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Abstract

Eye-Tracking data is a very useful source of
information to study cognition and especially
language comprehension in humans. In this
paper, we describe our systems for the CMCL
2022 shared task on predicting eye-tracking in-
formation. We describe our experiments with
pretrained models like BERT and XLM and the
different ways in which we used those repre-
sentations to predict four eye-tracking features.
Along with analysing the effect of using two dif-
ferent kinds of pretrained multilingual language
models and different ways of pooling the token-
level representations, we also explore how con-
textual information affects the performance of
the systems. Finally, we also explore if factors
like augmenting linguistic information affect
the predictions. Our submissions achieved an
average MAE of 5.72 and ranked 5th in the
shared task. The average MAE showed further
reduction to 5.25 in post task evaluation.

1 Introduction and Motivation

In the last decade that has seen rapid developments
in AI research, the emergence of the Transformer
architecture (Vaswani et al., 2017) marked a piv-
otal point in Natural Language Processing (NLP).
Fine-tuning pretrained language models to work on
various downstream tasks has become a dominant
method of obtaining state-of-the-art performance
in different areas. Their capability to capture lin-
guistic knowledge and learn powerful contextual
word embeddings (Liu et al., 2019) have made the
transformer based models the work-horses in many
NLP tasks. Pretrained models like the multilin-
gual BERT (Devlin et al., 2019) and XLM (Con-
neau et al., 2020) have also shown state-of-the-art
performance on cross-lingual understanding tasks
(Wu and Dredze, 2019; Artetxe et al., 2019). In
some cases like machine translation, there are even
claims that deep learning systems reach transla-
tion qualities that are comparable to professional
translators (Popel et al., 2020).

Language processing and its links with cognition
is a very old research problem which has revealed
how cognitive data (eg. gaze, fMRI) can be used
to investigate human cognition. Attempts at using
computational methods for such studies (Mitchell
et al., 2008; Dehghani et al., 2017) have also shown
encouraging results. However recently, there have
been a number of works that have tried to incorpo-
rate human cognitive data collected during reading
for improving the performance of NLP systems
(Hollenstein et al., 2019). The CMCL 2022 Shared
Task of multilingual and cross-lingual prediction of
human reading behavior (Hollenstein et al., 2022)
explores how eye-gaze attributes can be algorithmi-
cally predicted given reading data in multilingual
settings.

Informed by the previous attempts at using pre-
trained multilingual language models to predict
human reading behavior (Hollenstein et al., 2021)
we experiment with multilingual BERT and XLM
based models to test which fares better in this task.
For the experiments with the pretrained models, we
use the trained weights from Huggingface (Wolf
et al., 2020) and perform the rest of our experiments
using PyTorch1. Inspired by the psycholinguistic
research on investigating context length during pro-
cessing (Wochna and Juhasz, 2013), we experiment
how different contexts affect model performance.
Finally, we merged the principles of the "classi-
cal" approach of feature-based prediction with the
pretrained-language model based prediction for fur-
ther analysis. In the following sections, we present
our results from a total of 48 different models.

2 Task Description

The CMCL 2022 Shared Task of Multilingual and
Cross-lingual prediction of human reading behav-
ior frames the task of predicting eye-gaze attributes
associated with reading sentences as a regression

1https://pytorch.org/
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task. The data for the task was comprised of eye
movements corresponding to reading sentences in
six languages (Chinese, Dutch, English, German,
Hindi, Russian). The training data for the task con-
tained 1703 sentences while the development set
and test set contained 104 and 324 sentences re-
spectively. The data was presented in a way such
that for each word in a sentence there were four
associated eye-tracking features in the form of the
mean and standard deviation scores of the Total
Reading Time (TRT) and First Fixation Duration
(FFD). The features in the data were scaled in the
range between 0 and 100 to facilitate evaluation via
the mean absolute average (MAE).

3 Experiments

A total of 48 models of different configurations
were trained with the data provided for the shared
task. The different configurations used to construct
the models are based on intuition and literature
survey.

Thee models were primarily categorized as
System-1 (sys1) and System-2 (sys2) models. For
some word corresponding to a sentence in the
dataset, System-1 models provided no additional
context information. System-2 models on the other
hand, contained the information of all the words in
the sentence that preceded the current word, provid-
ing additional context. This setting was inspired by
works (Khandelwal et al., 2018; Clark et al., 2019)
on how context is used by language models.

All systems under the System-1/2 labels were
further trained as a BERT (bert) based system or a
XLM (xlm) based system. BERT embeddings were
previously used by Choudhary et al. (2021) for
the eye-tracking feature prediction task in CMCL
2021.

Corresponding to each such language models
(bert and xlm), the impact of different fine-tuning
strategies(Sun et al., 2019) on system performance
was studied. Hence, for one setting, only the con-
textualized word representation (CWR) was uti-
lized by freezing the model weights and putting
a learnable regression layer on top of the model
output layer (classifier). Alternatively, the mod-
els were fine-tuned with the regression layer on
top of them (whole). This setting is similar to the
one used by Li and Rudzicz (2021). However in
our case, we experiment with a BERT and XLM
pretrained model.

Additionally, we also performed experiments

with pooling strategies for the layer representations
by either using the final hidden representation of
the first sub-word encoding of the input (first) or
aggregating the representations of all sub-words
using mean-pooling (mean) or sum-pooling (sum).
The rationale behind using different pooling strate-
gies was to have a sentence-level representation of
the input tokens. The impact of different pooling
strategies has previously been studied (Shao et al.,
2019; Lee et al., 2019) for different problems. In
this paper, we analyze the effect of pooling feature-
space embeddings in the context of eye-tracking
feature prediction.

Finally, for the experiments where we aug-
mented additional lexical features (augmented) to
the neural features for regression, we used word
length and word-frequency as the additional infor-
mation following Vickers et al. (2021).

Constructing the experiments in this manner pro-
vided us with models with a diverse set of proper-
ties and in turn provided insights into how well the
model behaves when all other things stay the same,
and only one aspect of learning is changed.

4 Results

The results corresponding to the top 10 systems
based on the experiments described above are
shown in Table 1.

Model MAE
bert_sys2_augmented_sum_classifier 5.251

bert_sys2_unaugmented_first_classifier 5.267
bert_sys2_augmented_mean_classifier 5.272
bert_sys1_augmented_mean_classifier 5.279
bert_sys2_augmented_first_classifier 5.295
xlm_sys1_augmented_first_classifier 5.341

xlm_sys2_augmented_first_whole 5.346
bert_sys1_augmented_sum_classifier 5.353

bert_sys2_augmented_sum_whole 5.367
xlm_sys2_augmented_first_classifier 5.373

Table 1: Top 10 best performing systems

It was observed that the maximum MAE scores
(and the maximum variance of scores) for all the
models was obtained for the attribute "TRT_Avg".
The attribute wise variances corresponding to the
test-data for all the models are shown in Table 2.
Similarly, the mean values of the attributes for all
models are shown in Table 3.

An analysis of the models based on the different
experimental configurations are described in the
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FFD_Avg FFD_Std TRT_Avg TRT_Std
0.194 0.403 0.637 0.489

Table 2: Attribute wise variance of scores for all models

FFD_Avg FFD_Std TRT_Avg TRT_Std
5.691 2.646 8.633 5.806

Table 3: Attribute wise mean of scores for all models

following sections.

4.1 System-1 vs System-2

Table 4 shows the average model performance
across System-1 and System-2 configurations for
both BERT and XLM based models (based on the
average MAE values of the configurations). We see
that for the BERT based models, the average MAE
for System-1 is lower than that of System-2. But
for XLM-based models, the difference is almost
non-existent.

Model Average MAE across models
Sys1_BERT 5.66
Sys1_XLM 5.70
Sys2_BERT 5.72
Sys2_XLM 5.69

Table 4: System-1 vs System-2 performance across
models

However, it should be noted that 12 out of the
first 20 best performing models were System-2
models. Hence we posit that although the avail-
ability of the full sentence context is a factor for
having more efficient systems, independently the
factor does not seem to boost the overall perfor-
mance much.

4.2 BERT vs XLM

Table 5 shows that there is only a tiny difference
in average MAE for all four attributes (FFD_µ,
FFD_σ, TRT_µ, TRT_σ) for all BERT vs XLM
models . However, a brief look at Table 6 and
Table 7 reveal that it was the XLM models that were
responsible for slightly decreased MAE scores for
3 of the 4 attributes that were being predicted.

We also see that the amount of variance for XLM
based models was also smaller for 3 of the 4 at-
tributes.

Model Average MAE across models
BERT 5.6920
XLM 5.6960

Table 5: BERT vs XLM performance across models

Model FFD_µ FFD_σ TRT_µ TRT_σ
BERT 0.141 0.776 0.952 0.792
XLM 0.236 0.045 0.349 0.204

Table 6: Attribute wise variance of scores for all BERT
and XLM based models

Model FFD_µ FFD_σ TRT_µ TRT_σ
BERT 5.592 2.679 8.645 5.852
XLM 5.789 2.612 8.622 5.760

Table 7: Attribute wise mean of scores for all BERT and
XLM based models

4.3 Augmented vs Un-Augmented models

Fig. 1 shows that augmented models. i.e. models
that were fed information like word-frequency and
word-length along with the neural representation
information before being fed to the regression layer
performed better than models that used only con-
textual word embeddings resulting from pretrained
language models. Table 8 and Table 9 show the 5
best performing models of this category sorted by
their MAE.

Model MAE
bert_sys2_unaugmented_first_classifier 5.267

bert_sys2_unaugmented_mean_classifier 5.405
xlm_sys1_unaugmented_mean_classifier 5.5
xlm_sys2_unaugmented_mean_classifier 5.55
xlm_sys1_unaugmented_mean_classifier 5.557

Table 8: Performance of 5 best Un-Augmented models.

Model MAE
bert_sys2_augmented_sum_classifier 5.251
bert_sys2_augmented_mean_classifier 5.272
bert_sys1_augmented_mean_classifier 5.279
bert_sys2_augmented_first_classifier 5.295
xlm_sys1_augmented_first_classifier 5.341

Table 9: Performance of 5 best Augmented models

The mean and variance of attributes across mod-
els of these families presented in Table 10 & 11
show that augmented models show way less vari-
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Model FFD_µ FFD_σ TRT_µ TRT_σ
Aug 5.502 2.511 8.181 5.436
Uaug 5.88 2.78 9.086 6.176

Table 10: Attribute wise mean of scores for all Aug-
mented and Un-augmented models

Model FFD_µ FFD_σ TRT_µ TRT_σ
Aug 0.017 0.004 0.015 0.007
Uaug 0.292 0.749 0.823 0.678

Table 11: Attribute wise variance of scores for all Aug-
mented and Un-augmented models

ance in their predictions in comparison with neural-
representation only model families.

Figure 1: Augmented vs Un-augmented model perfor-
mance. The x-axis represents the 24 different models of
each category. The y-axis shows the MAE correspond-
ing to each model.

4.4 Nature of representation of input tokens
(Pooling strategies)

Fig. 2 shows that using the first sub-word token or
the mean-pooled representation of the entire input
gives lesser MAE scores than the sum-pooled rep-
resentations. It was also observed that for System-2
family of models, the mean-pooled representations
were associated with lesser MAE scores in com-
parison to the first sub-word representation. The
attribute wise mean in Table 15 and attribute wise
variance of model MAEs shown in Table 16 illus-
trates this point. Table 12,Table 13 and Table 14
show the 5 best performing models of this category
sorted by their MAE.

4.5 Fine-tuning

Fine-tuning on large pretrained language models
has become the standard way to conduct NLP re-

Model MAE
bert_sys2_unaugmented_first_classifier 5.267

bert_sys2_augmented_first_classifier 5.295
xlm_sys1_augmented_first_classifier 5.341

xlm_sys2_augmented_first_whole 5.346
xlm_sys2_augmented_first_classifier 5.373

Table 12: Performance of 5 best first models

Model MAE
bert_sys2_augmented_mean_classifier 5.272
bert_sys1_augmented_mean_classifier 5.279

bert_sys2_augmented_mean_whole 5.375
bert_sys2_unaugmented_mean_classifier 5.405

xlm_sys1_augmented_mean_whole 5.413

Table 13: Performance of 5 best Mean models

Model MAE
bert_sys2_augmented_sum_classifier 5.251
bert_sys1_augmented_sum_classifier 5.353

bert_sys2_augmented_sum_whole 5.367
bert_sys1_augmented_sum_whole 5.402

xlm_sys2_augmented_sum_classifier 5.456

Table 14: Performance of 5 best Sum models

Model FFD_µ FFD_σ TRT_µ TRT_σ
first 5.549 2.505 8.434 5.615

Mean 5.57 2.538 8.416 5.636
Sum 5.954 2.894 9.05 6.167

Table 15: Attribute wise mean of scores for models with
different input token representations

Model FFD_µ FFD_σ TRT_µ TRT_σ
first 0.036 0.004 0.118 0.054

Mean 0.047 0.005 0.118 0.048
Sum 0.383 1.082 1.374 1.139

Table 16: Attribute wise variance of scores for models
with different input token representations

search after the widespread adoption of the trans-
former architecture. And unsurprisingly, our exper-
iments reveal (Fig. 3) that fine-tuning of models
give smaller MAE scores than training only the
regression layers. The stark difference in the vari-
ance for the predicted attributes between fine-tuned
models and regression only models (as illustrated
in Table 17-18) further demonstrates the advantage
of fine-tuning.
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Figure 2: Model performance based on the nature of
representation of input tokens.The x-axis represents the
16 different models of each category. The y-axis shows
the MAE corresponding to each model.

Model FFD_µ FFD_σ TRT_µ TRT_σ
Aug 5.502 2.511 8.181 5.436
Uaug 5.88 2.78 9.086 6.176

Table 17: Attribute wise variance of scores for fine-
tuned models vs regression-layer only models

Model FFD_µ FFD_σ TRT_µ TRT_σ
Aug 0.017 0.004 0.015 0.007
Uaug 0.292 0.749 0.823 0.678

Table 18: Attribute wise mean of scores for fine-tuned
models vs regression-layer only models

Figure 3: Fine-tuning vs training only regression layer
in the models. The x-axis represents the 24 different
models of each category. The y-axis shows the MAE
corresponding to each model.

5 Conclusion

In this paper, we have described our experiments
with different kinds of models that were trained
on the data provided for this shared-task. We have
identified five ways in which we can make better

systems to predict eye-tracking features based on
eye-tracking data from a multilingual corpus. First,
the experiments demonstrate that the inclusion of
context (previous words occurring in the sentence)
helps the models to predict eye-tracking attributes
better. This reaffirms previous observations made
with language models that more context is always
helpful. Second, we find that XLM based mod-
els perform relatively better than the BERT based
models. Third, our experiments show the advan-
tages of augmenting additional linguistic features
(word length and word frequency information in
this case) to the contextual word representations to
make better systems. This is in agreement with the
findings from eye-tracking prediction tasks from
last iterations of CMCL. Fourth, we see how dif-
ferent pooling methods applied on the input token
representations affect the final performance of the
systems. Finally, the experiments re-validate the ap-
proach of fine-tuning pretrained language models
for specific tasks. Hence we conclude that contextu-
alized word representations from language models
pretrained with many different languages, if care-
fully augmented, engineered, and fine-tuned, can
predict eye-tracking features quite successfully.
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