values do not concentrate around zero,
therefore we use the square root of normalized PMI
hereinafter:

NPMI(x, y) =
√

PMInorm(x, y). (4)
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4.1.3 Squared NPMI matrix
In Codenames, to get ahead in the game, spymas-
ters have to give clues that are connected to many
words that are probably unconnected to each other.
As Kumar et al. (2021) showed, they might asso-
ciate words that are not in a strong direct connec-
tion, but are only indirectly related (e.g. religion is
not related to tree, but both are related to Christmas,
therefore religion could be a clue for tree).

To model such indirect connections, we multiply
the relatedness matrix by itself, and use the values
of the squared matrix S′ as the relatedness measure
between two words. By the definition of matrix
multiplication,

S′
ij =

n∑

k=1

si,k · sk,j ,

that is, if we define G0 as a graph whose neigh-
borhood matrix is the NPMI matrix then S′

ij is the
sum of the product of the weights on all two-length
paths vi − vk − vj in G0. Since all edge weights
are between 0 and 1, considering the weight of
a path as the product of its edge weights gives a
valid relatedness measure: longer paths and paths
that contain smaller weights will yield to smaller
relatedness values.

Artetxe et al. (2018) also showed on word em-
beddings, that different powers of embedding ma-
trices are beneficial for word similarity and word
relatedness tasks, and that the optimal power is
higher for relatedness than for similarity.

Another advantage of this method is, that it re-
duces the number of zeros in the matrix. This is
most important in the case of a guesser agent, be-
cause if the matrix consists of many zero values,
some clues may not have any related words on the
board according to our relatedness measure. How-
ever, if we have a nonzero value for all board words,
we can take the relatedness between the clue word
and the bad words into account, which might be
beneficial for a spymaster agent as well.

4.1.4 NPMI graph
In the method described above, we already used a
relatedness measure based on a graph constructed
from NPMI values, where the weight of a path
was the product of the weights of the edges on the
path. This way, a greater value of edge or path
weights corresponds to a stronger connection be-
tween the nodes. However, a more common way
is that edge weights represent distance, and path

NPMI NPMI2 Graph FastText

NPMI 0.495 0.820 0.393
NPMI2 0.349 0.578 0.621
Graph 0.442 0.602 0.427

FastText 0.295 0.524 0.319

Table 1: Pearson (upper tringle) and Spearman (lower
triangle) correlation coefficients between our related-
ness measures.

weights are the sum of the edges, so that stronger
connections belong to smaller path weights. Since
our NPMI values are between 0 and 1, we can de-
fine graph G as follows: an edge e(v1, v2) between
vertices corresponding to words w1 and w2 exists
if and only if NPMI(w1, w2) > 0, and its weight
is w(e(v1, v2)) = 1 − NPMI(w1, w2). Now the
distance between w1 and w2 is given by the weight
of the shortest path between v1 and v2:

dG(wi, wj) = min
π∈ΠG(vi,vj)

∑

ek∈π
w(ek), (5)

We can turn these distance values into relatedness
measures by subtracting them from 1:

sG(w1, w2) = 1− dG(wi, wj). (6)

This way, for two strongly related words, for which
the shortest path is the edge between them, we
get the NPMI as relatedness value. This method
therefore has some of the advantageous properties
of both above relatedness measures.

4.1.5 Comparison and evaluation of
relatedness measures

To investigate the relationship of the above defined
relatedness measures, we compute correlations be-
tween the score they assign to 100.000 random
word pairs. As Table 1 shows, none of the mea-
sures are near equivalent, but they have nonzero
correlations. They also show high positive correla-
tions with MEN (Bruni et al., 2012) and WS-353
relatedness (Agirre et al., 2009), as can be seen
in Table 2, which is hopeful for their usability as
relatedness in Codenames agents.

4.2 Clue scoring functions

Say that the agent plays in the blue team, i.e. we
want to generate clues associated to the blue words,
based on the distance functions above. The func-
tions of Kim et al. (2019) (see (1)) determined the
score of a possible reference based on relatedness
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MEN WS-353

Pearson Spearman Pearson Spearman

NPMI 0.761 0.749 0.632 0.649
NPMI2 0.627 0.670 0.502 0.545
Graph 0.754 0.735 0.650 0.647

FastText 0.732 0.737 0.562 0.564

Table 2: Correlation between our relatedness measures
and gold standard annotations.

of the clue word to the least related blue word tar-
geted. The shortcoming of this, however, is that
in addition to blue (good) words that are similar to
the clue word, there may be bad words of a differ-
ent color that are only very slightly less similar to
the clue. We can assume that in this case, agents
are less likely to choose the targeted words; or in
general, the smaller the difference between the dis-
tances of two words from the clue according to our
distance function, the more likely the human player
will perceive the order of the two words reversed.

To avoid such problems, Koyyalagunta et al.
(2021) (see (2)) add a penalty on the relatedness
of the closest bad word to their scoring functions.
This scoring function generally improves the qual-
ity of the generated clues, thus we use this as one of
our scoring functions. However, this function does
not require all bad words to be less similar to the
clue word than the targeted words, and in our exper-
iments there have been such cases that this caused
a problem. Therefore we define KoyyRestrict, a
restricted modification of gKoyy:

gKoyyR(c̃, n) =





gKoyy(c̃, n),
if minb∈In s(c̃, b) > maxr∈R s(c̃, r)

0, otherwise.
(7)

Another disadvantage of this scoring function is
that the sum of the similarities might be high even
if only one targeted word is very related to the clue
word, and the scores of the other targets are close
to the scores of the bad words. Regarding this,
replacing the sum (which is, in optimization for
a certain n, equivalent with the arithmetic mean)
with the harmonic mean of the relatedness scores
might also lead to an improvement, especially if
there are outliers among the vocabulary words with
very high relatedness to a blue word. Thus, we
introduce Harmonic scoring function as:

gH(c̃, n) =





H(b|b ∈ In)− λ ·maxr∈R s(c̃, r),
if minb∈In s(c̃, b) > maxr∈R s(c̃, r)

0, otherwise,
(8)

where H is the harmonic mean function:

H (x1, x2, . . . , xn) =
n

x−1
1 + x−1

2 + · · ·+ x−1
n

.

Finally, we also use a different version (Har-
monicDivide) of the above, where the penalty on
the bad words is performed as division instead of
subtraction:

gHD(c̃, n) =
H(b|b ∈ In)

max(n ·maxr∈R s(c̃, r), 1)
. (9)

We combine these four scoring functions with
all of the above relatedness measures, and evaluate
the agents thus obtained in the next section.

5 Evaluation and Analysis

Following Koyyalagunta et al. (2021), we use
λ = 0.5 for Koyyalagunta and KoyyRestrict scor-
ing functions, but also for the Harmonic function.
We pair all relatedness measures to all scoring func-
tions, creating 16 agents in total, and generate clues
for n = 2 and 3 targeted blue words using all of
them. Differently from Koyyalagunta et al. (2021),
we consider all of our vocabulary words as possi-
ble clue words. For each possible clue word, the
best target words in the set In are the n closest
words to the clue word, so scoring a possible clue
is computationally inexpensive.

We randomly create 100 boards, with each con-
taining 10 good and 10 bad words. For each board,
we generate clues with the 32 configurations de-
tailed above. This results in 1304 distinct clues in
English, and 1399 in Hungarian. For evaluation,
we create an online game, where human players
get a board with one of the corresponding clues
randomly, and have to choose the given number
of words from the board which they think the clue
refers to. The players do not know how the agents
work, and to avoid that through the game they learn
it at the end of the round they only see the color
of their chosen words. We collected 443 rounds
played in English, and 1365 in Hungarian. This
way, we have 31.5 rounds on average to evaluate
English configurations, and 64 rounds for Hungar-
ian. For one board, players on average spent 39
seconds on guessing in English, while 37 seconds
in Hungarian. We note that the players of the Hun-
garian game were most likely Hungarian native
speakers, while the same cannot be said about the
English game, therefore we consider the Hungarian
data more reliable.
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Evaluation Relatedness
Koyy KoyyR HM HM-Div Koyy KoyyR HM HM-Div

2 targets 3 targets

P@all

FastText 0.764 0.757 0.740 0.829 0.710 0.712 0.756 0.759
NPMI 0.747 0.747 0.776 0.715 0.707 0.708 0.733 0.695
NPMI2 0.722 0.742 0.725 0.744 0.666 0.696 0.746 0.729
Graph 0.795 0.795 0.827 0.715 0.727 0.735 0.759 0.695

P@targets

FastText 0.558 0.567 0.581 0.625 0.531 0.518 0.585 0.582
NPMI 0.504 0.504 0.519 0.546 0.515 0.513 0.503 0.495
NPMI2 0.529 0.547 0.554 0.479 0.503 0.513 0.556 0.550
Graph 0.533 0.533 0.574 0.546 0.541 0.542 0.511 0.495

Table 3: Rate of correct guesses made by human players in the Hungarian game. Numbers falling into the
bootstrapped confidence interval of the best score are underlined in each category.

Evaluation Relatedness
Koyy KoyyR HM HM-Div Koyy KoyyR HM HM-Div

2 targets 3 targets

P@all

FastText 0.707 0.726 0.783 0.722 0.711 0.742 0.755 0.760
NPMI 0.727 0.727 0.670 0.682 0.764 0.764 0.725 0.716
NPMI2 0.611 0.583 0.604 0.729 0.645 0.583 0.638 0.649
Graph 0.714 0.714 0.679 0.682 0.750 0.750 0.723 0.716

P@targets

FastText 0.487 0.535 0.581 0.555 0.549 0.495 0.577 0.520
NPMI 0.420 0.420 0.397 0.426 0.549 0.549 0.541 0.508
NPMI2 0.377 0.361 0.372 0.445 0.354 0.369 0.370 0.470
Graph 0.392 0.392 0.384 0.426 0.552 0.552 0.533 0.508

Table 4: Rate of correct guesses made by human players in the English game. Numbers falling into the bootstrapped
confidence interval of the best score are underlined in each category.

Similar to Koyyalagunta et al. (2021), we com-
pute the precision of the agents as

P@targets =
|In ∩ U |

n
,

where In is the set of the targeted words, and U is
the set of words chosen by the players. However,
the scoring functions optimize clue words to stay
away from red words, but not from non-targeted
blue words, which might be almost as related to the
clue as the targeted ones. If the user chooses such
an untargeted word, the agent still performs well.
So we define P@all,

P@all =
|A ∩ U |

n
,

where A is the set of all good (blue) words. In
Table 3 and Table 4, we show the mean precision
of the players’ guesses on the clues of each agent.
In each category (defined by language, evaluation
method, and the number of targets), we construct
a 0.95 level confidence interval for the best mean

precision using bootstrap, and mark the numbers
falling into this interval underlined.

Among the configurations, FastText similarity
combined with the Koyyalagunta scoring function
was evaluated previously by Koyyalagunta et al.
(2021), where it was the best agent without any
language-specific resource, i.e. using raw corpora
only. The results show that this is outperformed by
many of our new configurations.

On FastText relatedness, our Harmonic and Har-
monicDivide scoring functions result in a substan-
tial improvement. Most of the best performing
configurations use FastText as similarity measure
combined with these functions, although the advan-
tage of these methods is less significant when the
guesses are evaluated on all blue words instead of
the targets of the agent. Also, the only agent that
performs within the confidence interval of the best
agent in their category is FastText combined with
HarmonicDivide, therefore we consider it as our
highest performing agent. The second best agents
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in this regard, falling short in one category only, are
the Graph similarity combined with Koyyalagunta
and KoyyalaguntaRestrict functions.

As we can see, different relatedness measures
fit different scoring functions. As mentioned in
4.2, we think that the Harmonic functions are more
beneficial where outliers with high relatedness can
be found; more generally, the optimal clue scoring
function depends on the distribution of the relat-
edness measures. The exact connection between
them seems to be an exciting direction for future
work.

Interestingly, the correlations of the related-
ness measures to human-annotated relatedness data
(seen in 4.1.5) are not predictive of their perfor-
mance in Codenames, as in those experiments Fast-
Text had been outperformed by both NPMI and
Graph relatedness. The results in the two languages
are not perfectly in line either. For example, in En-
glish NPMI2 and graph relatedness perform worse
than the two other relatedness measures, while the
same does not appear in Hungarian. We suspect
that this is because NPMI2 and graph relatedness
capture more indirect connections, which are more
problematic to see for non-native speakers.

6 Summary and Future Work

In this work, we separated the Codenames spy-
master agent’s task into two parts. To cooperate
with humans, we first need to specify a related-
ness matrix that sufficiently approximates the rela-
tionships as judged by humans, and then define a
scoring function on top of this that ranks the pos-
sible clues according to how many good guesses a
human player is expected to give.

Based on previous research on associations, we
generated some of our relatedness matrices based
on co-occurrences between words in a corpus. We
evaluated these relatedness measures with human-
annotated relatedness data. However, we found that
these scores were not predictive of the performance
of the Codenames agents based on these measures.

We also introduced innovations in terms of scor-
ing functions, firstly by refining the scoring func-
tion of Koyyalagunta et al. (2021), and secondly by
using the harmonic mean of the relatedness to the
clue word. This improved the performance of the
best agents substantially.

Our best agents overall were FastText cosine
similarity combined with a function using har-
monic mean, and path weights in a graph of co-

occurrences, combined with functions using arith-
metic mean of similarities. This raises the question
about what relationship is there between related-
ness and scoring functions.

In future work, we would like to collect data
on human spymaster-player decisions and evaluate
guesser agents on them, which will directly allow
the optimization of the relatedness measure.

Although many NLP methods have already been
used to generate distance matrices, others are worth
trying. Examples include graph embedding of
associations (Bel-Enguix, 2014) and GraphGlove
(Ryabinin et al., 2020).

As each relatedness measure can be defined by
a matrix, it is also possible to aggregate several
matrices generated in different ways. For example,
creating distance matrices based on co-occurrences,
neural word representations, and knowledge graphs
at the same time seems to be a promising new direc-
tion. The comparison of such different relatedness
matrices could also provide important lessons in
cognitive modeling and the interpretability of neu-
ral word representations.
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A Appendix: Example clues

Figure 1 is a board we used for evaluation, and
Table 5 contains the clues generated by all of our
agents for this board.
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Figure 1: An example board used in evaluation

Relatedness Scoring Number Clue word Target words

FastText Koyyalagunta 2 chapel church, crane
FastText Koyyalagunta 3 raven unicorn, crane, spike
FastText KoyyRestrict 2 chapel church, crane
FastText KoyyRestrict 3 shark unicorn, crane, spike
FastText Harmonic 2 menu table, server
FastText Harmonic 3 bean root, crane, spike
FastText HarmonicDivide 2 doll unicorn, spike
FastText HarmonicDivide 3 preview cover, server, spike

NPMI Koyyalagunta 2 directory root, server
NPMI Koyyalagunta 3 altar church, table, server
NPMI KoyyRestrict 2 directory root, server
NPMI KoyyRestrict 3 altar church, table, server
NPMI Harmonic 2 directory root, server
NPMI Harmonic 3 altar church, table, server
NPMI HarmonicDivide 2 directory root, server
NPMI HarmonicDivide 3 altar church, table, server

NPMI2 Koyyalagunta 2 user server, root
NPMI2 Koyyalagunta 3 voiced crane, spike, unicorn
NPMI2 KoyyRestrict 2 user server, root
NPMI2 KoyyRestrict 3 voiced crane, spike, unicorn
NPMI2 Harmonic 2 node root, server
NPMI2 Harmonic 3 voiced crane, spike, unicorn
NPMI2 HarmonicDivide 2 download server, cover
NPMI2 HarmonicDivide 3 itunes server, cover, unicorn

Graph Koyyalagunta 2 directory root, server
Graph Koyyalagunta 3 directory root, server, table
Graph KoyyRestrict 2 directory root, server
Graph KoyyRestrict 3 directory root, server, table
Graph Harmonic 2 directory root, server
Graph Harmonic 3 altar church, table, server
Graph HarmonicDivide 2 directory root, server
Graph HarmonicDivide 3 altar church, table, server

Table 5: Clues generated for the board in Figure 1.
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