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Preface

This volume contains papers from the 4th Workshop on Clinical Natural Language Processing (Clinical
NLP), held at NAACL 2022.

Clinical text offers unique challenges that differentiate it not only from open-domain data, but from other
types of text in the biomedical domain as well. Notably, clinical text contains a significant number of
abbreviations, medical terms, and other clinical jargon. Clinical narratives are characterized by non-
standard document structures that are often critical to overall understanding. Narrative provider notes
are designed to communicate with other experts while at the same time serving as a legal record. Final-
ly, clinical notes contain sensitive patient-specific information that raise privacy and security concerns
that present special challenges for natural language systems. This workshop focuses on the work that
develops methods to address the above challenges, with the goal of advancing state-of-the-art in clinical
NLP.

This year, we received the total of 16 submissions, out of which 12 were accepted for presentation.
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Keynote Talk: It’s Time to Rethink the Future of Clinical
NLP

Mark Dredze
Johns Hopkins University

Abstract: The past decade has seen tremendous progress in the field of clinical natural language pro-
cessing. Driven by new algorithms and access to clinical text from electronic medical records, clinical
NLP is quickly becoming a standard tool used in patient care, secondary use and medical research. At
the same time, the field of NLP as a whole is undergoing a rapid transformation driven by large language
models. Given these developments, it’s time that we rethink the future of clinical NLP.

Bio: Mark Dredze is the John C Malone Associate Professor of Computer Science at Johns Hopkins Uni-
versity. He is affiliated with the Malone Center for Engineering in Healthcare, the Center for Language
and Speech Processing, among others. He holds a secondary appointment in the Biomedical Informatics
& Data Science Section (BIDS), under the Department of Medicine (DOM), Division of General Internal
Medicine (GIM) in the School of Medicine. He obtained his PhD from the University of Pennsylvania
in 2009.

Prof. Dredze’s research develops statistical models of language with applications to social media analy-
sis, public health and clinical informatics. Within Natural Language Processing he focuses on statistical
methods for information extraction but has considered a wide range of NLP tasks, including syntax, se-
mantics, sentiment and spoke language processing. His work in public health includes tobacco control,
vaccination, infectious disease surveillance, mental health, drug use, and gun violence prevention. He
also develops new methods for clinical NLP on medical records.

Beyond publications in core areas of computer science, Prof. Dredze has pioneered new applications in
public health informatics. He has published widely in health journals including the Journal of the Ameri-
can Medical Association (JAMA), the American Journal of Preventative Medicine (AJPM), Vaccine, and
the Journal of the American Medical Informatics Association (JAMIA). His work is regularly covered
by major media outlets, including NPR, the New York Times and CNN.
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Keynote Talk: The Reproducible, Implementable,
Transparent, and Explainable (RITE) framework for

Real-world Implementation of Clinical Natural Language
Processing

Hongfang Liu
Mayo Clinic

Abstract: Over the past decade, Electronic Health Record (EHR) systems have been widely implemen-
ted with large amounts of detailed longitudinal patient information, including lab tests, medications,
disease status, and treatment outcomes, have consequently been accumulated and made electronically
available. These large clinical databases are valuable data sources for clinical and translational research
with several large clinical data initiatives (e.g., OHSDI, PCORnet, and CTSA). One common challenge
faced by those initiatives is, however, the prevalence of clinical information embedded in unstructured
text where natural language processing (NLP) techniques can be leveraged. Despite a plethora of recent
advances in adopting NLP for clinical research, there have been barriers towards adoption of NLP solu-
tions in clinical and translation research, especially in multisite settings. In this talk, I will discuss our
strategy towards addressing those barriers through proposing a RITE-FAIR (Reproducible, Implemen-
table, Transparent, and Explainable - Findable, Accessible, Interoperable, and Reusable) framework for
clinical NLP.

Bio: Hongfang Liu is Dr. Richard F. Emslander Professor of Biomedical Informatics of Mayo Clinic
and served as the founding chair of Division of Digital Health Sciences. She also directs biomedical in-
formatics in Mayo Clinic Center of Clinical and Translational Science and Mayo Clinic Comprehensive
Cancer Center and leads the ADVANCE program (Accelerating Discovery to Delivery through Advan-
ced Informatics and Analytics for Clinical Excellence). Dr. Liu received her formal training in Mathe-
matics, Statistics, Information and Computer Sciences with extensive research expertise in biomedical
informatics. Her primary research interest is in clinical and biomedical Natural Language Processing
and terminology/ontology. Dr Liu’s work in clinical informatics has resulted in informatics systems that
unlock clinical information stored in clinical narratives. Her work accelerates the pace of knowledge
discovery, implementation and delivery for improved health care. Her research has been continuously
supported by grants from National Science Foundation and National Institute of Health including NSF
CAREER award and NCATS Innovation Award. Dr. Liu currently leads the community-wide effort on
open health natural language processing (OHNLP) which aims to promote open source and interopera-
ble NLP for clinical and translational research. Dr. Liu is a member of several professional societies,
including the American Medical Informatics Association (AMIA) and the International Society for Com-
putational Biology (ISCB). She is a fellow of American College of Medical Informatics (FACMI) and a
fellow of International Academy of Health Sciences Informatics (FIAHSI).
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CLPT: A Universal Annotation Scheme and Toolkit for Clinical Language
Processing

Saranya Krishnamoorthy Yanyi Jiang William Buchanan
Ayush Singh John E. Ortega

inQbator AI at eviCore Healthcare
Evernorth Health Services

firstname.lastname@evicore.com

Abstract

With the abundance of natural language pro-
cessing (NLP) frameworks and toolkits being
used in the clinical arena, a new challenge
has arisen – how do technologists collaborate
across several projects in an easy way? Pri-
vate sector companies are usually not willing
to share their work due to intellectual property
rights and profit-bearing decisions. Therefore,
the annotation schemes and toolkits that they
use are rarely shared with the wider commu-
nity. We present the clinical language pipeline
toolkit (CLPT) and its corresponding annota-
tion scheme called the CLAO (Clinical Lan-
guage Annotation Object) with the aim of cre-
ating a way to share research results and other
efforts through a software solution. The CLAO
is a unified annotation scheme for clinical tech-
nology processing (CTP) projects that forms
part of the CLPT and is more reliable than
previous standards such as UIMA, BioC, and
cTakes for annotation searches, insertions, and
deletions. Additionally, it offers a standard-
ized object that can be exchanged through an
API that the authors release publicly for CTP
project inclusion.

1 Introduction

With the resurgence of deep learning and neural
networks, the interest in using a clinical language
framework for classifying clinical text in a digi-
tal manner has been heightened in recent years.
Several workshops and shared tasks (Harper et al.,
2021; Goeuriot et al., 2020; Rumshisky et al., 2020;
Wang et al., 2020) have focused on the state-of-
the-art approaches and the amount of private en-
terprises offering clinical solutions backed by ma-
chine learning technologies has increased drasti-
cally (Parida et al., 2022). Nonetheless, a recent
study (Digan et al., 2021) shows that systems like
UIMA (Ferrucci and Lally, 2004), CLAMP (Soysal
et al., 2018), and cTakes (Savova et al., 2010), de-
spite their age and typical technology stack (Java),

are still a standard for clinical language text classi-
fication and there are only a few publicly available
clinical language frameworks or standardized an-
notation schemes that provide easy ways to share
results and other pertinent information with orga-
nizations, private or public. We propose a modern
standardized framework that supports collaboration
on clinical language research. Here we present the
clinical language pipeline toolkit (CLPT), a frame-
work developed with Python designed with soft-
ware development principles. The CLPT enables
researchers and entities to share their project results
easily and supports research to be conducted in a
fast and reproducible way. The unified annotation
scheme for the CLPT is called the clinical language
annotation object (CLAO). The CLAO is more reli-
able for annotation searches, insertions, and dele-
tions than previous standards (e.g. UIMA(Ferrucci
and Lally, 2004), cTakes(Savova et al., 2010) and
BioC (Comeau et al., 2013)).1 Additionally, the
CLAO can be easily shared and integrated due to its
standardization which makes it accessible through
an application programming interface (API).

To illustrate the aforementioned concepts which
will improve clinical technology processing (CTP)
collaboration, we introduce five novel ideas and
contributions in this article:

1. A freely available2 annotation scheme (Clini-
cal Language Annotation Object, CLAO) for
CTP projects that can be interchanged be-
tween public and private sector organizations
through offline and online resources such as
APIs or file exchange.

2. A high-level Python framework (Clinical Lan-
guage Pipeline Toolkit, CLPT) designed pur-
posely in an ambiguous manner with the ob-

1The focus of this paper is to introduce the main concepts
of the CLPT and the CLAO. We plan to publish efficiency
results in a future iteration.

2https://github.com/inQbator-eviCore/
clpt
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jective of accepting any input of multiple
modal types (i.e., speech, images, text, and
more).

3. A novel algorithm for processing the anno-
tation scheme that allows faster annotation
inserts, deletes, and searches than previous
frameworks.

4. An annotation scheme that can be converted
to a linked data format which supports graph
analytics on documents.

5. Out-of-the-box support for semantically com-
paring text in high-dimension spaces for state-
of-the-art language models.

In the following sections, we first go through
related work on annotation and natural language
processing (NLP) tools in Section 2. In Section 3.1,
we then describe in detail the CLAO scheme. Next,
in Section 3.2, we cover the four CLPT modules
for creating a typical CTP pipeline. Lastly, we
conclude with the availability and future work.

2 Related Work

Several clinical text processing toolkits and annota-
tions schemes have been introduced in the past but
none of them provide the same functionality and
efficiency as the CLAO and CLPT. Some widely
used NLP tools for clinical text processing include
the clinical text analysis and knowledge extrac-
tion system (cTAKES) (Savova et al., 2010), BioC
(Comeau et al., 2013), Brat Rapid Annotation Tool
(BRAT) (Stenetorp et al., 2012), General Architec-
ture for Text Engineering (GATE) (Cunningham
et al., 2002), Metamap (Aronson and Lang, 2010),
Metamap Lite (Demner-Fushman et al., 2017), clin-
ical language annotation, modeling, and processing
(CLAMP) (Soysal et al., 2018) and sciSpaCy (Neu-
mann et al., 2019).

BRAT (Stenetorp et al., 2012) is a web-based
annotation tool for defining entities and creating an-
notations. Annotations created by BRAT are stored
in a standoff format. Since BRAT XML output is
similar to CLPT output, it can be easily adapted to
CLAO by creating an adapted script, unlike outputs
from cTakes or UIMA which are CAS files that are
serialized using Java-style notation. Though the
CLPT implements a similar approach of storing the
annotation in a CLAO object, the CLAO’s anno-
tation scheme supports faster annotation insertion,

deletion, and searching by implementing B-tree for
indexing (see 3.1 for details).

cTAKES (Savova et al., 2010) is a clinical infor-
mation retrieval system that combines rule-based
methods and machine learning techniques for clini-
cal narrative processing. It has been shown to work
well on clinical notes alone but does not cover a
broader set of NLP tasks (Neumann et al., 2019).
The CLPT has been designed purposely ambiguous
in order to accept multi-modal input and perform
several NLP tasks.

GATE (Cunningham et al., 2002), CLAMP
(Soysal et al., 2018), and BioC (Comeau et al.,
2013) provide multiple tools which can be used
for language processing tasks, annotating corpora,
and performing evaluation. Yet, all three of them
are either based on Java or C++. Additionally,
GATE (Cunningham et al., 2002) and CLAMP
(Soysal et al., 2018) depend on a framework called
the unstructured information management archi-
tecture (UIMA) (Ferrucci and Lally, 2004). CLPT
makes similar offerings as the three aforementioned
frameworks but it uses Python which makes it eas-
ier to integrate with other modern deep-learning
NLP frameworks such as TensorFlow (Abadi et al.,
2016), MedSpacy (Eyre et al., (in press, n.d.) and
PyTorch (Paszke et al., 2019).

The National Library of Medicine3 presented a
framework called Metamap (Aronson and Lang,
2010) for mapping biomedical text to unified med-
ical language system (UMLS) concepts. Others
(Soysal et al., 2018; Peng et al., 2020a) have found
Metamap difficult for building machine learning
models and hard to predict long entities due to its
dictionary lookup method (Peng et al., 2020a). Pre-
vious research (Zhang et al., 2021) argues that nei-
ther Metamap nor CLAMP incorporate deep learn-
ing models directly. We believe that the CLAO
and CLPT address several downfalls by creating
an easy-to-use annotation scheme along with the
targeted focus on deep learning.

We consider the work on sciSpaCy (Neumann
et al., 2019) similar to ours because it was devel-
oped in Python and takes into account recent clas-
sification techniques in deep learning. However, to
our knowledge, sciSpaCy (Neumann et al., 2019)
does not support some of the default features found
in the CLPT, such as a shareable annotation file
that can be serialized to disk and efficient entity
lookups as are offered in the CLAO.

3https://www.nlm.nih.gov
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Figure 1: Clinical Language Pipeline Toolkit (CLPT) architecture

3 Methods

3.1 Clinical Language Annotation Object

In this section, we present two core CLAO innova-
tions that provide efficient annotation storage and
retrieval. The CLAO receives raw text as input
which is cleaned and broken down into minimal
units of analysis, expressed in this article as to-
kens. The CLAO has three main divisions for an
annotation: (1) its elements, (2) its attributes and
values, and (3) the relations linking the annotation
to others (often times for syntactic or semantic rep-
resentations).

The first step leading to the creation of a CLAO
(as seen in Figure 1) is the segmentation of textual
data into its minimal elements for annotation. Ele-
ments and values for the CLAO are extracted from
the segments using sentence (or segment) detection
and are stored and finally represented in a common
annotation structure represented by a XML-based
hybrid standoff format (Ide et al., 2017). We chose
to represent the CLAO with a generalized repre-
sentation in order to provide flexibility so that the
annotation scheme was not constrained to the use of
specific domains or tools. The version of the CLPT
presented here supports exporting the CLAO into a
JSON format, future iterations will provide a mech-
anism to allow users to export the CLAO into a
JSON-LD format (Cimiano et al., 2020). JSON-
LD is a novel contribution because, unlike other
frameworks, it allows queries on the CLAO to be
data-driven yet graph-based, similar to previous re-
search (Hellmann et al., 2013; Cimiano et al., 2020)
on efficiency. This promotes inter-operability and
collaboration through a standard. For convenience,
we have provided an example of a serialized CLAO
in Appendix A.1.

As another novelty of our annotation implemen-
tation, the CLAO supports addition, deletion, and

update operations along with the enhancement of
annotations through the use of what are known as
B-Trees for indexing (algorithms for processing
stored data that are high performing, Johnson and
Sasha (1993)). B-Tree indexing within the CLAO
is performed at an asymptotic speed of O(log n)
for operations on CLAO entities – providing for a
small storage footprint, easy scaling (without the
need for rehashing as in the case of typical hash
maps), and optimum segment loading.

The B-tree based algorithm, called a blist, used
for indexing a CLAO uses an algorithm written
by Daniel Stutzbach4. It combines a B-tree with
an array for searches. In order to qualify that a
blist would be the optimum algorithm for index-
ing a CLAO, we performed two main experiments
illustrated in Figures 2 and 3. Both experiments
compare the use of a default Python 3 list5 data
structure and the blist from Daniel Stutzbach. Our
first experiment consisted in the creation of one-
hundred default Python 3 lists and one-hundred
blists both containing one million random floating
numbers between 0 and 1. The second experiment
consisted of random slicing which was done on
both data structures (the Python 3 list and the blist)

Figure 2: Creation Time Comparison (in Seconds)

4https://stutzbachenterprises.com/
blist

5https://docs.python.org/3/library/
stdtypes.html#list
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Figure 3: Slicing Time Comparison (in Seconds)

1000 times. The run time for both experiments
was recorded and we found that the blist outper-
formed the Python 3 list as it was approximately
30 times faster thus making it the optimal choice
for the CLPT at this time. In future work, we plan
on extending the blist algorithm to include an even
faster search.

3.2 Clinical Language Pipeline Toolkit

The CLPT is a CTP pipeline meant for exclusive
use with the CLAO. We created the CLPT as an
easy-to-use first pass for building a CLAO that can
then be processed by others. In this short article,
we only introduce novel themes along with findings
and further plan to extend our work to introduce a
larger pipeline backed by a CLAO. The architec-
ture of the CLPT can be considered similar to other
architectures like UIMA (Ferrucci and Lally, 2004)
and CLAMP (Soysal et al., 2018) in some ways.
However, it is our intent to allow further out-of-the-
box novel features such as annotations mixed with
embeddings. The CLPT, similar to its predecessors,
has these four pipelines modules: (1) ingestion, (2)
analysis engine, (3) classification, and (4) evalua-
tion as shown in Figure 1. Each module has the
option of saving any information to the CLAO as
needed, in a repository-like manner. The CLAO
is configured via a configuration file that enables
any of the four modules, including the analysis
and classification components, as explained in the
following sections.

3.2.1 Ingestion
The CLPT is designed to be multi-modal, able to ac-
cept any form of input such as text, speech, video
or images. At this point, we have experimented
with text only and left other modalities for future
work. The ingestion process is similar to other
pipelines in that an object is considered for and se-
rialized to the CLAO format. One main difference
between the CLPT and other toolkits is that the
CLPT was purposely created with high abstraction
and is able to model any type of data. Figure 4 pro-

vides an example of the ingestion process which,
similar to (Ferrucci and Lally, 2004), uses a docu-
ment reader (called Document Collector), to read
in data. Additionally, users have the option to pass
in a configuration file (.yml format) designed to
allow high-level control as to which modules to
use. Nonetheless, there is also a “default” pipeline
configuration which requires no intervention. The
ingestion module handles the initial creation of the
CLAO and passes the CLAO on for further process-
ing to the analysis engine.

3.2.2 Analysis Engine
Our deep learning contribution is based on adding
embeddings to the CLAO. Since embeddings are a
key difference between the CLPT and other toolk-
its, we cover them here in further detail. Our em-
beddings can be used as part of creating a model for
processing or loading a pre-trained model. Given
that the majority of modern work on clinical NLP
uses deep learning and/or embeddings, we felt it
necessary to promote their inclusion in the CLPT.
Our novel technique of storing embeddings by
use of the CLAO has not been performed in the
past. Additionally, we provide sub-word embed-
ding combined with hashing trick for efficiency
(Bojanowski et al., 2017) which are able to handle
out-of-vocabulary (OOV) words. Embeddings are
stored in CLAO objects efficiently, allowing com-
parison between tokens and spans of tokens. This
is done by assigning a vector to each token or spans
of tokens where the CLAO returns an average of all
of the embeddings within it. Furthermore, CLPT
offers a configuration mechanism for changing this
span embedding method of calculation. Allow-
ing for this flexibility can be considered a novel
approach as it allows users to easily test various
embedding types for experiments.

3.2.3 Classification
The classification module extracts knowledge from
the CLAO by retrieving information from the up-
stream CLPT component(s). In this module, ma-
chine learning and other techniques (e.g., heuris-
tics) are applied to further augment annotations for
classification tasks before evaluation. Some of the
major components to be released in the CLPT (See
Appendix Figure 6), for the classification module
are: (1) acronym expansion (similar to CARD (Wu
et al., 2017)); (2) mention detection split into two
phases, first a step to identify the mentions and then
a step to group them together; (3) fact extraction to

4



extract clinical concepts from the mentions which
help to better disambiguate clinical notes and pro-
vide fact-based evidence for classification; (4) re-
lationship extraction further expansion of mention
detection to allow linking entities and the creation
of a knowledge graph – to be presented as future
work.

3.2.4 Evaluation

The CLPT provides an evaluation module (shown
in Figure 7) as a separate module rather than the
addition of classification or other processing tech-
niques. The aim is to allow several forms of evalu-
ation while, at a minimum, providing the baseline
measurements such as precision, recall, F1-score,
and accuracy. The baseline evaluation can be ex-
tended to cover any other common metrics but at
this time we leave that for future work. The eval-
uation module takes two inputs: a CLAO and a
gold standard. The CLAO is what will allow us
to compare against the gold standard and both are
required.

4 Concluding remarks and future work

We have introduced a novel and efficient toolkit for
creating CTP pipelines with several new contribu-
tions. The thought has been to make a centralized
format for exchanging information amongst enti-
ties, albeit academic or private. This will allow en-
tities to compare and contrast results by comparing
CLAOs that adhere to a standardized guideline. We
contribute this to the public community as a way
to use a more updated framework for modern CTP
techniques. It is our thought that the CLPT can
increase productivity and the exchange of informa-
tion. The current implementation of the CLPT and
the CLAO is in its infancy; the plan is to develop
more functionality such as multi-modal inputs, the
creation of a knowledge graph, and improved eval-
uation methods.

Additionally, we plan on extending the current
implementation which performs classification us-
ing public machine learning models and heuristics
by training models with the CLPT. Once those mod-
els have been trained, we also plan on adding the
capability for fine-tuning those models for several
clinical tasks able to handle diverse NLP problems
like seminal work (Peng et al., 2020b) has done.
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ccarese, Kevin Bretonnel Cohen, Martin Krallinger,
Florian Leitner, Zhiyong Lu, Yifan Peng, Fabio Ri-
naldi, Manabu Torii, et al. 2013. Bioc: a minimalist
approach to interoperability for biomedical text pro-
cessing. Database, 2013.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. Gate: an ar-
chitecture for development of robust hlt applications.
In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages
168–175.

Dina Demner-Fushman, Willie J Rogers, and Alan R
Aronson. 2017. Metamap lite: an evaluation of
a new java implementation of metamap. Journal
of the American Medical Informatics Association,
24(4):841–844.

William Digan, Aurélie Névéol, Antoine Neuraz,
Maxime Wack, David Baudoin, Anita Burgun, and
Bastien Rance. 2021. Can reproducibility be im-
proved in clinical natural language processing? a
study of 7 clinical nlp suites. Journal of the American
Medical Informatics Association, 28(3):504–515.

Hannah Eyre, Alec B Chapman, Kelly S Peterson, Jian-
lin Shi, Patrick R Alba, Makoto M Jones, Tamara L
Box, Scott L DuVall, and Olga V Patterson. (in press,
n.d.). Launching into clinical space with medspacy:
a new clinical text processing toolkit in python. In
AMIA Annual Symposium Proceedings 2021.

David Ferrucci and Adam Lally. 2004. Uima: an ar-
chitectural approach to unstructured information pro-
cessing in the corporate research environment. Natu-
ral Language Engineering, 10(3-4):327–348.

Lorraine Goeuriot, Hanna Suominen, Liadh Kelly, Anto-
nio Miranda-Escalada, Martin Krallinger, Zhengyang
Liu, Gabriella Pasi, Gabriela Gonzalez Saez, Marco

5



Viviani, and Chenchen Xu. 2020. Overview of the
clef ehealth evaluation lab 2020. In International
Conference of the Cross-Language Evaluation Forum
for European Languages, pages 255–271. Springer.

Corey Harper, Jessica Cox, Curt Kohler, Antony Scerri,
Ron Daniel Jr, and Paul Groth. 2021. Semeval-2021
task 8: Measeval–extracting counts and measure-
ments and their related contexts. In Proceedings of
the 15th International Workshop on Semantic Evalu-
ation (SemEval-2021), pages 306–316.

Sebastian Hellmann, Jens Lehmann, Sören Auer, and
Martin Brümmer. 2013. Integrating nlp using linked
data. In International semantic web conference,
pages 98–113. Springer.

Nancy Ide, Christian Chiarcos, Manfred Stede, and
Steve Cassidy. 2017. Designing annotation schemes:
From model to representation. In Handbook of lin-
guistic annotation, pages 73–111. Springer.

Theodore Johnson and Dennis Sasha. 1993. The perfor-
mance of current b-tree algorithms. ACM Transac-
tions on Database Systems (TODS), 18(1):51–101.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. Scispacy: fast and robust models
for biomedical natural language processing. arXiv
preprint arXiv:1902.07669.

Prasanta Kumar Parida, Lingraj Dora, Monorama Swain,
Sanjay Agrawal, and Rutuparna Panda. 2022. Data
science methodologies in smart healthcare: a review.
Health and Technology, pages 1–16.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Jacqueline Peng, Mengge Zhao, James Havrilla, Cong
Liu, Chunhua Weng, Whitney Guthrie, Robert
Schultz, Kai Wang, and Yunyun Zhou. 2020a. Nat-
ural language processing (nlp) tools in extracting
biomedical concepts from research articles: a case
study on autism spectrum disorder. BMC Medical
Informatics and Decision Making, 20(11):1–9.

Yifan Peng, Qingyu Chen, and Zhiyong Lu. 2020b.
An empirical study of multi-task learning on
bert for biomedical text mining. arXiv preprint
arXiv:2005.02799.

Anna Rumshisky, Kirk Roberts, Steven Bethard, and
Tristan Naumann, editors. 2020. Proceedings of the
3rd Clinical Natural Language Processing Workshop.
Association for Computational Linguistics, Online.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical text analysis and knowledge extraction system

(ctakes): architecture, component evaluation and ap-
plications. Journal of the American Medical Infor-
matics Association, 17(5):507–513.

Ergin Soysal, Jingqi Wang, Min Jiang, Yonghui Wu, Ser-
guei Pakhomov, Hongfang Liu, and Hua Xu. 2018.
Clamp–a toolkit for efficiently building customized
clinical natural language processing pipelines. Jour-
nal of the American Medical Informatics Association,
25(3):331–336.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
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A Appendix

Figure 4: The data ingestion module. It is used to ingest data and create an initial clinical language annotation
object (CLAO) which can include text or other types (in future iterations).
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Figure 5: The analysis engine module. Each class has a method named process() that pre-processes and stores
information from and to a clinical language annotation object (CLAO) during each stage.

Figure 6: The classification module. This module is used to process and classify input from a clinical language
annotation object (CLAO) in turn adding new information to it.
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Figure 7: The evaluation module. A module that uses a clinical language annotation object (CLAO) and a gold
standard to provide evaluation output in a report format.

A.1 Sample annotation

<?xml version=’1.0’ encoding=’UTF−8’?>
<annotation>

<text start="0" end="41" description="raw_text">Patient has type ii dm. This is not good.</text>
<sentence id="0" start="0" end="23">

<entity id="0" start="12" end="22" entity_group="0" token_ids="[2, 5)" type="MENTION" confidence="1"
label="PROBLEM">Type II Diabetes Mellitus</entity>

<token id="0" start="0" end="7" pos="NN" stem="patient" embedding_id="0">Patient</token>
<token id="1" start="8" end="11" pos="VBZ" stem="ha" embedding_id="1">has</token>
<token id="2" start="12" end="16" pos="VBN" stem="type" embedding_id="2">type</token>
<token id="3" start="17" end="19" pos="JJ" stem="ii" embedding_id="3">ii</token>
<token id="4" start="20" end="22" pos="NN" stem="dm" embedding_id="4">dm</token>
<token id="5" start="22" end="23" pos="." stem="." embedding_id="5">.</token>

</sentence>
<sentence id="1" start="24" end="41">

<token id="6" start="24" end="28" pos="DT" stem="thi" embedding_id="6">This</token>
<token id="7" start="29" end="31" pos="VBZ" stem="is" embedding_id="7">is</token>
<token id="8" start="32" end="35" pos="RB" stem="not" embedding_id="8">not</token>
<token id="9" start="36" end="40" pos="JJ" stem="good" embedding_id="9">good</token>
<token id="10" start="40" end="41" pos="." stem="." embedding_id="5">.</token>

</sentence>
<embedding id="0">[−0.0021704417, −0.010320467, −4.0913405e−06, −0.026113503, 0.003324223]</

embedding>
<embedding id="1">[0.03536414, −0.066816024, 0.018991465, 0.03511271, −0.02413405]</embedding>
<embedding id="2">[−0.04219764, 0.051192448, 0.053828064, 0.013828199, −0.024849724]</embedding>
<embedding id="3">[−0.011548042, −0.056690447, 0.0042386726, 0.013731264, −0.042996213]</

embedding>
<embedding id="4">[−0.015310202, −0.06731376, −0.023788698, −0.070030175, 0.0918083]</embedding>
<embedding id="5">[−0.07549597, −0.034822427, −0.048076335, 0.05481594, −0.04260452]</embedding>
<embedding id="6">[−0.08328381, 0.042492405, 0.026664842, 0.000608474, −0.023121541]</embedding>
<embedding id="7">[−0.095420435, −0.043184925, 0.05082492, −0.015773036, −0.037915066]</embedding

>
<embedding id="8">[0.01620562, 0.030467993, −0.0037846065, 0.009880951, 0.0008572937]</embedding>
<embedding id="9">[0.10948994, 0.040386822, 0.030505553, −0.03049627, 0.04858529]</embedding>
<entity_group id="0" entity_type="MENTION">Type II Diabetes Mellitus</entity_group>
<actual_label>0</actual_label>
<probability>0.67</probability>
<predicted_label>0</predicted_label>

</annotation>

Figure 8: A sample CLAO file comprising of two sentences in a single paragraph.
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Abstract

Automatically classifying electronic health
records (EHRs) into diagnostic codes has been
challenging to the NLP community. State-of-
the-art methods treated this problem as a multi-
label classification problem and proposed vari-
ous architectures to model this problem. How-
ever, these systems did not leverage the superb
performance of pretrained language models,
which achieved superb performance on natural
language understanding tasks. Prior work has
shown that pretrained language models under-
performed on this task with the regular fine-
tuning scheme. Therefore, this paper aims at
analyzing the causes of the underperformance
and developing a framework for automatic ICD
coding with pretrained language models. We
spotted three main issues through the experi-
ments: 1) large label space, 2) long input se-
quences, and 3) domain mismatch between pre-
training and fine-tuning. We propose PLM-
ICD, a framework that tackles the challenges
with various strategies. The experimental re-
sults show that our proposed framework can
overcome the challenges and achieves state-of-
the-art performance in terms of multiple met-
rics on the benchmark MIMIC data.1

1 Introduction

The clinical notes in electronic health records
(EHRs) are written as free-form text by clinicians
during patient visits. The notes can be associated
with diagnostic codes from the International Clas-
sification of Diseases (ICD), which represent diag-
nostic and procedural information of the visit. The
ICD codes are a standardized way to encode infor-
mation systematically and internationally, which
could be used for tracking healthcare statistics,
quality outcomes, and billing.

While ICD codes provide several useful appli-
cations, manually labelling ICD codes has been

1The source code is available at https://github.
com/MiuLab/PLM-ICD.

shown to be very labor-intensive and domain ex-
pertise is required (O’malley et al., 2005). Hence,
automatically assigning ICD codes to clinical notes
has been of broad interest in the medical natural
language processing (NLP) community. Prior work
has identified several challenges of this task, in-
cluding the large number of labels to be classified,
the long input sequence, and the imbalanced la-
bel distribution, i.e., the long-tail problem (Xie
et al., 2019). These challenges make the task
extremely difficult, demonstrating that advanced
modeling techniques are required. With the intro-
duction of deep learning models, we have seen
tremendous performance improvement on the task
of automatic ICD coding (Shi et al., 2017; Xie and
Xing, 2018; Mullenbach et al., 2018; Li and Yu,
2020; Vu et al., 2020; Cao et al., 2020; Liu et al.,
2021; Kim and Ganapathi, 2021; Zhou et al., 2021).
These methods utilized convolutional neural net-
works (CNNs) (Mullenbach et al., 2018; Li and
Yu, 2020; Liu et al., 2021) or recurrent neural net-
works (RNNs) (Vu et al., 2020) to transform the
long text in clinical notes into hidden representa-
tions. State-of-the-art methods employed a label
attention mechanism, i.e., performing attention to
hidden representations independently for each la-
bel, to combat the extremely large label set (Mul-
lenbach et al., 2018; Vu et al., 2020).

Recently, pretrained language models (PLMs)
with the Transformer (Vaswani et al., 2017) archi-
tecture have become the dominant forces for NLP
research, achieving superior performance on nu-
merous natural language understanding tasks (De-
vlin et al., 2019; Liu et al., 2019). These models
are pretrained on large amount of text with various
language modeling objectives, and then fine-tuned
on the desired downstream tasks to perform dif-
ferent functionalities such as classification (Devlin
et al., 2019) or text generation (Radford et al., 2019;
Raffel et al., 2020).

While PLMs demonstrate impressive capabili-

10



ties across classification tasks, applying PLMs to
automatic ICD coding is still not well-studied. Pre-
vious work has shown that applying PLMs to this
task is not straightforward (Zhang et al., 2020; Pas-
cual et al., 2021), and the main challenges being:

• The length of clinical notes exceeds the maxi-
mum length of PLMs.

• The regular fine-tuning scheme where we add
a linear layer on top of the PLMs does not per-
form well for multi-label classification prob-
lems with a large label set.

• PLMs are usually pretrained on general-
domain corpora, while clinical notes are very
medical-specific and the language usage is
different.

As a result, the performance of PLMs reported in
the prior work is inferior to the state-of-the-art mod-
els that did not use pre-trained models by a large
margin (Pascual et al., 2021). Their best model
achieved 88.65% in terms of micro-AUC, com-
pared with the state-of-the-art 94.9% from the ISD
model (Zhou et al., 2021). This result highlighted
that the performance of PLMs on this task was still
far from the conventional models.

In this paper, we aim at identifying the chal-
lenges met during applying PLMs to automatic
ICD coding and developing a framework that could
overcome these challenges. We first conduct pre-
liminary experiments to verify and investigate the
challenges mentioned above, and then we propose
proper mechanisms to tackle each challenge. The
proposed mechanisms are: 1) domain-specific pre-
training for the domain mismatch problem, 2) seg-
ment pooling for the long input sequence problem,
and 3) label attention for the large label set problem.
By integrating these techniques together, we pro-
pose PLM-ICD, a framework specifically designed
for automatic ICD coding with PLMs. The effec-
tiveness of PLM-ICD is verified through experi-
ments on the benchmark MIMIC-3 and MIMIC-2
datasets (Saeed et al., 2011; Johnson et al., 2016).
To the best of our knowledge, PLM-ICD is the first
Transformer-based pretrained language model that
achieves competitive performance on the MIMIC
datasets. We further analyze several factors that
affect the performance of PLMs, including pre-
training method, pretraining corpora, vocabulary
construction, and optimization schedules.

The contributions of this paper are 3-fold:

• We perform experiments to verify and analyze
the challenges of utilizing PLMs on the task
of automatic ICD coding.

• We develop PLM-ICD, a framework to fine-
tune PLMs for ICD coding, that achieves
competitive performance on the benchmark
MIMIC-3 dataset.

• We analyze the factors that affect PLMs’ per-
formance on this task.

2 Related Work

2.1 Automatic ICD Coding
ICD code prediction is a challenging task in the
medical domain. Several recent work attempted to
approach this task with neural models. Choi et al.
(2016) and Baumel et al. (2018) used recurrent
neural networks (RNN) to encode the EHR data
for predicting diagnostic results. Li and Yu (2020)
recently utilized a multi-filter convolutional layer
and a residual layer to improve the performance of
ICD prediction. On the other hand, several work
tried to integrate external medical knowledge into
this task. In order to leverage the information of
definition of each ICD code, RNN and CNN were
adopted to encode the diagnostic descriptions of
ICD codes for better prediction via attention mech-
anism (Shi et al., 2017; Mullenbach et al., 2018).
Moreover, the prior work tried to consider the hi-
erarchical structure of ICD codes (Xie and Xing,
2018), which proposed a tree-of-sequences LSTM
to simultaneously capture the hierarchical relation-
ship among codes and the semantics of each code.
Also, Tsai et al. (2019) introduced various ways of
leveraging the hierarchical knowledge of ICD by
adding refined loss functions. Recently, Cao et al.
(2020) proposed to train ICD code embeddings in
hyperbolic space to model the hierarchical struc-
ture. Additionally, they used graph neural network
to capture the code co-occurrences. LAAT (Vu
et al., 2020) integrated a bidirectional LSTM with
an improved label-aware attention mechanism. Ef-
fectiveCAN (Liu et al., 2021) integrated a squeeze-
and-excitation network and residual connections
along with extracting representations from all en-
coder layers for label attention. The authors also
introduced focal loss to tackle the long-tail predic-
tion problem. ISD (Zhou et al., 2021) employed
extraction of shared representations among high-
frequency and low-frequency codes and a self-
distillation learning mechanism to alleviate the
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long-tail code distribution. Kim and Ganapathi
(2021) proposed a framework called Read, Attend,
and Code (RAC) to effectively predict ICD codes,
which is the current state-of-the-art model on this
task. Most recent models focused on developing
an effective interaction between note representa-
tions and code representations (Cao et al., 2020;
Zhou et al., 2021; Kim and Ganapathi, 2021). Our
work, instead, is focusing on the choice of the note
encoder, where we apply PLMs for their superior
encoding capabilities.

2.2 Pretrained Language Models

Using pretrained language models to extract con-
textualuzed representations has led to consistent
improvements across most NLP tasks. Notably,
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019) showed that pretraining is effective for
both LSTM and transformer (Vaswani et al., 2017)
models. Variants have been proposed such as XL-
Net (Yang et al., 2019), RoBERTa (Liu et al., 2019).
These models are pretrained on large amount of
general domain text to grasp the capability to model
textual data, and fine-tuned on common classifica-
tion tasks.

To tackle domain-specific problems, prior work
adapted such models to scientific and biomedical
domains, including BioBERT (Lee et al., 2019),
ClinicalBERT (Alsentzer et al., 2019), PubMed-
BERT (Gu et al., 2020) and RoBERTa-PM (Lewis
et al., 2020). These models are pretrained on
domain-specific text carefully crawled and pro-
cessed for improving the downstream performance.
The biomedical-specific PLMs reported improved
performance on a variety of biomedical tasks, in-
cluding text mining, named entity recognition, rela-
tion extraction, and question answering (Lee et al.,
2019).

While PLMs achieved state-of-the-art perfor-
mance on various tasks, applying PLMs to large-
scale multi-label classification is still a challeng-
ing research direction. Chang et al. (2019) pro-
posed X-BERT, a framework that is scalable to
an extremely large label set of a million labels.
Lehečka et al. (2020) showed that the modeling ca-
pacity of BERT’s pooling layers might be limited
for automatic ICD coding. Pascual et al. (2021)
also demonstrated inferior performance when ap-
plying BERT to this task and pointed out several
challenges to be addressed. Specifically, the au-
thors proposed 5 truncation and splitting strategies

Model Length Macro-F Micro-F

LAAT
4000 9.9 57.5
512∗ 6.8 47.3

BERT 512∗ 2.8 38.9

Table 1: Results of LAAT and BERT on MIMIC-3 with
different maximum input lengths (%). ∗The length is
number of words for LAAT and number of tokens for
BERT, so their performance cannot directly comparable.

to tackle the long input sequence problem. Their
proposed All splitting strategies is similar to our
segment pooling mechanism. However, without
the label attention mechanism, the model failed to
learn.

Zhang et al. (2020) proposed BERT-XML, an
extension of BERT for ICD coding. The model
was pretrained on a large cohort of EHR clinical
notes with an EHR-specific vocabulary. BERT-
XML handles long input text by splitting it into
chunks and performs prediction for each chunk
independently with a label attention mechanism
from AttentionXML (You et al., 2019). The predic-
tions are finally combined with max-pooling. Our
proposed framework, PLM-ICD, shares a similar
idea with BERT-XML that we also split clinical
notes into segments to compute segment represen-
tations. The main difference is that we leverage
an improved label attention mechanism and we
use document-level label-specific representations
rather than chunk level representations as in BERT-
XML. In Section 5, we demonstrate that PLM-ICD
can achieve superior results on the commonly used
MIMIC-3 dataset compared with BERT-XML.

3 Challenges for PLMs

In this section, we discuss 3 main challenges for
PLMs to work on automatic ICD coding and con-
duct experiments to verify the severity of the chal-
lenges.

3.1 Long Input Text

Pretrained language models usually set a maximum
sequence length as the size of their positional en-
codings. A typical value is set to 512 tokens after
subword tokenization (Devlin et al., 2019). How-
ever, clinical notes are long documents which of-
ten exceed the maximum length of PLMs. For in-
stance, the average number of words in the MIMIC-
3 dataset is 1,500 words, or 2000 tokens after sub-

12



Model Codes Macro-F Micro-F

LAAT
50 66.6 71.5

Full 9.9 57.5

BERT
50 61.5 65.4

Full 3.2 40.9

Table 2: Results of LAAT and BERT on MIMIC-3 with
full codes and top-50 codes (%).

word tokenization.
To demonstrate that this is a detrimental problem

for PLMs, we conduct experiments on MIMIC-3
where the input text is truncated to 512 words for
the strong model LAAT (Vu et al., 2020), and 512
tokens for BERT. The results are shown in Table 1.
Both models perform worse when the input text
is truncated, showing that simple truncation does
not work for the long input text problem. Note that
the same trend can be found for other models for
ICD coding. The results reported by Pascual et al.
(2021) also show similar problem where the trun-
cation methods such as Front-512 and Back-512
performed much worse than models with longer
input context.

3.2 Large Label Set

Automatic ICD coding is a large-scale multi-label
text classification (LMTC) problem, i.e., finding
the relevant labels of a document from a large set
of labels. There are about 17,000 codes in ICD-9-
CM and 140,000 codes in ICD-10-CM/PCS, while
there are 8921 codes presented in the MIMIC-3
dataset. PLMs utilize a special token and extract
the hidden representation of this token to perform
classification tasks. For example, BERT uses a
[CLS] token and adds a pooling layer to trans-
form its hidden representation into a distribution
of labels (Devlin et al., 2019). However, while this
approach achieves impressive performance on typ-
ical multi-class classification tasks, it is not very
suitable for LMTC tasks. Lehečka et al. (2020)
showed that making predictions based on only the
representation of [CLS] token results in inferior
performance compared with pooling representa-
tions of all tokens, and hypothesized that this is
due to the lack of modeling capacity of using the
[CLS] token alone.

To examine the PLMs’ capability of perform-
ing LMTC, we conduct experiments on MIMIC-3
in two settings, Full and Top-50. The Full

setting uses the full set of 8,921 labels, while the
Top-50 uses the top-50 most frequent labels. We
report the numbers for LAAT directly from Vu et al.
(2020). For the BERT model, we use the segment
pooling mechanism to handle the long input, which
is detailed in Section 4.2. We aggregate the hid-
den representations of the [CLS] token for each
segment with mean-pooling as the document rep-
resentation. The final prediction is obtained by
transforming the document representation with a
linear layer.

The results are shown in Table 2. BERT achieves
slightly worse performance than LAAT in the
Top-50 setting. However, in the Full setting,
BERT performs significantly worse compared with
LAAT. The results suggest that using BERT’s
[CLS] token for LMTC is not ideal, and advanced
techniques for LMTC are required for PLMs to
work on this task.

3.3 Domain Mismatch

Normally, PLMs are pretrained on large amount
of general-domain corpora which contains billions
of tokens. The corpora is typically crawled from
Wikipedia, novels (Zhu et al., 2015), webpages, and
web forums. Prior work has shown that the domain
mismatch between the pretraining corpus and the
fine-tuning tasks could degrade the downstream
performance (Gururangan et al., 2020).

Specifically for the biomedical domain, sev-
eral pretrained models have been proposed which
are pretrained on biomedical corpora to mitigate
the domain mismatch problem (Lee et al., 2019;
Alsentzer et al., 2019; Gu et al., 2020; Lewis et al.,
2020). These models demonstrate improved perfor-
mance over BERT on various medical and clinical
tasks, showing that domain-specific pretraining is
essential to achieve good performance.

4 Proposed Framework

The task of ICD code prediction is formulated as a
multi-label classification problem (Kavuluru et al.,
2015; Mullenbach et al., 2018). Given a clinical
note of |d| tokens d = {t1, t2, · · · , t|d|} in EHR,
the goal is to predict a set of ICD codes y ⊆ Y ,
where Y denotes the set of all possible codes. Typ-
ically, the labels are represented as a binary vector
y ∈ {0, 1}|Y|, where each bit yi indicates whether
the corresponding label is presented in the note.

The proposed framework PLM-ICD is illus-
trated in Figure 1. The details of the components
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Figure 1: Illustration of our proposed framework. Left: domain-specific pretraining, where a PLM is pretrained
on text from specific domains with a language modeling objective. Right: PLM encodes segments of a document
separately, and a label-aware attention mechanism is to aggregate the segment representations into label-aware
document representations. The document representations are linear-transformed to predict ICD codes.

are described in this section.

4.1 Domain-Specific Pretraining
Automatic ICD coding is a domain-specific task
where the input text consists of clinical notes writ-
ten by clinicians. The clinical notes contain many
biomedical terms, and understanding these terms
is essential in order to assign ICD codes accurately.
While general PLMs are pretrained on large amount
of text, the pretraining corpora usually does not
contain biomedical text, not to mention clinical
records.

In order to mitigate the domain mismatch prob-
lem, we propose to utilize the PLMs that are
pretrained on biomedical and clinical text, e.g.,
BioBERT (Lee et al., 2019), PubMedBERT (Gu
et al., 2020), and RoBERTa-PM (Lewis et al.,
2020). These PLMs are specifically pretrained for
biomedical tasks and proven to be effective on vari-
ous downstream tasks. We take the domain-specific
PLMs and fine-tune them on the task of automatic
ICD coding. We can plug-and-play the domain-
specific PLMs since their architectural design and
pretraining objective are identical to their general-
domain counterparts. This makes our framework
agnostic to the type of PLMs, i.e., we can apply
any transformer-based PLMs as the encoder.

4.2 Segment Pooling
In order to tackle the long input text problem de-
scribed in Section 3.1, we propose segment pool-
ing to surpass the maximum length limitation of
PLMs. The segment pooling mechanism first splits
the whole document into segments that are shorter
than the maximum length, and encodes them into

segment representations with PLMs. After encod-
ing segments, the segment representations are ag-
gregated as the representations for the full docu-
ment.

More formally, given a document d =
{t1, t2, ..., t|d|} of |d| tokens, we split it into |s|
consecutive segments si of c tokens:

si = {tj | c · i ≤ j < c · (i+ 1)}

The segments are fed into PLMs separately to com-
pute hidden representations, then concatenated to
obtain the hidden representations of all tokens:

H = concat(PLM(s1), · · · , PLM(s|s|))

The token-wise hidden representations H can then
be used to make prediction based on the whole
document.

4.3 Label-Aware Attention

To combat the problem of a large label set, we pro-
pose to augment the PLMs with the label-aware
attention mechanism proposed by Vu et al. (2020)
to learn label-specific representations that capture
the important text fragments relevant to certain la-
bels. After the token-wise hidden representations
H are obtained, the goal is to transform H into
label-specific representations with attention mecha-
nism.

The label-aware attention takes H as input and
compute |Y| label-specific representations. This
mechanism can be formulated into 2 steps. First, a
label-wise attention weight matrix A is computed
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as:

Z = tanh(VH)

A = softmax(WZ)

where V and W are linear transforms. The ith row
of A represents the weights of the ith label, and
the softmax function is performed for each label
to form a distribution over all tokens. Then, the
matrix A is used to perform a weighted-sum of H
to compute the label-specific document representa-
tion:

D = HA⊤

where Di represents the document representations
for the ith label.

Finally, we use the label-specific document rep-
resentation D to make predictions:

pi = sigmoid(⟨Li,Di⟩)

where Li is a vector for the ith label, ⟨·⟩ represents
inner product between two vectors, pi is the pre-
dicted probability of the ith label. Note that the
inner product could also be seen as a linear trans-
form with output size 1. We can then assign labels
to a document based on a predefined threshold t.

The training objective is to minimize the binary
cross-entropy loss L(y,p):

− 1

|y|

|y|∑

i=1

(
yi logpi + (1− yi) log(1− pi)

)
.

5 Experiments

In order to evaluate the effectiveness of our pro-
posed framework, we conduct experiments and
compare the results with the prior work.

5.1 Setup

We evaluate PLM-ICD on two benchmark datasets
for ICD code prediction.

• MIMIC-2 To be able to directly compare
with the prior work (Mullenbach et al., 2018;
Li and Yu, 2020; Vu et al., 2020), we evalu-
ate PLM-ICD on the MIMIC-2 dataset (Saeed
et al., 2011). We follow the setting from Mul-
lenbach et al. (2018), where 20,533 sum-
maries are used for training, and 2,282 sum-
maries are used for testing. There are 5,031
labels in the dataset.

• MIMIC-3 The Medical Information Mart
for Intensive Care III (MIMIC-3) (Johnson
et al., 2016) dataset is a benchmark dataset
which contains text and structured records
from a hospital ICU. We use the same setting
as Mullenbach et al. (2018), where 47,724 dis-
charge summaries are used for training, with
1,632 summaries and 3,372 summaries for val-
idation and testing, respectively. There are
8,922 labels in the dataset.

The preprocessing is done by following the steps
described in Mullenbach et al. (2018) with their
provided scripts 2. Detailed training setting is pro-
vided in Appendix A.

5.2 Evaluation
We evaluate our methods with commonly used met-
rics to be directly comparable to previous work.
The metrics used are macro F1, micro F1, macro
AUC, micro AUC, and precision@K, where K =
{5, 8, 15}.

5.3 Results
We present the evaluation results in this section. All
the reported scores are averaged over 3 runs with
different random seeds. The results of the com-
pared methods are taken directly from their original
paper. We mainly compare our model, PLM-ICD,
with the models without special code description
modeling. The performance of models with special
code description modeling, i.e., HyperCore, ISD,
and RAC, are also reported for reference.

5.3.1 MIMIC-3
The results on MIMIC-3 full test set are shown in
Table 3. PLM-ICD achieves state-of-the-art per-
formance among all models in terms of micro F1
and all precision@k measures, even though we do
not leverage any code description modeling. All
the improvements are statistically significant. RAC
performs best on AUC scores and macro F1. We
note that the techniques proposed by RAC are com-
plementary to our framework, and it is possible to
add the techniques to further improve our results.
However, this is out of the scope of this paper.

5.3.2 MIMIC-2
The results on MIMIC-2 test set are shown in Ta-
ble 4. PLM-ICD achieves state-of-the-art perfor-
mance among all models in terms of micro F1 and

2https://github.com/jamesmullenbach/
caml-mimic
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Model AUC F1 P@k
Macro Micro Macro Micro P@5 P@8 P@15

CAML (2018) 89.5 98.6 8.8 53.9 - 70.9 56.1
DR-CAML (2018) 89.7 98.5 8.6 52.9 - 69.0 54.8
MultiResCNN (2020) 91.0 98.6 8.5 55.2 - 73.4 58.4
LAAT (2020) 91.9 98.8 9.9 57.5 81.3 73.8 59.1
JointLAAT (2020) 92.1 98.8 10.7 57.5 80.6 73.5 59.0
EffectiveCAN (2021) 91.5 98.8 10.6 58.9 - 75.8 60.6

PLM-ICD (Ours) 92.6 (.2) 98.9 (.1) 10.4 (.1) 59.8† (.3) 84.4† (.2) 77.1† (.2) 61.3† (.1)

Models with Special Code Description Modeling
HyperCore (2020) 93.0 98.9 9.0 55.1 - 72.2 57.9
ISD (2021) 93.8 99.0 11.9 55.9 - 74.5 -
RAC (2021) 94.8 99.2 12.7 58.6 82.9 75.4 60.1

Table 3: Results on the MIMIC-3 full test set (%). The best scores among models without special code description
modeling are marked in bold. The best scores among all models are italic. The values in the parentheses are the
standard variation of runs. † indicates the significant improvement with p < 0.05.

Model AUC F1 P@k
Macro Micro Macro Micro P@5 P@8 P@15

CAML (2018) 82.0 96.6 4.8 44.2 - 52.3 -
DR-CAML (2018) 82.6 96.6 4.9 45.7 - 51.5 -
MultiResCNN (2020) 85.0 96.8 5.2 46.4 - 54.4 -
LAAT (2020) 86.8 97.3 5.9 48.6 64.9 55.0 39.7
JointLAAT (2020) 87.1 97.2 6.8 49.1 65.2 55.1 39.6

PLM-ICD (Ours) 86.8 (.2) 97.3 (.1) 6.1 (.1) 50.4† (.2) 67.3† (.2) 56.1† (.2) 39.9 (.2)

Models with Special Code Description Modeling
HyperCore (2020) 88.5 97.1 7.0 47.7 - 53.7 -
ISD (2021) 90.1 97.7 10.1 49.8 - 56.4 -

Table 4: Results on the MIMIC-2 test set (%). EffectiveCAN (2021) and RAC (2021) did not report results on
MIMIC-2. The best scores among models without special code description modeling are marked in bold. The
best scores among all models are italicized. The values in the parentheses are the standard variation of the runs. †
indicates that the improvement is statistically significant with p < 0.05.

all precision@k measures, similar to the results on
MIMIC-3. All the improvements are statistically
significant except for P@15.

In sum, these results show that PLM-ICD is gen-
eralizable to multiple datasets, achieving state-of-
the-art performance on multiple metrics on both
MIMIC-3 and MIMIC-2.

6 Analysis

This section provides analysis on factors that affect
PLM’s performance on automatic ICD coding.

Model Macro-F Micro-F

PLM-ICD 10.4 59.8
(a) - domain pretraining 8.9 54.2
(b) - segment pooling 7.2 54.6
(c) - label attention 4.6 48.0

Table 5: Ablation results on the MIMIC-3 full test set
(%).

6.1 Ablation Study

To verify the effectiveness of the proposed tech-
niques, we conduct an ablation study on MIMIC-3
full test set. The results are presented in Table 5.

The first ablation we perform is discarding
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Model Macro-F Micro-F F̂

RoBERTa-PM 10.4 59.8 1.35
BioBERT 9.1 57.9 1.60
ClinicalBERT 8.8 57.8 1.60
PubMedBERT 9.2 59.5 1.41

Table 6: Results with different PLMs on the MIMIC-3
full test set (%). F̂ is the fragmentation ratio.

domain-specific pretraining. In this setting, we
use the pretrained RoBERTa-base model as the
PLM, and fine-tune it for ICD coding. As shown
in row (a), the performance slightly degrades after
discarding domain-specific pretraining. This re-
sult demonstrates that domain-specific pretraining
contributes to the performance improvement.

The second ablation we perform is discarding
segment pooling. In this setting, we replace our
segment pooling with the one proposed by Zhang
et al. (2020) They applied label attention and made
code predictions for each segment separately, and
aggregated the predictions with max-pooling. As
shown in row (b), replacing our segment pooling
results in worse performance. This result indicates
that our proposed segment pooling is more effective
for aggregating segment representations.

The third ablation is removing the label atten-
tion mechanism. We fall back to the normal PLM
paradigm, i.e., extracting representations of the
[CLS] token for classification. This setting is iden-
tical to the one described in Section 3.2, where we
aggregate the representation of the [CLS] token
for each segment with mean-pooling, and obtain
the final prediction by transforming the aggregated
representation with a linear layer. As shown in row
(c), removing label attention mechanism results in
huge performance degradation. The micro F1 score
degrades by 11.8% absolute, while the macro F1
score degrades more than half. This result demon-
strates that the label attention mechanism is crucial
to ICD coding, which is an observation aligned
with the prior work (Mullenbach et al., 2018).

6.2 Effect of Pretrained Models

While we have shown that domain-specific pretrain-
ing is beneficial to ICD coding, we would like to
explore which domain-specific PLM performs the
best on this task. We conduct experiments with dif-
ferent PLMs, including BioBERT (Lee et al., 2019),
ClinicalBERT (Alsentzer et al., 2019), PubMed-
BERT (Gu et al., 2020), and RoBERTa-PM (Lewis

Model Macro-F Micro-F

LAAT 10.4 59.8
CAML 8.7 58.1
BERT-XML 8.2 56.9

Table 7: Results with different attention mechanisms on
the MIMIC-3 full test set (%).

Model Macro-F Micro-F

Ours 10.4 59.8
HIER-BERT 2.8 42.7
Longformer 5.1 51.6

Table 8: Results with different strategies for tackling the
long input problem on the MIMIC-3 full test set (%).

et al., 2020).
The results are presented in Table 6. RoBERTa-

PM achieves the best performance among the 4
examined PLMs This result is in line with the re-
ported results on the BLURB leaderboard (Gu et al.,
2020), which is a collection of biomedical tasks.

We also report the fragmentation ratio, i.e., the
number of tokens per word after subword tokeniza-
tion as (Chalkidis et al., 2020). We observe that the
PLMs with vocabulary trained on biomedical texts
(RoBERTa-PM and PubMedBERT) perform better
than the ones inherited vocabulary from BERT-base
(BioBERT and ClinicalBERT). The framentation
ratio also shows that models with custom vocabu-
lary suffer less on the over-fragmentation problem.

6.3 Effect of Label Attention Mechanisms

We conduct experiments with different label atten-
tion mechanisms and report the results in Table 7.
We compare the label attention mechanisms from
LAAT (Vu et al., 2020), CAML (Mullenbach et al.,
2018) and BERT-XML (Zhang et al., 2020). The
results show that the label attention used in LAAT
is best-suited to our framework.

6.4 Effect of Long Input Strategies

We also conduct experiments to verify the effect
of different strategies for tackling the long input
problem. As shown in Table 8, our proposed seg-
ment pooling outperforms HIER-BERT (Chalkidis
et al., 2019) and Longformer (Beltagy et al., 2020),
demonstrating the effectiveness of our proposed
method.
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Max Segment Macro-F Micro-FLength Length

6144 128 9.2 60.0
3072 256 9.4 59.2
3072 128 9.2 59.6
3072 64 8.2 59.3
3072 32 6.9 57.8

Table 9: Results with different maximum lengths on the
MIMIC-3 full dev set (%).

6.5 Effect of Maximum Length

We conduct experiments where we alter the max-
imum length of the documents and segments to
explore the different choices of maximum lengths.
The results are shown in Table 9.

When fixing the maximum length of the docu-
ments to 3,072, we observe that longer segments re-
sults in better performance until the segment length
reaches 128. Using a longer maximum document
length such as 6144 results in slightly better perfor-
mance. However, longer sequences require more
computation. Considering the trade-off between
computation and accuracy, we set maximum docu-
ment length to 3,072 and segment length to 128 as
our defaults.

6.6 Effect of Optimization Process

Similar to the prior work (Sun et al., 2019), we also
notice that the fine-tuning process is sensitive to the
hyperparameters of the optimization process, e.g.,
batch size, learning rate, and warmup schedule.

With several preliminary experiments conducted
on these factors, we observe that the learning rate
and the warmup schedule greatly affects the per-
formance. When we reduce learning rate to 2e-5,
the model performs 3% worse than using the de-
fault parameters in terms of micro F1. The warmup
schedule is crucial in our framework. When we
use constant learning rate throughout training, the
model performs about 4% worse. We do not ob-
serve clear difference between different scheduling
strategies.

6.7 Best Practices

With the above analyses, we provide a guideline
and possible future directions for applying PLMs
to ICD coding or tasks with similar properties:

• With the input length exceeding the maximum
length of PLMs, segment pooling can be used
to extract representations of all tokens. PLMs

with longer input length or recurrence could
be explored in the future.

• The representation of the [CLS] token might
be insufficient when dealing with LMTC prob-
lems. A label attention mechanism could be
beneficial in such scenarios.

• The pretraining corpora plays an important
role for domain-specific tasks.

• The hyperparameters of the optimization pro-
cess greatly affect the final performance, so
trying different parameters is preferred when
the performance is not ideal.

7 Conclusion

In this paper, we identify the main challenges of
applying PLMs on automatic ICD coding, includ-
ing the long text input, the large label set and the
mismatched domain. We propose PLM-ICD, a
framework with PLMs that tackles the challenges
with various techniques. The proposed frame-
work achieves state-of-the-art or competitive per-
formance on the MIMIC-3 and MIMIC-2 datasets.
We then further analyze factors that affect PLMs’
performance. We hope this work could open up the
research direction of leveraging the great potential
of PLMs on ICD coding.
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A Training Details

We take the pretrained weights released by original
authors without any modification. For the best
PLM-ICD model, we use RoBERTa-base-PM-M3-
Voc released by Lewis et al. (2020). During fine-
tuning, we train our models for 20 epochs. AdamW
is chosen as the optimizer with a learning rate of
5e− 5. We employ a linear warmup schedule with
2000 warmup steps, and after that the learning rate
decays linearly to 0 throughout training. The batch
size is set to 8. All models are trained on a GTX
3070 GPU. We truncate discharge summaries to
3072 tokens due to memory consideration, and
the length of each segment c is set to 128. The
validation set is used to find the best-performing
threshold t, and we use it to perform evaluation on
the test set.
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Abstract

Acronym disambiguation (AD) is the process
of identifying the correct expansion of the
acronyms in text. AD is crucial in natural lan-
guage understanding of scientific and medical
documents due to the high prevalence of tech-
nical acronyms and the possible expansions.
Given that natural language is often ambigu-
ous with more than one meaning for words,
identifying the correct expansion for acronyms
requires learning of effective representations
for words, phrases, acronyms, and abbrevia-
tions based on their context. In this paper, we
proposed an approach to leverage the triplet net-
works and triplet loss which learns better rep-
resentations of text through distance compar-
isons of embeddings. We tested both the triplet
network-based method and the modified triplet
network-based method with m networks on the
AD dataset from the SDU@AAAI-21 AD task,
CASI dataset, and MeDAL dataset. F scores of
87.31%, 70.67%, and 75.75% were achieved by
the m network-based approach for SDU, CASI,
and MeDAL datasets respectively indicating
that triplet network-based methods have com-
parable performance but with only 12% of the
number of parameters in the baseline method.
This effective implementation is available at
https://github.com/sandaruSen/m_networks un-
der the MIT license.

1 Introduction

Natural language is often ambiguous and contains
phrases, words, acronyms, and abbreviations which
have more than one meaning (Charbonnier and
Wartena, 2018). The complexity of natural lan-
guage is further augmented based on which context
these words are being used (Navigli, 2009). Scien-
tific and medical communities use domain specific
technical terms, which are often shorthanded for
ease of use. This has resulted in the prevalence
of acronyms in scientific and medical documents
(Charbonnier and Wartena, 2018). To understand
these expert texts, it is important to disambiguate

the meaning of their acronyms. For example, given
a sentence with the acronym RNN, the possible ex-
pansion for the acronym can be Recurrent Neural
Network, Random Neural Network, Recursive Neu-
ral Network, Reverse Nearest Neighbour, etc. Out
of these expansions, the one corresponding to the
meaning of the sentence should be identified in or-
der to correctly understand the sentence. The task
of identifying the correct expansion of acronyms
from possible expansions is called Acronym Dis-
ambiguation (AD).

Methods of pattern matching, language model-
ing, and machine/deep learning have shown promis-
ing results in AD. Early systems for AD used
pattern matching (Schwartz and Hearst, 2002) to-
gether with approaches based on word embeddings
and machine learning (Jaber and Martínez, 2021)
where the AD task is considered as a classifica-
tion problem. Recent efforts in AD mainly include
the use of deep learning-based models (Pan et al.,
2021; Zhong et al., 2021) and pre-trained language
models (Beltagy et al., 2019; Devlin et al., 2019).
However, identifying the correct expansion of an
acronym calls for better representation of text.

In this study, we approached the problem of AD
with the aim of learning effective text representa-
tions towards better disambiguation of acronyms.
We derived our approach from Siamese Networks
(Koch et al., 2015) and Triplet Networks (TNs)
(Hoffer and Ailon, 2015). TNs, inspired by
Siamese Networks, aim to learn the information
of inputs based on one or a few samples of training
data using a triplet loss to provide better represen-
tations for data.

The main contributions of this paper were as
follows: We leveraged the triplet loss and TNs
(Schroff et al., 2015) for AD with the aim of learn-
ing sentence embeddings, which can capture the
semantic differences of the different expansions of
the same acronym. We extended the TN architec-
ture further to include m networks and mapped the
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Figure 1: Triplet Network Architecture and Modified Triplet Network Architecture. The triplet network
architecture (left, Formula (1)) considers the anchor sentence xa

i , positive sentence xp
i , and negative sentence xn

i

for a sample when computing the triplet loss. Modified architecture (right, Formula (2)) considers the anchor
sentence, positive sentence, and all the possible negative sentences for a sample. This includes m number of similar
architectures.

AD task as a binary classification problem, which
predicts if the suggested expansion for an acronym
is correct or not. To the best of our knowledge
this is the first attempt of adapting the TN-based
methods and triplet loss for disambiguating the
acronyms. We evaluated and verified the proposed
approach on the AAAI-21 Scientific Document Un-
derstanding AD task dataset (SDU dataset) (Veyseh
et al., 2020), sense inventory for clinical abbrevia-
tions and acronym dataset (CASI dataset) (Moon
et al., 2014), and on a sample of the Medical Ab-
breviation Disambiguation Dataset (MeDAL) (Wen
et al., 2020). We made our implementation avail-
able at https://github.com/sandaruSen/m_networks
under the MIT license.

2 Related Work

Extensive body of prior research for AD in sci-
entific and medical domains exists because under-
standing scientific and medical text requires both
AD and domain knowledge. Earliest approaches
for AD included the use of a number of rules and
patterns (Schwartz and Hearst, 2002), training of
classifiers based on a set of features which repre-
sent the context of the input like, part-of-speech
tags, case representation of the words, or word
stems (Finley et al., 2016; Wu et al., 2017), and
computation of the cosine similarity between the
text with the acronym and the possible expan-
sions based on word embeddings (Tulkens et al.,
2016). Recent efforts in AD include the use of deep
learning-based methods and pre-trained language

models (Pan et al., 2021; Singh and Kumar, 2021;
Zhong et al., 2021).

With the introduction of transformers, the trans-
former–based pre-trained language models have
been extensively used for the AD task. BERT (Bidi-
rectional Encoder Representations from Transform-
ers) models such as (Devlin et al., 2019), SciBERT
(BERT-based language model for performing sci-
entific tasks) (Beltagy et al., 2019), and RoBERTa
(Robustly Optimized BERT Pretraining Approach)
(Liu et al., 2019) are the language models that are
exploited to formulate the problem of AD as a clas-
sification task for AD. The SDU@AAAI-21 AD
task consisted of systems with transformer-based
language models, which differed based on how the
inputs and the outputs to the systems were defined
(Veyseh et al., 2021). In our work, we explored
triplet loss and TNs for AD using pre-trained lan-
guage models. TNs and triplet loss have been ef-
fectively used for representation learning by dis-
tance comparisons among pairs of examples. They
were initially introduced for computer vision re-
lated tasks (Schroff et al., 2015) and are now used
in many natural language processing (NLP) tasks
(Santos et al., 2016; Ein-Dor et al., 2018; Lauriola
and Moschitti, 2020; Wei et al., 2021). We believe
that through the triplet loss, the models will be able
to learn subtle yet complex differences among the
different expansions of the same acronym.
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3 Methods

The goal of AD was to identify the correct expan-
sion for a given acronym in text. Considering a
dictionary of acronyms D with acronyms as keys
[A1, A2, ..., Aj ] where j is the number of acronyms.
For each acronym Ai, the m possible expansions
were represented as [e1, e2, ..., em]. Given a sen-
tence xi with an acronym Ai, the correct expansion
should be obtained from D out of the expansion
list of the corresponding Ai.

We modeled the AD task based on a TN as well
as a modified version of the TN architecture with
the triplet loss. The TN allowed the AD task to
be expressed as a binary classification problem to
predict which expansion is the most relevant to
the given acronym based on the context it appears
(Appendix A). For the modified version of the TN,
we included m number of architectures considering
the possible negatives for a sample at once. This
resulted in an anchor sentence, a positive sentence,
and a list of negative sentences as inputs to the
architectures (Figure 1).

Denoting anchor, positive, and negative em-
beddings as xai , xpi , and xni , respectively, where
i = 1, 2, . . . , k, and considering a d-dimensional
embedding in the vector space f(x) ∈ Rd and
α a margin that is enforced between positive and
negative pairs, the loss for the TN was defined as
follows using the L2 distances for the TN:

||f(xai )−f(xpi )||22+α < ||f(xai )−f(xni )||22. (1)

For the modified version of the TN with m net-
works, the loss was computed considering all the
possible negatives. Adapting the triplet loss to the
modified architecture, the distance between the an-
chor and the positive sentence should be less than
the minimum of the distances between the anchor
and the negative sentences. We could denote the
loss considering all the m number of negatives xn1

i ,
xn2
i , . . . , xnm

i as follows:

||f(xai )− f(xpi )||22 + α < min(

||f(xai )− f(xn1
i )||22, ||f(xai )− f(xn2

i )||22, . . . ,
||f(xai )− f(xnm

i )||22). (2)

Sentence triplet creation, which includes identi-
fying an anchor sample xai , a positive sample xpi ,
and a negative sample xni (Table 1), was considered
crucial when using TNs. For each possible expan-
sion of an acronym, we randomly extracted one

sentence matching the expansion from the training
dataset. These sentences were considered as anchor
sentences. We then used all sentences in the train-
ing dataset to create positive samples. Acronyms in
sentences were replaced by their respective correct
expansion to obtain positive sentences. We then
applied the following guidelines to create the nega-
tive samples: i) For each positive sentence with an
acronym, we obtained all the possible expansions
except for the correct expansion. ii) We replaced
the acronym in the sentence with these expansions
to obtain a list of sentences with other expansions.
iii) Each of these negative sentences was used to
create the final list of triplets.

The triplet selection ensured effective training of
the models. Hence, it is advised to consider triplets,
which violate the triplet constraint (Formula (1)).
In our approach, we considered the same positive
sentence with the respective acronym replaced by
other expansions of the acronym as negatives. Even
though the text in the sentences was very much
similar to each other, replacing the acronym with
possible expansions resulted in a change in the se-
mantic meaning of the overall sentences. Hence,
we believe considering sentences with other possi-
ble expansions as negative sentences satisfied the
necessity of having hard negatives, which were dif-
ficult to discriminate from the correct expansion.

Anchor
Sentence

The purpose of RL is for the agent to
learn an optimal, or nearly-optimal,
policy that maximizes the reward
function.

Positive
Sentence

All agents can then operate in paral-
lel, allowing one to exploit a num-
ber of already available reinforce-
ment learning techniques for parallel
learning.

Negative
Sen-
tences

[All agents can then operate in paral-
lel, allowing one to exploit a number
of already available robust locomo-
tion techniques for parallel learning.,
All agents can then operate in paral-
lel, allowing one to exploit a num-
ber of already available representa-
tion learning techniques for parallel
learning., ...]

Table 1: An example of anchor, positive, and negative
sentences for the acronym RL and the expansion rein-
forcement learning.
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Architecture or Model Number of Pa-
rameters

F score on
SDU

F score on
CASI

F score on
MeDAL

Baseline method by Singh and
Kumar (2021)

109, 920, 002 84.24% 78.16% 74.91%

Triplet Network-based method 13,576,768 85.70% 56.49% 75.19%
m Network-based method 13,576,768 87.31% 70.67% 75.75%

Table 2: Results of the validation data of SDU dataset and test data of CASI and MeDAL datasets.

In the training stage, we used the anchor sen-
tence, positive sentence, and negative sentence as
the input to the TN-based system and anchor sen-
tence, positive sentence, and possible negative sen-
tences as the input to the m-network-based system.
For each of the sentences, we obtained an embed-
ding, which was then used to calculate the triplet
loss. In the inference stage, we used the given
sentence with the acronym as the anchor sentence
and we created a list of sentences by replacing the
acronym in the sample sentence with possible ex-
pansions. We computed the distances between each
of the possible sentences and the anchor sentence to
obtain the sentence closest to the anchor sentence.

4 Experiments

We used the SDU dataset (Veyseh et al., 2020),
CASI dataset (Moon et al., 2014), and MeDAL
dataset (Wen et al., 2020) (see Appendix B for fur-
ther information). The SDU dataset contained data
from 6, 786 English scientific papers published at
arXiv and consisted of 62, 441 sentences. The
dataset also consisted of a dictionary of acronyms
and their possible expansions. We used the publicly
available training and development data of the SDU
dataset for our experiments. CASI dataset was cre-
ated using admission notes, consultation notes, and
discharge summaries from hospitals affiliated with
the University of Minnesota. 37, 500 samples from
CASI dataset was split into train, validation, and
test subsets and a dictionary with the acronyms was
created for the experiments. The MeDAL dataset
was created from 14, 393, 619 articles in PubMed.
We created a sample dataset and a dictionary of
acronyms from MeDAL dataset for experiments
(Table 3 of Appendix B).

We performed a basic preprocessing on the sen-
tences, which were quite long, by sampling tokens
in the sentences as proposed by Singh and Kumar
(2021). We used N/2 tokens to the left and right
of the acronym for sentences with length of more
than 120, considering N = 120.

As a baseline model, we experimented with the
system proposed by Singh and Kumar, 2021 which
modeled the AD task as a span prediction task. The
proposed system fine-tuned the complete SciBERT
model with 12 layers to predict the start and end in-
dices of the correct expansion of an acronym given
all the possible expansions, leveraging the SciB-
ERT’s ability to encode pair of sequences together.

We used the pre-trained SciBERT model archi-
tecture as the base model for experiments on SDU
dataset and the pre-trained BioBERT (BERT-based
language model for performing biomedical tasks)
(Lee et al., 2020) model as the base model for ex-
periments on the CASI and the MeDAL datasets
with their first 11 encoder layers frozen followed
by dropout of 0.5 to avoid over-fitting and a dense
layer to map the feature embeddings output by the
base models with dimensions of 768 to 64 (Ap-
pendix C). These 64 dimensional embeddings were
used to compute the triplet loss. We trained the
models using a learning rate of 5× 10−4 with the
Adam optimizer (Kingma and Ba, 2014). The best
model over 10 epochs with a batch size of 32 was
chosen as the final model.

To evaluate the performance of the proposed
architecture in the training set, we computed the
macro-averaged F1 score. If the distance between
the anchor and the positive sentence is less than
the distance between the anchor and negative sen-
tences, the prediction of the model was considered
correct. We used F1 also in evaluation. We com-
puted the distances between the anchor and pos-
sible sentences from which the sentence with the
minimum distance to the anchor was considered
the sentence with the correct expansion.

5 Results and Analysis

By comparing the proposed methods with the base-
line system on the three datasets, we observed that
the methods based on TNs learnt to discriminate
among the different expansions of an acronym.
Compared to the TN-based method, the m network-
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based method has comparable performance as the
baseline for all the datasets. Both the proposed
methods outperformed the baseline on SDU and
MeDAL datasets. The m network-based method
gave an F1 score of 87.31% on SDU dataset,
70.67% on CASI dataset, and 75.75% on MeDAL
dataset (Table 2).

To investigate the semantic similarity and the
representation of the output embeddings in the vec-
tor space, we visualized output representations ob-
tained by the m network-based architecture for
the SDU, CASI, and MeDAL datasets by reducing
the dimensions using principal component analy-
sis (PCA) (Figure 3 of Appendix D). For the SDU
dataset, we used the acronym RL with reinforce-
ment learning to obtain the positive and respective
negative sentences. Similarly, for the CASI dataset
the acronym DM with diabetes mellitus expansion
and for the MeDAL dataset the acronym RSM with
respiratory muscle strength expansion were used.

6 Discussion

In this paper, we have suggested a new approach for
disambiguating the acronyms to effectively identify
the correct expansion through better representation
learning using TNs by creating high quality sen-
tence embeddings, which can capture the seman-
tic differences among the different expansions of
the same acronym. Namely, we have presented
how methods based on TNs and triplet loss can be
used for AD. To address the effective learning of
context representations for identifying the correct
expansion of acronyms, our methods leverage the
contextual information of text and semantic simi-
larity among expansions. In particular, our paper
has introduced m networks inspired by TNs. Our
experiments have demonstrated that methods based
on TNs have comparable performance on both sci-
entific and medical domains. However, the appli-
cability of the proposed methods on CASI dataset
should be further investigated. Finally, the number
of parameters in TN-based methods is only 12% of
the number of parameters in the baseline method
resulting in smaller size of the models (Table 2).
The TN-based methods have used the representa-
tions from the last layer of the BERT-based models
where as the baseline method fine-tuned the com-
plete model with all 12 layers for the predictions1.

1However, given that m network-based method consists
of m architectures, the number of updates on parameters in-
creases.

We have tested the proposed methods on the SDU,
CASI, and MeDAL datasets.

The TN-based method for AD can be used for
data augmentation when the training data is limited.
Given that the original TN architecture only consid-
ers one negative sample at a time, considering all
the possible expansions of each acronym one at a
time can be used to augment the training data size.
This addresses the issue of limited training data
for deep learning architectures. However, in the
modified TN-based architecture with m networks,
at the training stage all the possible negatives are
considered for a sample at once. Therefore, data
augmentation is not possible in this case.

In this paper, our main goal was to approach the
AD problem as an effective representation learning
problem to discriminate among the possible expan-
sions of an acronym based on the context it appears.
Earliest approaches on AD relied on rules and pat-
terns (Schwartz and Hearst, 2002) to identify the
correct expansion of an acronym which evolved to
use of machine learning-based approaches with dif-
ferent features (Finley et al., 2016; Wu et al., 2017)
and computing of semantic similarity between the
text with acronym and the possible expansions. Re-
cent efforts involved pre-trained language models
for the AD task. Most of these systems were vali-
dated on one domain of focus (i.e., scientific text,
medical text, or general text). We approached the
problem focusing on learning better representations
for text through TNs and triplet loss using pre-
trained language models. Furthermore, we tested
the proposed approaches on both the scientific and
medical domains.

As future work, we intend to experiment with dif-
ferent constrastive losses (Sohn, 2016; Chen et al.,
2020). Specifically, our aspiration is to compare
and contrast the proposed approach with InfoNCE
(Van den Oord et al., 2018), a popular contrastive
loss which includes multiple negatives and nor-
malises across examples in a mini batch.

7 Ethical Considerations

We have proposed an approach for AD using TN-
based methods with the aim of learning effective
representations for data. We have used SciBERT
trained on scientific publications and BioBERT
trained on biomedical domain corpora (PubMed
abstracts and PMC full-text articles) for our exper-
iments. Instead of finetuning all the layers in the
pre-trained language models, we have finetuned
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only the last encoder layer by freezing the first
11 encoder layers thereby bringing the latest deep
learning advances to AD in a computationally ef-
ficient way. However, the m network architecture
despite its smaller number of parameters has m
architectures. This has resulted in more updates in
the parameters increasing the computational time
in the training stage.

The proposed approaches have been tested and
validated on three datasets: SDU dataset, CASI
dataset, and MeDAL dataset. According to the
National Statement on Ethical Conduct in Human
Research (2007) — Updated 2018 (National Health
and Medical Research Council, 2018), a new ethics
approval is not required for our experiments and,
to the best of our knowledge, the three original
datasets have been created ethically. All the three
datasets are publicly available (see Appendix B).

Identifying the correct expansion of acronyms
is important in improving the understandability
of scientific/medical text due to the prevalence of
technical acronyms which are shorthanded for ease
of use. For people with limited expertise knowl-
edge, understanding scientific/medical documents
can be difficult, stressful and cause misunderstand-
ings. The proposed methods can be used in scien-
tific/medical text simplification tasks to provide lay
people with better understanding of text through
the disambiguation of acronyms.
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A Triplet Networks and Triplet Loss

Triplet loss uses anchor, positive, and negative sam-
ples to learn effective representations. Anchor sam-
ple comes from a specific class. Positive samples
belong to the same class as the anchor sample and
the negative samples belong to a different class than
the class of the anchor sample. The triplet loss en-
courages to minimize the distance between similar
embeddings (i.e., anchor and positive embeddings)
and maximize the distances between dissimilar em-
beddings (anchor and negative embeddings) enforc-
ing a margin between the embeddings.

B Data Samples and Their Availability

The datasets used in this study are all publicly avail-
able from the following sources: AD dataset from
SDU@AAAI21, CASI, and MeDAL. The dataset
statistics are shown in Table 3. The distribution
of the number of samples based on the number of
acronym expansion pairs is shown in Figure 2.
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Figure 2: The distribution of samples based on the number of acronym expansion pairs for SDU, CASI, and
MeDAL datasets.

C Implementation Details

Our implementation used the pre-trained SciBERT
and BioBERT model architectures. We conducted
out experiments on 1 RTX 3090 graphics cards
with 24 GB memory and CUDA 11.4. Our imple-
mentation is based on PyTorch 1.8.2.

D Sample Output Representations

Figure 3 shows sample output representations ob-
tained by the m network-based architecture for
the SDU, CASI, and MeDAL datasets by reducing
the dimensions using PCA. For the SDU dataset,
the acronym RL with reinforcement learning were
used to obtain the positive and respective nega-
tive sentences. Similarly, for CASI dataset the

acronym DM with diabetes mellitus expansion and
for MeDAL dataset the acronym RMS with respi-
ratory muscle strength expansion were used.

Data subset No. samples Ratio
SDU Training 50, 034 80%

Development 6, 189 8%
Test 6, 218 12%

CASI Training 29, 600 80%
Development 3, 700 10%
Test 3, 700 10%

MeDAL Training 24, 000 80%
Development 3, 000 10%
Test 3, 000 10%

Table 3: Dataset Statistics
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Figure 3: Positive and negative representations obtained by m network-based architecture for the three datasets.
For the SDU dataset, the acronym RL with reinforcement learning were used to obtain the positive and respective
negative sentences. Similarly, for CASI dataset the acronym DM with diabetes mellitus expansion and for MeDAL
dataset the acronym RMS with respiratory muscle strength expansion were used.
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Abstract

Writing the conclusion section of radiology re-
ports is essential for communicating the radiol-
ogy findings and its assessment to physician in
a condensed form. In this work, we employ a
transformer-based Seq2Seq model for generat-
ing the conclusion section of German radiology
reports. The model is initialized with the pre-
trained parameters of a German BERT model
and fine-tuned in our downstream task on our
domain data. We proposed two strategies to im-
prove the factual correctness of the model. In
the first method, next to the abstractive learning
objective, we introduce an extraction learning
objective to train the decoder in the model to
both generate one summary sequence and ex-
tract the key findings from the source input.
The second approach is to integrate the pointer
mechanism into the transformer-based Seq2Seq
model. The pointer network helps the Seq2Seq
model to choose between generating tokens
from the vocabulary or copying parts from the
source input during generation. The results of
the automatic and human evaluations show that
the enhanced Seq2Seq model is capable of gen-
erating human-like radiology conclusions and
that the improved models effectively reduce
the factual errors in the generations despite the
small amount of training data.

1 Introduction

For patients with cancer, imaging findings are criti-
cal for primary diagnosis and treatment guidance

*Corresponding authors contributed equally.
§Work completed during master thesis at DKFZ.

during further disease progression. Depending on
the tumor entity and stage, the results of imag-
ing examinations may have a significant impact on
the clinician’s treatment decisions and strategies.
Normally, imaging findings are communicated in
clinical routine in the form of written radiology
reports. However, it remains difficult to ensure the
completeness and comprehensibility of relevant in-
formation in traditional written reports. Free-form
narrative reports do not have standardized layout
and uniform terminology, and key findings may be
forgotten, which can lead to serious miscommuni-
cation (Weber et al., 2020).

Weber et al., 2020 implemented the application
of Structured Oncology Reporting (SOR) to ad-
dress the problems of traditional radiology report-
ing. The SOR, which structure is shown in Table
1, demonstrated superiority to the free-text format
of radiology reports by providing disease-specific
report templates and organizing the content in spe-
cific separate sections.

The main goal of this work is to automatically
extract information relevant for treatment planning
from standardized, real-life radiology reports. Ex-
pert validation is on the other hand still essential
for this clinical routine application. For this pur-
pose, we build a system that merges the information
available in the general information and findings
sections of the SOR radiology reports into a con-
clusion, which can be compared to conclusions
generated by human experts.

Our main contributions in this work includes: (i)
We tested the effectiveness of applying the generic
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Figure 1: Standardised Layout of SOR (Weber et al., 2020).
Each report has a uniform organization: the general section
expresses background information on imaging and clinical
data, the next section (Findings) describes oncology and non-
oncology findings, and the Conclusion section gives oncologi-
cal and non-oncological impressions.

pretrained German BERT model directly to the tar-
get task of generating conclusions of German radi-
ology reports without domain-adaptive pretraining.
(ii) Our system improves the factual correctness of
the generated conclusions by combining extractive
and abstractive learning objectives compared to
the Seq2Seq baseline model. (iii) Our expert eval-
uation shows that the summarizations generated
by our system are very close to the human refer-
ence. Since our work focuses on the application
of NLP with pretrained language models to auto-
mated radiology documentation, the above contri-
butions are limited to German SOR data. However,
our experiments suggest that good results can also
be obtained in low-resource domains by applying
lightweight pretrained language models and minor
modifications to standard architectures.

2 Related Work

Existing text summarization models can be broadly
classified into three categories: extractive, abstrac-
tive and hybrid. Early extractive approaches relied
on human-designed features extracted from texts
to identify key sentences. Deep learning meth-
ods show good performance in various of NLP
tasks. The data-driven approaches are able to learn
features representations automatically. Extractive
models have the advantage of producing semanti-
cally and syntactically correct summaries. Abstrac-
tive models employing an encoder-decoder frame-

work with attentive recurrent neural networks, e.g.
on news article corpus, became a standard architec-
ture in abstractive summarization, which translates
the original source content to a concise expression
about the main content of the source input (Nallap-
ati et al., 2016a; See et al., 2017; Gu et al., 2016;
Kryściński et al., 2018; Chopra et al., 2016). In
order to improve the faithfulness of the generated
summarization given the facts in the source input,
abstractive models are usually enhanced to repli-
cate facts from the source combining extractive and
abstractive approaches. Nallapati et al., 2016b in-
corporated a pointer network (Vinyals et al., 2015)
that selects a word from a predefined vocabulary
to replace an unknown word predicted by a RNN-
based encoder-decoder model. Our work aims to
combine both benefits of extractive and abstractive
summarization with a transformer-based model.

See et al., 2017 used the pointer network Nal-
lapati et al.2016b as a soft switch to either pro-
duce a word from the vocabulary distribution or to
select a word from a copy distribution provided
by a target-source attention distribution. Chen
and Bansal; Kryściński et al., 2018; 2018 also
applied the copy mechanism to the RNN-based
model, but decomposed the decoder into a first-
stage extraction model and a second-stage gen-
erator. In the first stage, the encoders in both
works processed sequential document representa-
tion and provided sentence-level representations
to the extractor for selection. In the second stage,
Kryściński et al., 2018 used the language model
to rewrite the selected sentences into the summary.
Chen and Bansal, 2018 trained the decoder from
scratch by using ROUGE (Lin, 2004) scores as a
reward strategy for reinforcement learning to gen-
erate summaries based on the selected sentences.
In our work, we integrate the pointer network to a
transformer-based encoder-decoder model.

Summarizing radiology findings with neural
Seq2Seq learning of Zhang et al.; Zhang et al. is
very closely related to our work. Zhang et al., 2018
collected a large set of domain-specific training
data to train the RNN-based pointer-generator (See
et al., 2017). Because there are usually two sec-
tions in radiology reports: background and findings,
to provide relevant information for the summary,
Zhang et al., 2018 incorporated an extra encoder
for encoding the background information and find-
ings separately. In contrast, we feed the combina-
tion of sequences of the background and findings
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section as one input and into one encoder. Zhang
et al., 2019b improved the radiology summariza-
tion model by optimizing the factual correctness
of the summaries via policy learning. In order to
combine extraction and abstraction in one model,
we propose two target sequences paired with an in-
put sequence. One target sequence is the reference
summary and the other is a sequence consisting of
key sentences extracted from the input. Our goal
with the dual target sequences is to encourage the
encoder-decoder model to retain some of the input
while generating new phrases for the summaries.

Pretrained language models have advanced the
state-of-the-art when fine-tuned in various NLP
tasks, as well as in automatic text summarization
(Miller, 2019; Liu and Lapata, 2019; Zhang et al.,
2019a). Rothe et al., 2019 demonstrated the ef-
ficacy of warm-starting the encoder and decoder
from checkpoints of publicly available large lan-
guage models, including BERT(Devlin et al., 2018)
and GPT-2(Radford et al., 2019), for text gener-
ation task such as machine translation and text
summarization. Depending on different initial-
ization combinations, they investigated variants
of the Seq2Seq model, such as BERT2Random,
BERT2BERT, BERT2GPT, etc. Warm-starting the
Seq2Seq model leveraging these pretrained lan-
guage models checkpoints can reduce computa-
tional resources and time by orders of magnitude,
while improving the sequence generation perfor-
mance. We adopt the warm-starting idea and ini-
tialize both the encoder and decoder with a generic
pretrained German BERT model (deepset.ai, 2019).
We fine-tune the model with our German radiology
report data and enhance the model by combining
extractive and abstractive objectives.

3 Models

The main task of summarizing radiology findings
is to transform the salient and clinically signifi-
cant findings from a source of words and phrases
X = {x1, x2, ..., xT }, to a sequence of concise ex-
pressions Y = {y1, y2, ..., y′T }. Background infor-
mation in the radiology report conveys important
information for short-term or long-term examina-
tion of each patient in the clinical routine, which is
why abstractive models needs to incorporate back-
ground information into the summary generation
(Zhang et al., 2018). The content of the source
sequence X contains the background information
and imaging findings. These findings convey the

information about the location of the primary tu-
mour, the presence of metastases at different body
regions, and other non-oncological findings. Y is
the conclusion of the radiology report, which on the
one hand assesses the patient’s condition according
to the detailed findings and on the other hand con-
cisely summarizes the significant findings from the
source sequence X . We use a collection of aligned
X and Y pairs to train Transformer-based Seq2Seq
models to generate Y .

Baseline Model Warm-starting the Seq2Seq
model leveraging pretrained checkpoints can re-
duce computational resources and time by orders
of magnitude, while improving the sequence gener-
ation performance (Rothe et al., 2019). We utilize
the BERT2BERT model defined in Rothe et al.,
2019, as our abstractive summarization baseline
model.

The encoder and decoder of the model are ini-
tialized from a public available BERT checkpoint
(deepset.ai, 2019), except the encoder-decoder at-
tention layers in the decoder. Taking advantage
of the Transformer architecture and pretrained lan-
guage models, among the 221 millions trainable
parameters in the BERT2BERT model, only 26
millions parameters in the encoder-decoder atten-
tion layers are initialized randomly, and 195 mil-
lions are loaded from the pretrained BERT model.
The reduction of randomly initialized, trainable pa-
rameters, allows for fewer fine-tuning steps, and the
model’s ability to perform well on small training
data sets.

BERT2BERT + Extraction Most abstractive
systems suffer from the problem of creating spuri-
ous facts due to their ability to paraphrase. Hybrid
systems that combine extraction and abstraction
are expected to improve the correctness of the gen-
erated facts by using more criteria to extract the
original facts from the source (Kryscinski et al.,
2019; Cao et al., 2017; Zhang et al., 2019b; Chawla
et al., 2019; Falke et al., 2019). Different to previ-
ous works, which incorporated separate extraction
and abstraction stages (Hsu et al., 2018; Li et al.,
2018; Chen and Bansal, 2018), we propose a new
learning scenario with little modification to the ar-
chitecture of the BERT2BERT model by adding an
extraction learning objective (BERT2BERT+Ext).
Therefore, during training, we optimize the follow-
ing combined loss:

Loss = lossabstraction + lossextraction (1)
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Figure 2: BERT2BERT model adding Extraction Loss. In
order to train the decoder to extract the key findings through
generation, we supply an additional target sequence (”Back-
ground + Key Findings”), which consists of the key findings
selected from the source sequence.

The setup is illustrated in Figure 2. Through the
extraction objective, the model is trained to recon-
struct the key sentences in the generation.

In the original setting of BERT2BERT, we
only train the model using our source and tar-
get sequence pairs (X , Y ). As showed in Fig-
ure 2, X symbolizes the source input and contains
”Background + Findings” and Y is the target in-
put ”Conclusion”. During training, the decoder of
BERT2BERT+Ext is fed with additional target
sequences (”Background + Key Findings”) includ-
ing the general section and key sentences from the
findings sections as input. Section 4.3 explains
how to extract these key findings from the find-
ing section from our training data. Extractive loss
encourages the model to reconstruct key phrases
from the source input. Abstractive loss prompts the
model to generate new formulations that are not
from the source sequence.

Figure 3: BERT2BERT model incorporating the Pointer
Mechanism.

BERT2BERT + Pointer Pointer networks allow
the model to copy words from the source sequence
through an alignment between the target sequence
and the source sequence (See et al., 2017). The
benefits of incorporating the pointer to the gener-
ation procedure are not only to reduce the num-
ber of tokens, which are not known to BERT, but
also to ensure factual correctness while generating
new phrases. Pointer networks have been used for
abstract summaries of Seq2Seq models based on
RNNs as a standard architecture. However, to the
best of our knowledge, there has been little explo-
ration of incorporating pointer networks into the
Transformer encoder-decoder model for summa-
rization tasks. Figure 3 illustrates the combina-
tion of BERT2BERT and the pointer mechanism
(BERT2BERT+Ptr). The pointer network consists
of one linear layer followed by a sigmoid function
which generates a pseudo-probability pgen in the
range of [0, 1]. In the original function of See et al.,
2017, pgen is given by:

pgen = sigm(wT
ptr[h

x
t ; yt; st] + bptr) (2)

where wT
ptr and bptr are learnable parameters. pgen

is determined by the concatenated representation
containing the word embeddings of the input token
yt, the decoder hidden state st and the weighted en-
coder hidden representations hxt , at each decoding
step t.

See et al., 2017 recycled attention scores directly
from the encoder-decoder attention layer. How-
ever, in the BERT2BERT model, we not only have
multiple encoders and decoders, but also multiple
heads of the encoder-decoder attention. We can
solve the dimension of multiple heads in the atten-
tion distribution using the mean of the multi-head
attentions (Deaton, 2019). These hidden states
from the final encoder are used as context vectors
passed to each decoding step. Each decoder state
st used for predicting the next token is also from
the last decoder, as well as the multi-head encoder-
decoder attention scores at. hxt in Equation 3 rep-
resents the hidden output from the final encoder
weighted by the sum of the heads of the encoder-
decoder attention layers at each decoder step from
the last decoder, analogous to the RNN-based con-
text vector. hxt is given by:

hxt =

Tx∑

j

Nheads∑

i

at · hxj (3)
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where i is the index of the attention head, j is the
position of the source sequence and Tx is the total
length of the source sequence. The formula for
computing the final distribution Pfinal(w) is as
follows:

Pfinal(w) = pgen·Pvocab(w)+(1−pgen)·
∑

i:wi=w

ati

(4)
Pvocab(w) has the dimension of the size of the vo-
cabulary. at contains the values for each token in
the source sequence, and each value has a corre-
sponding index i in the vocabulary dimension. The
encoder and decoder of BERT2BERT share the
same vocabulary. Hence, we can sum the values
from at and Pvocab at the same indices.

4 Experiments

4.1 Datasets for Training and Testing

The concept of structured oncology reports (SOR)
has been implemented to generate high-quality radi-
ology reports for the general follow-up assessment
of cancer patients in the clinical routine at the Uni-
versity Hospital Heidelberg (UKHD) in Germany
by Weber et al., 2020. The design and application
of SOR can be accessed using the internet link:
http://www.targetedreporting.com/
sor/. For our experiments, we use a collection
of 10,514 structured reports from the years 2018
and 2019 from the radiology department of the
UKHD. The HIPAA-compliant retrospective study
was approved by the Institutional Review Board
(S-083/2018), and informed consent was waived.
The reports are divided into a training set (80%), a
validation set (10%), and a test set (10%).

training (8410) valid (1052) test (1052)
general 2.0 2.0 2.0
findings 21.1 ± 8.2 20.5 ± 7.5 21.7 ± 7.5

conclusion 3.1 ± 2.0 3.4 ± 2.0 3.5 ± 2.0

Table 1: The average number of sentences after segmentation
in each section. The general section contains 2 sentences of
the background information. The number of sentences in the
findings section averages about 22 sentences, with a variation
of 7-8 sentences. The conclusion consists of approximately
3-6 sentences.

Sentence Segmentation Each section of the
SOR report contains documentation in a tabulated
form. Different sections have different table blocks.
We need to customize different methods to segment
sentences from different sections. In the general

section, there are normally two sentences express-
ing the treatment situation and previous examina-
tions. In the finding sections, we have notes or-
ganized in different blocks and free-text content.
There are four main blocks: primary tumour lo-
cation, metastases, reference measurements and
non-oncology findings.

The first step is to detect the boundaries of the
blocks. After that, we apply a tailor-made regu-
lar expression segmenter to split the text in these
blocks into sentences. In report texts, periods are
usually used to mark the end of sentences and can
be used to split text into sentences. However, apply-
ing this rule to the findings and conclusion sections
requires consideration of several cases, such as ab-
breviations, dates, and serial numbers, where the
period is part of the tokens. We customize the reg-
ular expressions to handle the above exceptions.
The average number of sentences in each section
calculated for each split set can be found in Table 1.

Patient Degree Categories Weber et al., 2020
used a uniform terminology to ensure the formal-
ities of the content in the conclusion section as
assessments of patient responses. These terminolo-
gies are shown in Table 2.

Figure 4: Number of reports for the three data partitions
after matching to patient degree categories. We have
significantly more reports in the Without Evidence and
Stable Disease categories than in the other two cate-
gories, and the fewest reports are found in the Partial
Response category.

The reports from different patient degree cate-
gories challenge our model to varying degrees. For
example, a report that contains findings indicating
progressive disease is much more complex than a
report that does not show findings regarding tumour
burden. It would be more appropriate to judge the
performance of the model based on the patient de-
gree class of the report. As shown in Figure 4, after
dividing the reports into four patient categories, the
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Patient Degree SOR Category German Template

Without Evidence (WE) no tumour burden
evidence

Oncological regular findings without evidence of recrudesce or metastasis
(Onkologisch regelrechter Befund ohne Nachweis von Rezidiv oder Metastasierung)

Partial Response (PR) significant decrease of
tumour burden

Oncological improvement of findings; constancy of findings with a tendency
to decrease (Onkologisch Befundverbesserung; Befundkonstanz mit tendenzieller Abnahme)

Stable Disease (SD) no significant change of
tumour burden

Oncological constancy of findings (Onkologisch Befundkonstanz)

Progressive Disease (PD) significant increase of
tumour burden

Oncological worsening of findings; constancy of findings with a tendency to
increase (Onkologisch Befundverschlechterung; Befundkonstanz mit tendenzieller Zunahme)

Table 2: Patient degree categories and corresponding uniform terminology in conclusion. The SOR categories are defined by
threshold criteria for tumour burden development in the implementation. For example, if there is a significant decrease of tumour
burden (more than 30%), the patient degree is defined as Partial Response.

BERT2BERT baseline
BERT2BERT+Ext adding extraction learning objective
BERT2BERT+Ptr integrating pointer network
BERT2BERT+Ext+Ptr combining extraction and pointer

Table 3: The abstractive models are warm-started with the
checkpoints from the German BERT (deepset.ai, 2019).

number of reports is imbalance across patient cat-
egories, however, is kept similar across the three
data splits. The number of training samples is an
important factor in the performance of the model.
Given uneven quantity and the varying complexity
of reports across categories, we expect inconsistent
performance of the models across the four patient
degree categories.

4.2 Experimental Setup

In our experiments, we evaluate the efficacy of the
proposed BERT2BERT baseline and its enhance-
ments, shown in Table 3. The implementation of
all BERT-based models is based on the open source
library HuggingFace Transformers by Wolf et al.,
which is dedicated to supporting state-of-the-art
Transformer architectures and to collecting and
supplying pretrained models for the community.
The models are fine-tuned on 8410 reports and val-
idated on 1052 samples during the training. The
maximum number of training epochs is 10 with an
early stopping setting according to the validation
loss metric: when the validation loss is no longer
decreasing within 3 epochs, the training process
is terminated. All fine-tuning processes are con-
ducted using one single GPU of 32GB memory and
completed in no longer than 6 hours.

Input Sequences We combine the sentences
from the background and finding sections in one
input sequence and feed them into the encoder of
the model. We adopt the idea from Liu and Lap-
ata, 2019 of inserting ”[CLS]” tokens between the
sentences to construct structured sequences. Since

BERT is not a generative model and does not learn
an end of text token like GPT-2 does, we use the
”[SEP]” token to make the end of the whole se-
quence, so that the decoder in BERT2BERT stops
the generation when it sees this special token.

Evaluation Metrics For quantitative evaluation,
we firstly apply the ROUGE metric (Lin, 2004) and
report the F1 scores for ROUGE-1 and ROUGE-
L about the tokens overlaps between the system-
generated summaries against the reference conclu-
sions. Secondly, we propose the patient degree
matching metric, evaluating whether the assess-
ments generated by the abstractive models can
be categorized to the same patient degree cate-
gory as their reference. After that, we conduct
a human evaluation with two domain experts in
which the annotators are asked to score the system-
generated conclusions as well as the reference
based on three criteria: comprehensibility, oncol-
ogy and non-oncology correctness.

4.3 Extracting Key Sentences
We propose the BERT2BERT+Ext model in Sec-
tion 3 to improve the extraction ability of the de-
coder during generation, however, we lack key sen-
tences for training. For finding the most effective
way to extract the key sentences, we evaluate sev-
eral non-neural, automatic extractive methods on
the test data:

1. Longest-k. This method simply extracts the
k longest sentences from the findings. We
hypothesize the longer a sentence of findings
is, the more information it may communicate
in the summary.

2. Tfidf-Ex. This approach is built on the scores
of TF-IDF (Jones, 1972). TF-IDF produces
a vocabulary based on the collection of docu-
ments and outputs a TF-IDF vector of vocabu-
lary breadth. We can set a threshold to extract
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the top keywords from the TF-IDF vector. The
sentences are ranked based on the scores by
summing up the TF-IDF of all the keywords
found in the sentence of a document. Top
k sentences are extracted as the salient sen-
tences.

3. TextRank (Mihalcea and Tarau, 2004) algo-
rithm scores sentences based on the graph the-
ory. In the algorithm, a graph is constructed
with each sentence in the document as a ver-
tex, and the score of edges between sentences
are determined based on the number of over-
lapping tokens indicating the similarity be-
tween sentences.

All the extractive approaches assign an importance
score to each sentence from the findings section
and rank the sentences according to the scores. We
compare the results of the different methods in
Table 4. All the three extractive methods return
comparable results. The Longest-k method is the
simplest extractive method for which no computa-
tion is required and indicates that phrases from the
longest sentences in the finding sections are usually
included in the human-written summaries.

Longest-k Tfidf-Ex TextRank
ROUGE-1 41.9 40.6 40.4
ROUGE-L 40.8 38.7 39.6

Table 4: The recall scores of ROUGE metrics for the different
extractive approaches. The scores imply how much of overlaps
between the key sentences and the reference is found. The 2
sentences from the general section are always included in the
extraction. Because the average number of sentences in the
reference summaries does not exceed 6, we evaluate the key
sentences given k=4, i.e, 4 key sentences from the findings
section.

4.4 Human Evaluation
Since the ROUGE metric only assesses the similar-
ity between the system-generated conclusions and
the references, we conduct an expertise evaluation
with two domain annotators (one radiologist and
one final year medical student) to understand the
clinical validity of the conclusions generated by the
abstractive models. According to the radiologist,
there are two important criteria to judge the clinical
validity of the conclusions, namely the degree of
correctness of the oncological and non-oncological
impressions based on the patient’s condition. In
addition, we ask the annotators to score the compre-
hensibility of system-generated and referenced find-
ings with expert judgment to investigate whether

the abstractive models could produce medical terms
that are as comprehensible as those written by spe-
cialists. In the evaluation, we first create a pool
of samples, where each sample has scored higher
ROUGE-1 scores than the average in the entire test
set for all four abstractive models. Next, we ran-
domly select five examples from the pool for each
patient degree category, totalling twenty samples.
We present the general information, findings se-
cions and the four system-generated conclusions as
well as the reference conclusion of each sample to
the annotators in a random order. They are asked
to score the conclusions on a likert scale from 0
to 5, indicating oncological and non-oncological
correctness degrees as well as comprehensibility
from very poor to very good. A score of 3 indi-
cates satisfaction. The annotators have no prior
knowledge of the models nor the reference. The
annotator instructions are given in Appedix A. The
annotation was performed with the open source text
annotation tool doccano (Nakayama et al., 2018).

5 Results and Discussion

whole WE PR SD PD
BERT2BERT 36.15 55.27 30.86 32.09 30.93
BERT2BERT+Ext 42.13 58.99 38.19 38.17 36.68
BERT2BERT+Ext(random) 37.27 57.22 31.43 32.71 31.32
BERT2BERT+Ptr 42.25 55.9 38.66 39.88 39.04
BERT2BERT+Ext+Ptr 43.32 57.91 40.15 39.39 38.65
BERT2BERT+Ext+Ptr(random) 42.10 57.37 38.71 39.41 37.81

Table 5: ROUGE-1 F1 scores of BERT2BERT-based Models
on the whole test set and different partitions of four Patient De-
gree Classes. BERT2BERT+Ext(random) has random selected
sentences targets. When the target sentences to be extracted
are replaced with randomly selected sentences, no significant
improvement is found in BERT2BERT+Ext models.

Table 5 shows the F1 scores of ROUGE-1 metric
across the different settings of the abstractive model
overall reports and according to the patient de-
gree categories. The hybrid models outperform the
BERT2BERT model by nearly 6 points. Integrat-
ing extraction or pointer mechanism yields com-
parable results. According to the metrics, the last
hybrid model combining the two facilities achieves
only a small improvement compared to enhancing
the model only with extraction training or pointer
network. One SOR report and the generations of
the abstractive models are shown in Appendix B.

Both the baseline model and the hybrid model
have less difficulty in generating summaries for the
WE class. We hypothesize that this is because in
this category, there are many training samples (al-
most one-third of the reports), uniform templates,
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and barely important information can be extracted
from the findings. In the templates of SD, there
is only one statement about the findings: ”onco-
logical constancy”. For the PR and PD classes,
there are cases in which an oncological constancy
is described, however, with a tendency to an im-
provement or deterioration, which increases the
difficulties of the generation task for the models.

In the case of evaluating oncology facts, their cor-
rectness requires more expertise to assess. Hence,
we need to present examples of system-generated
conclusions to domain experts to assess clinical
validity. The results of the expertise assessment are
presented in Section 5.

Validation of the Extraction Learning Since
we do not have human-annotated labels in the
radiology reports indicating the important sen-
tences, we apply the Longest-k method ex-
plained in 4.3 to extract the key sentences used
as target for training BERT2BERT+Ext. In
BERT2BERT+Ext(random) we replaced the
target sentences with random ones. The re-
sults in Table 5 show that, the performance of
BERT2BERT+Ext(random) drops in comparison
to BERT2BERT+Ext. This verifies the impor-
tance of target sentences for improving the extrac-
tion ability of the BERT2BERT+Ext model. In
BERT2BERT+Ext+Ptr(random), the scores ob-
tained by integrating the pointer mechanism are not
significantly affected when the decoder is trained to
extract sentences that include irrelevant sentences.
From the ROUGE scores, we can conclude that the
hybrid models achieve better results than the base-
line model.

Results of Expert Evaluation Figure 5 presents
the correctness results of oncological and non-
oncological impressions as well as the compre-
hensibility of the impressions. A score of zero
indicates unacceptable generation given the facts
in the source input, while a score of five means that
the facts in the generation are completely correct.

The results shown in the bar charts are the av-
erage scores of the two annotators, normalized
by number of the examples in each category. In
terms of correctness regarding oncological and non-
oncological impressions in the WE patient degree,
all conclusions generated by the abstractive models
are scored close to 5. In SD category, the gener-
ated conclusions are almost as good as the human-
written conclusions, except for the baseline model.

Summarizing the findings for the PR and PD cate-
gories is more challenging for the models due to the
complexity of the findings and the small number
of training examples. The hybrid models perform
better than the baseline, but the correctness of their
generations are rated very differently in these two
categories. The BERT2BERT+Ext+Ptr model
performs best in ensuring correctness across pa-
tient degree categories in general. Figure 5 shows
that, the abstractive models are capable of gener-
ating good comprehensible radiology conclusions,
except for the baseline model in the PD category.
Although the PR class has the fewest training in-
stances, the abstractive models also achieve results
above 3.

6 Conclusion

In this work, we experiment and demonstrate the ef-
ficacy of the BERT2BERT-based abstractive mod-
els on summarizing German radiology findings in
structured reports. We propose two strategies to
improve the BERT2BERT model with the aim of
optimizing the factual correctness in the conclu-
sions generated by the system, BERT2BERT+Ext
and BERT2BERT+Ptr. Both BERT2BERT+Ext
and BERT2BERT+Ptr models have very few mod-
ifications to the baseline model and improve the
performance of the model. In BERT2BERT+Ext,
we train the model to generate summaries, en-
couraging the model to reconstruct key sentences
based on the source text in the training process.
BERT2BERT+Ptr incorporates the pointer mech-
anism to modify the decoder’s prediction by copy-
ing the salient segments directly from the source
sequence. Despite the limitations of the models and
the imbalanced training data, the issue of unfaithful
facts in the conclusions generated by the baseline
model is greatly improved by these hybrid models.
One pressing issue in the future work is to inves-
tigate the potential advantages of these models on
free-text radiology data or data in other domains.
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Figure 5: Average scores with standard deviation for the three criteria: Oncological correctness, non-oncological correctness
and comprehensibility.
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A Annotator Instructions

We have discussed the criteria with domain experts
for judging the correctness of system-generated
conclusions. We define an annotation task for grad-
ing generated assessments according to certain cri-
teria. The following instructions are presented to
annotators for evaluating the generated summaries.
are a senior medical student and a radiologist.

Evaluation Criteria We consider four summary
models and the reference conclusion. Each model
generates a radiological summary (assessment) un-
der the specification of a source text (general ex-
amination information and radiological findings).
You will be presented with the source text, the four
generations from the models, and the assessment
written by the physician. Please rate the genera-
tions of each model and the reference according
to the following criteria: Oncolgical correctness,
nononcolgical correctness, and readability:

• Oncological correctness: is the summary and
the details about metastases (none, new, pro-
liferation or regressive) correct? (0) not as-
sessable; (1) not at all correct ; (2) correct to
a small extent ; (3) half correct; (4) correct to
a large extent; (5) everything correct.

• Nononcological correctness: is the general
date, organ, and other information correct?
(0) not assessable; (1) not at all correct ; (2)
correct to a small extent ; (3) half correct;
(4) correct to a large extent; (5) everything
correct.

• Readability: is the generation easy to under-
stand, without broken expressions or unknown
words? (0) not assessable; (1) many unknown
words, difficult to read and comprehend; (2)
several unknown words and aborted expres-
sions, not fluent; (3) several unknown words;
(4) fluent and coherent, but some unknown
words; (5) correct words and expressions, flu-
ent and coherent.

If the generation is not assessable, select 0 - not
assessable. Otherwise, the scale are grades from 1
to 5 and must be assigned for each criterion.

B SOR Report Example

We present one SOR example from (Weber et al.,
2020) in Table 6 along with the generations of the
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General Section Untersuchungsregion Thorax (CT), Abdomen (CT) Behandlungssituation Ausgangsbefund. Vergleich Letzte Vergleichsunter-
suchung: 17.11.2017.

Findings Section Primärtumor / Lokalrezidiv Soweit messtechnisch erschwert erfassbar progrediente diffus infiltrierende Raumforderung des
Pankreaskopfs mit Gangstau im Pankreasschwanz und vollständiger Ummauerung des Truncus coeliacus, mindenstens 180°
Ummauerung der A. liniealis .
Bekannter kompletter Verschluss der extrahepatischen Pfortader und V. mesenteria superior mit ausgeprägten Kollateralen .
Regionäre Lymphknoten Gering prominenterer vermehrter Lymphknotenbesatz mesenterial, exemplarisch mit einem KAD von 7
mm, zuvor 5 mm (8-137) .
Metastasen Lunge und Pleura: Keine .
Thorakale Lymphknoten und Weichteile: Keine .
Leber: Keine .
Abdominale Lymphknoten und Weichteile: Keine .
Peritoneum: Kein eindeutiger Nachweis einer Peritonealkarzinose, jedoch Infiltration der Mesenterialwurzel durch den Primarius
und Nachweis geringer freier Flüssigkeit im kleinen Becken .
Skelett: Keine .
Referenzmessungen Keine Referenzmessungen .
Thorax Portsystem in situ .
Kein katheterassoziierter Thrombus .
Abdomen Unveränderte Nebenmilze .
Konstante geringe Cholestase Skelett Im Übrigen ohne besondere Auffälligkeiten .

Conclusion Onkologische Beurteilung Onkologisch Befundkonstanz mit tendenzieller Zunahme der Tumorlast gegenüber 17.11.2017.
Progredient diffus infiltrierende Raumforderung des Pankreaskopfs. Andere Befunde Keine Angabe.(Progressive diffusely infiltrating mass of
the pancreatic head.)

BERT2BERT Onkologische Beurteilung Onkologisch Befundverschlechterung gegenüber dem Ausgangsbefund vom 11.04.2018 und
12.05.2019. In diesem Zeitraum zunehmende Peritonealkarzinose mit Ummauerung der VMS, sowie Ummauerung des
TCs bei bekanntem Magenkarzinom. Andere Befunde Keine Angabe.(During this period, increasing peritoneal carcinomatosis with walling of the VMS, as
well as walling of the TC in known gastric carcinoma.)

BERT2BERT
+Ext

Onkologische Beurteilung Onkologisch Befundkonstanz gegenüber 17.11.2017. In diesem Zeitraum keine wesentliche Änderung
des Pankreasschwanzes mit Infiltration der Pfortader und Ummauerung der Truncus coeliacus, AMS / VMS sowie Arteria
hepatica communis durch die AMS - suspekte Lymphknotenmetastasen. Andere Befunde Keine Angabe.(During this period, no significant
change in the tail of the pancreas with infiltration of the portal vein and walled truncus coeliacus, AMS / VMS and arteria hepatica communis by the AMS - suspicious lymph node metastases.)

BERT2BERT
+Ptr

Onkologische Beurteilung Onkologische Befundverschlechterung zum 17.11.2017. In diesem Zeitraum neu aufgetretene
Lymphknotenmetastase im Oberbauch mit ausgeprägter Infiltration der Pfortader und der V. Pankreatitis. Unveränderte
Darstellung der bekannten Peritonealkarzinose. Andere Befunde Keine Angabe.(Newly appeared lymph node metastasis in the upper abdomen during
this period with marked infiltration of the portal vein and pancreatic vein. Unchanged presentation of known peritoneal carcinomatosis. )

BERT2BERT
+Ext+Ptr

Onkologische Beurteilung Onkologisch Befundkonstanz mit tendenzieller Zunahme der Tumorlast gegenüber 17.11.2017.
In diesem Zeitraum moderate Zunahme des Primärtumors im Pankreasschwanz. Bekannter Verschluss der extrahepatischen
Pfortader und Ummauerung der A. gastrica sinistra und Infiltration der Pfortader. Andere Befunde Keine Angabe.(Moderate increase in
primary tumor in the pancreatic tail during this period. Known occlusion of the extrahepatic portal vein and walling of the gastrica sinistra artery and infiltration of the portal vein.)

Table 6: In conclusion is a human-written summary reference. Followings are the generations by the Seq2Seq models given the
input text combining general and finding sections. In this example, words in red are unfaithful generations comparing to the
input and extracted information (highlighted in green) that appears in the source sequence.

abstractive models given the input from the gen-
eral and findings sections in the report. The date
of the previous radiology examination is very im-
portant information for short-term or long-term
response assessments. The baseline BERT2BERT
model tends to predict more new phrases and al-
ways generate a spurious date. While the other
hybrid models are able to address this issue and
more constraint to the original phrases from the
source input.
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Abstract

Radiology report is an official record of radiol-
ogists’ interpretation of patients’ radiographs
and it’s a crucial component in the overall med-
ical diagnostic process. However, it can contain
various types of errors that can lead to inade-
quate treatment or delay in diagnosis. To ad-
dress this problem, we propose a deep learning
framework to detect errors in radiology reports.
Specifically, our method detects errors between
findings and conclusion of chest X-ray reports
based on a supervised learning framework. To
compensate for the lack of data availability of
radiology reports with errors, we develop an
error generator to systematically create artifi-
cial errors in existing reports. In addition, we
introduce a Medical Knowledge-enhancing Pre-
training to further utilize the knowledge of ab-
breviations and key phrases frequently used
in the medical domain. We believe that this
is the first work to propose a deep learning
framework for detecting errors in radiology re-
ports based on a rich contextual and medical
understanding. Validation on our radiologist-
synthesized dataset, based on MIMIC-CXR,
shows 0.80 and 0.95 of the area under precision-
recall curve (AUPRC) and the area under the
ROC curve (AUROC) respectively, indicating
that our framework can effectively detect errors
in the real-world radiology reports.

1 Introduction

Radiology report is a document containing offi-
cial interpretation of patients’ radiographs which
is used as an important communication tool be-
tween radiologists and referring physicians (Wallis
and McCoubrie, 2011). The major components of
the report include basic demographic information
(e.g. patient’s name, identifying number), findings
which explains the image findings along with per-
tinent clinical information, and conclusion (also
called impression) which is a list of summary state-

⇤These authors contributed equally.

ments of radiographic study conclusion and rec-
ommendations for further evaluation and patient
management (Wilcox, 2006). Medical treatment de-
cisions are often based on the findings and conclu-
sions of the radiology report (Sistrom and Langlotz,
2005). This explains how the radiologic contribu-
tion to inappropriate or delayed diagnosis overall
is likely to be substantial (Bruno et al., 2015).

Radiology report errors can be categorized and
defined in different ways, mostly based on their
causes. Kim and Mansfield classified the errors in
12 types which include errors caused by underread-
ing, location of the lesion, and faulty reasoning.
Pinto et al. claim that radiology report errors can
be classified based on 4 main reasons why radiolo-
gists are sued which include observer errors, errors
in interpretation, and failure to suggest proper rec-
ommendations. Sangwaiya et al. has analyzed
errors on location and size discrepancy of lesions
in radiology reports. Combining these works, we
conclude that the errors that contribute most to in-
appropriate or delayed diagnosis are radiologists
failing to identify and interpret abnormalities, and
discrepancies in size or location of the lesions re-
ported.

Although there have been sufficient discussions
in previous studies on methods to reduce errors
in radiology reports, research on algorithms to di-
rectly detect such errors has been conducted at a
very basic level. Lee et al. proposed a software
that detects the laterality error for the side or sites
between the radiology report and its examination
name. Minn et al. proposed an algorithm to detect
gender and laterality mismatch in report and its
metadata. Zech et al. proposed a LSTM (Hochre-
iter and Schmidhuber, 1997) based neural model
to detect inappropriate insertions, deletions, and
substitutions of words in radiology reports. As
such, existing studies on error detection in radiol-
ogy reports were conducted only on local parts such
as gender, laterality, and a single word, and most
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of these were done by simple matching without
considering deep contextual meanings. Unfortu-
nately, in real life, radiologists’ error occur due to
more complicated reasons that cannot be covered
by these approaches. Considering how radiologists
record their interpretation and communicate with
referring physicians, capturing and understanding
the contextual meaning of each section in the report
is an important part for practical error detectors that
can be used in real life.

In the field of NLP, many pre-trained language
models (PLMs) are showing remarkable achieve-
ment in various tasks of natural language under-
standing since the advent of ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2018). Recently,
several studies on PLM that utilize world knowl-
edge for language understanding have appeared,
showing outstanding results not only in the general
domain but also in domain-specific tasks (Zhang
et al., 2019; Sun et al., 2019, 2020, 2021; Wang
et al., 2020). Specifically, PLMs specialized in the
medical domain such as ClinicalBERT (Alsentzer
et al., 2019) and BioMegatron (Shin et al., 2020)
have shown notable performance in the medical
NLP tasks.

Despite the remarkable achievement in the field
of NLP, the main barrier to apply these technolo-
gies, is the absence of radiology reports with errors
to perform PLM supervised learning. Two reasons
are identified behind the lack of accessible data.
First, identifying errors in radiology reports can
only be done by well-trained radiologists which is
time-consuming and requires costly manual work.
Second, in fact, radiology report errors do not oc-
cur as often enough for them to be collected and
used to train deep learning models. It is estimated
that in a daily practice, the rate of radiology report
errors that are substantial to result in inappropri-
ate or delayed diagnosis is less than 4% (Berlin,
2007). Also, when considering the different types
of errors, classifying and collecting enough data
for each type of error is an unrealistic approach.

Here, we introduce two novel approaches to iden-
tify errors in radiology reports based on the under-
standing of the nature of radiology reports while
overcoming the challenge created by inadequate ra-
diology report error data: 1) To compensate for the
lack of data availability of radiology reports with
errors, we introduce an artificial error generator.
The error generator synthesizes errors that mimic
radiologists behaviors that potentially cause errors

in daily practice. It can generate different types
of errors by employing appropriate and relevant
medical knowledge. 2) In order to incorporate med-
ical knowledge for detecting complex errors, we
introduce a Medical Knowledge-enhancing Pre-
training task, which is inspired by ERNIE1.0(Sun
et al., 2019), to our BERT based error detector. This
additional pre-training task allows the detector to
directly learn medical abbreviations and frequent
phrases in radiology report.

To validate our proposed approach, experiments
are performed on MIMIC-CXR (Johnson et al.,
2019) with part of it including intentionally gen-
erated error by a board-certified radiologists. Fur-
thermore, through additional experiments, the pro-
posed model was able to identify errors in original
MIMIC-CXR which was verified by human evalu-
ation. The experiment results show that the error
detector can detect errors in real-world data while it
is trained on artificial errors generated by the error
generator. Additionally, external validation, experi-
ments on domain adaptation, and several ablation
studies well prove the generalizability of the error
detector and the performance of the knowledge-
enhancing pre-training task.

In summary, our main contributions are as fol-
lows:

1. We propose RRED (Radiology Report Error
Detector) which is a deep learning framework
that can detect radiology report errors based
on rich understanding of context and medical
knowledge.

2. We propose an error generator that system-
atically generates realistic errors in the radiol-
ogy reports by integrating medical knowledge.

2 Method

Figure 1 illustrates the suggested complete frame-
work. The following sections describe the Error
Generator and the Error Detector independently.

2.1 Error Generator
While there can be many types of errors in radiol-
ogy reports, this study aims to detect errors occur-
ring when writing the conclusion section based on
the findings section. In order for the error generator
to synthesize realistic radiology report errors, we
have categorized the errors into two types based
on previous works on categorization of errors in
radiology reports. For clarity, Appendix C, Table 9
provides examples of each type of error.
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Figure 1: The overall framework of RRED.

2.1.1 Interpretive Error
Interpretive error is any error that changes the in-
terpretation of the findings section in one way or
another. This type of error can be subdivided into
3 classes based on their causes.

Faulty reasoning Errors in which findings were
identified but attributed to the wrong cause. This oc-
curs due to lack of knowledge or experience of the
interpreter or due to lack of information provided
in the findings section. For instance, when the con-
clusion section identifies cardiomegaly while the
findings section only identifies pneumothorax, this
is clearly an error.

Absence of abnormalities Errors in which ab-
normalities described in the findings sections are
missed in the conclusion section.

Presence of incorrect findings Errors in which
abnormalities are described in the conclusion sec-
tion while the finding section clearly states that
there are no findings.

2.1.2 Factual Error
Factual error is any error in which the interpretation
and identification of abnormalities are correct while
there are discrepancies in the description of the
lesion itself. This can be subdivided into 2 classes:

Discrepancy in location of the lesion Errors in
which the direction of the lesion location is mis-
taken (e.g. left ! right, lower ! upper).

Discrepancy in numerical measurement of the
lesion This type of error includes errors in which
the measured unit is incorrectly recorded in the
conclusion section (e.g. cm ! mm, mm ! m) or

when decimal points are misplaced or missed (e.g.
12.20 ! 1.220, 8.25 ! 82.5).

When factual errors occur, surgeries and biopsies
can be operated on the wrong side of the body
which can potentially harm the patient physically.

The error generator generates realistic errors
from existing radiology reports which can create
synthesized datasets that can be used to train the
error detector. The synthesized data is required to
be realistic enough to train a robust error detector
that can detect errors in real life radiology practice.
The following sections will describe the details of
the error generator.

2.1.3 Error Generator Overview
The error generator consists of two steps: 1) La-
beling each report using CheXpert labeler (Irvin
et al., 2019) 2) Applying errors based on the tree
structure which is based on the CheXpert classes
mentioned in the following subsection.

2.1.4 CheXpert Labeler and its tree structure
CheXpert labeler predicts the probability of 14 dif-
ferent classes shown in Figure 2. The error gen-
erator first uses this to label each of the radiology
reports provided. Two board certified radiologists
expanded the labels of CheXpert to group similar
labels which creates a tree structure. These similar
labels can be interchangeable depending on the in-
terpretation of the radiologist, therefore, cannot be
considered incorrect when a different label is used
within the similar label group. Figure 2 indicates
the similar groups in different colors (other than
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Figure 2: Diagram that illustrates the tree structure of the CheXpert labeler’s labels. The labels highlighted in blue
and yellow are two different similar label groups, in which the labels can be interchangeable within their own group.

white). In other words, labels within the blue re-
gion are interchangeable and the labels within the
yellow region are also interchangeable.

2.1.5 Applying errors
Each type of error is applied using the labels la-
beled by the CheXpert labeler. To avoid any un-
certainties, the entire set of labels CheXpert can
label is indicated by U. Also, any report that has
a label “No Finding” is noted by NF. In order to
generate realistic errors, generating faulty reason-
ing error, absence of abnormalities, or factual error
in reports in NF should be avoided. When there
are no findings in the provided report, there is no
medical significance in misidentifying the cause,
removing findings, or creating errors in measure-
ment or location of a lesion.

Faulty reasoning error is applied by randomly
swapping the conclusion of the report with other
reports’ conclusion which has a different label
from the original label. Since the CheXpert la-
beler is a multi-label labeler, the generator pre-
cisely and randomly selects a conclusion from the
set {U � NF � {original labels}}. Absence of
abnormalities is applied by randomly swapping
the conclusion of the report with reports in NF.
Presence of incorrect findings can only be ap-
plied when the given radiology report is in NF. It
is applied by randomly swapping the conclusion of
the reports in {U � NF}.

Discrepancy in location of the lesion is applied
by detecting the keywords that indicate the location
of the lesion. The keywords are the following:
left, right, upper, lower, high, low, big, and small.
When the keywords are identified, they are replaced
by their counter-keywords which are: right, left,
lower, upper, low, high, small, and big, respectively.
Discrepancy in numerical measurement of the
lesion is applied by first detecting any numerical
measurement of a lesion (with its unit). Then, by a
50-50 chance, either the unit or the numerical value

is changed.

2.2 Error Detector

The Error Detector uses a BERT-base architecture,
which showed remarkable achievement in natural
language understanding, to detect errors based on
syntactic and semantic understanding of the radi-
ology report. The parameters are initialized to the
ClinicalBERT parameters which showed better per-
formance in the medical domain.

2.2.1 Medical Knowledge-enhancing
Pre-training Task

Radiology reports frequently contain medical ab-
breviations and phrases with specific meanings and
we want the model to be able to capture richer
local and global contexts for these. So, we intro-
duce a Medical Knoweldge-enhancing Pre-training
task (MKP), inspired by the Knowledge Integrated
Masked Language Modeling task of ERNIE1.0, to
obtain an integrated representation of such medical
knowledge.

Specifically, we selected abbreviations and
phrases from a radiology report to directly mask
the corresponding tokens and predict the whole
masked tokens. Abbreviations were identified
using a medical abbreviation dictionary from
imantsm and Aristotelis, and phrases were identi-
fied using a phrase dictionary created by keyBERT
(Grootendorst, 2020) on MIMIC-CXR. For each
report, one of the abbreviations or phrases detected
in the dictionaries was randomly selected and all
corresponding tokens were masked. For other to-
kens, probabilistic masking strategy was applied in
the same way as BERT’s masked-language mod-
eling (MLM). To assist the model to capture the
meaning of abbreviations and phrases effectively,
border tokens of the abbreviation and phrase tokens
were not masked.
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2.2.2 Training Process
Pre-training MKP is performed on the MIMIC-
CXR dataset which includes 91,544 chest X-ray re-
ports. Because ClinicalBERT, which shows a suffi-
cient level of understanding of medical domain text,
is used as the initial weight, heavy pre-training for
large-scale corpus is not performed. The maximum
sequence length, batch size and training epochs
were set to 512, 32 and 50 respectively. We per-
formed experiments with models pre-trained for
100 and 150 epochs, but there were no significant
differences observed in error detection task perfor-
mance between these models.

Fine-tuning The training objective of the error
detector is to perform a binary classification be-
tween original reports and corrupted reports. The
training set, namely machine-synthesized dataset,
consists of original reports and corrupted reports
generated by the error generator. The error detector
takes the concatenation of the findings and conclu-
sion sections of the radiology report with a separa-
tor token as an input. The input representation is
created by adding different segment embedding to
distinguish them from each other. Also, positional
embedding is added in the same way as BERT. Tak-
ing into account the general length of each section
in a radiology report, the maximum lengths of find-
ings and conclusion are 338 tokens and 172 tokens,
respectively.

3 Experiments

In this section, we describe the datasets, implemen-
tation details, and experiment results of the error
detection task on several datasets.

3.1 Datasets

3.1.1 MIMIC-CXR
MIMIC-CXR is a publicly available dataset consist-
ing of chest X-rays and corresponding radiology
reports, collected from patients between 2011 and
2016 at the Beth Israel Deaconess Medical Cen-
ter Emergency Department. We used the train-test
split disclosed in THE MEDIQA 2021 shared task
(Abacha et al., 2021), which consists of 91,544
train sets and 2,000 test sets sampled by simple cri-
terion such as acceptable length. Out of the 91,544
training examples, errors were generated on 88,388
examples (96.55% of the training set) where the
percentage of interpretation error and factual error
were 85.06% and 14.94%, respectively. For the
test set, errors were generated on 1,933 examples

(96.65% of the test set) where the percentage of the
interpretation error was 79.51% and the percentage
of the factual error was 20.49%.

3.1.2 Open-I
Open-I (Demner-Fushman et al., 2016) is another
publicly available chest X-ray and radiology report
dataset. It is collected from the Indiana Network
for Patient Care, consisting of 2,928 reports. We
used this dataset as an external dataset to check the
generalizability of the model, meaning that both
pre-training and fine-tuning is only performed on
MIMIC-CXR, and the Open-I is tested in a com-
pletely unseen state. Using the error generator,
errors were generated on 2,813 examples (96.07%
of the dataset) where the percentage of the inter-
pretation error and factual error were 89.69% and
10.31%, respectively.

3.1.3 Radiologist-synthesized dataset
To verify that the error detector trained on the
dataset generated by the error generator can work
on the real-world error generated by the radiolo-
gist, we prepared a dataset in which two board-
certified radiologists manually injected errors into
the MIMIC-CXR test set of THE MEDIQA 2021
split. Errors were injected into the conclusion sec-
tion of 111 randomly selected reports out of a total
of 2,000 reports, and 7 types of errors were gener-
ated to comprehensively verify the various types of
errors that could actually occur.

The following types were considered as interpre-
tive errors: Written as a wrong cause that is easy
to confuse due to lack of knowledge or experience
(Type 1-A, 18%), written as a completely nonsensi-
cal disease (Type 1-B, 18%), written in the absence
of abnormalities (Type 1-C, 18%), written in the
presence of incorrect findings (Type 1-D, 18%).
The following types were considered as factual er-
rors: Discrepancy in location of the lesion (Type
2-A, 19%), discrepancy in the numerical measure-
ment of the lesion (Type 2-B, 4%). Additionally,
free-form errors that do not fall into any of the six
categories (Type 3, 5%).

3.2 Experimental Setups

After generating corrupted MIMIC-CXR using
the error generator, we fine-tune the detector
model on machine-synthesized data. This machine-
synthesized data has 141,420 reports for the train-
ing set and 35,356 reports for the validation set. We
tune the initial learning rate 2 {1e-6, 5e-6, 1e-5,

45



5e-5, 2e-4, 2e-3}, batch size 2 {16, 32}, number of
epochs 2 {1, 3, 5, 10, 20}. Adam optimizer is used
and other hyperparameters are fixed to their de-
fault values. The optimal setting is determined by
AUPRC on MIMIC-CXR and the decision thresh-
old for binary classification is set to a value repre-
senting precision 0.99 on the training set.

3.3 Experimental Results on datasets with
Synthesized Error

The performance of our proposed framework for
each dataset is shown in Table 1. Test results
on MIMIC-CXR and Open-I, which are machine-
synthesized datasets using our error generator,
showed very high scores in all metrics including
the area under precision recall curve (AUPRC) and
the area under the ROC curve (AUROC). Show-
ing these results even without training on Open-I,
which is collected from a completely different hos-
pital, means that the proposed framework has high
generalizability to unseen data. A domain adapta-
tion strategy can be attempted to further improve
performance on the external dataset, and the exper-
imental results are provided in Appendix B.

Experimental results on the radiologist-
synthesized dataset also showed a significant level
of performance. This means that the proposed
framework that learns from errors generated by the
error generator is highly applicable to real-world
data. According to the experimental results, it is
expected that the proposed model can detect 63%
of all reports with errors with 87% of precision in
the actual field. As shown in the precision-recall
curve in Appendix A, Figure 3 and Figure 4,
precision and recall can be set to an appropriate
level by adjusting the decision threshold. Recall by
each type of error with different precision criterion
is also provided in Appendix A, Table 7.

3.4 Human Evaluation of RRED

To evaluate the practical ability of the proposed
framework detecting actual errors in real world
dataset, the trained model was inferred to the entire
original MIMIC-CXR and the results are evaluated.
As a result of inference, it is predicted that errors
exist in 408 reports, which is 0.44% of the 93,544
reports. For 100 randomly selected cases, a board-
certified radiologist was asked to answer ‘Yes’/’No’
to the following questions:

1. Question 1: There is an error between the
findings and the conclusion.

2. Question 2: Among those where the answer
to Question 1 is ‘Yes’, factual error that is not
appropriate for findings, exists in conclusion.
(e.g., discrepancies in laterality, numbers and
the existence of unreported facts.)

3. Question 3: Among those where the answer
to Question 1 is ‘Yes’, interpretive error that
is not appropriate for findings, exists in con-
clusion. (e.g., faulty reasoning, missing im-
portant interpretation.)

The percentages of ‘Yes’ for the three questions
are shown in Table 2. It can be seen that the ac-
tual error rate is 81% for the 100 selected cases,
which is fairly consistent with the evaluation result
on radiology-synthesized data showing about 87%
of precision. In addition, it is observed that about
73% of the detected errors are factual errors, about
65% are interpretive errors and 31% are both. The
detected examples of report with errors in MIMIC-
CXR is shown in Table 3. Through this human
evaluation result, we can expect that the proposed
framework can be effectively applied in real radiol-
ogy practice to detect factual errors and interpretive
errors.

3.5 Effect of Medical Knowledge-enhancing
Pre-training

Three experiments are performed to verify the ef-
fectiveness of the proposed Medical Knowledge-
enhancing Pre-training (MKP) in various aspects.
Table 4 shows the mean performance improvement
by MKP for each dataset. The improvement for
the machine-synthesized datasets (MIMIC-CXR,
Open-I, and Open-I*) seem to be marginal as they
are already scoring close to 1.0, but they show
a consistent improvement for most metrics. For
radiologist-synthesized dataset, the performance
gains are more noticeable. Table 5 shows that the
level of recall for types 1-A and 1-D, which are
interpretive errors, increased. These observations
suggest that MKP gives the model a higher level of
understanding of medical context and knowledge,
allowing the model to detect more complex types
of errors.

Table 6 is the ablation result showing the perfor-
mance change when each component is excluded
from MKP. We can see that the masking strategy
on medical abbreviations and phases is highly use-
ful. When compared to the result of MLM only, it
pushes the AUPRC score from 0.773 to 0.798 on

46



AUPRC AUROC Precision(ppv) Recall(sensitivity) Specificity Accuracy
MIMIC-CXR 0.998 (0.00) 0.998 (0.00) 0.992 (0.00) 0.964 (0.00) 0.993 (0.00) 0.979 (0.00)

Open-I 0.993 (0.00) 0.994 (0.00) 0.986 (0.00) 0.935 (0.01) 0.988 (0.00) 0.963 (0.00)
Radi-synth* 0.798 (0.03) 0.950 (0.02) 0.870 (0.05) 0.633 (0.03) 0.994 (0.00) 0.974 (0.00)

Table 1: Performance on MIMIC-CXR, Open-I and our Radiologist-synthesized dataset(*). These are the mean
performance and its standard deviation from 10 random bootstrap experiments. Since there are no other studies to
compare the performance, we only showed the performance of the proposed model without the baseline.

Percentage of ‘Yes’
Question 1 81.00
Question 2 72.84
Question 3 65.43

Question 2 & 3 31.00

Table 2: Quality of RRED assessed by a board-certified
radiologist evaluator.

radiology-synthesized dataset. In particular, when
the phrase masking is excluded, the performance is
significantly reduced(AUPRC 0.798→0.769) show-
ing that knowledge integration for phrases can pro-
vide significant understanding ability. Finally, the
MLM on radiology report also seems to have an
important effect on improving the overall under-
standing of the report itself.

4 Discussion

Through the evaluation of RRED, we mainly focus
on precision rather than recall. This is because this
study aims to develop a practical and reliable error
detector that can be used in daily practice with a
low false alarm rate. We believe that minor errors
are worth missing if the alarm can provide a strong
guarantee of actual errors to the radiologists.

Despite the fact that the experimental results
show notable effectiveness of our approach, there
are some limitations. First, the types of errors that
have been implemented and experimented with,
do not represent the entire scope of radiology re-
port errors. While interpretive and factual errors
are critical in the process of diagnosis, expanding
the type of errors would be beneficial to reflect
real-life errors in radiology practice. Second, the
error generator relies on simple random swapping
to generate interpretive errors. Although the exper-
imental results show how this method is effective
in large dataset like MIMIC-CXR, it is evident that
this does not fully reflect the true nature of the real-
life interpretive error. If the error generator can
improve its’ ability to imitate the behavior of radi-
ologists, the error detector is expected to capture

complex interpretive errors more precisely.

5 Conclusion

In this paper, we present RRED, a Radiology
Report Error Detector based on a rich understand-
ing of context and medical knowledge with super-
vised deep learning framework. We also propose a
error generator for generating synthetic report data
with errors to train the detector model. Through
various types of evaluations, we showed that our
framework can be effectively applied to real world
data to detect errors that could cause inappropriate
or delayed diagnosis. We also showed the signifi-
cant effects of the MKP which is a proposed pre-
training task to integrate medical knowledge into
pre-training language model.

To the best of our knowledge, this is the first
work proposing PLM based error detection model
for radiology reports. In future works, we plan to
develop RRED2.0 with improved error generator
and detector: 1) We will investigate more system-
atic approaches to generate a broader range of er-
rors in radiology reports, in an effort to expand and
improve the usability of the radiology report error
detector. 2) We will expand this work to develop
a vision-language error detector that can detect er-
rors also in the findings section which is intended
to record findings when reading radiographs.

We expect this work to become a practical fool-
proof system that can reduce critical errors in radi-
ology reports to improve the quality of radiology
reporting process and further, the entire diagnosis
process.
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Error Type Findings Conclusion

Factual The cardiomediastinal and hilar contours are
stable. There has been interval increase in the
right pleural effusion with a rounded contour
concerning for loculation. There is no left
pleural effusion. There is no pneumothorax.
There is no focal consolidation concerning for
pneumonia. Pulmonary vasculature is within
normal limits.

Enlarged left pleural effusion,
now possibly loculated.

Interpretive A portable frontal chest radiograph shows the
large left lower lobe mass seen on recent CT
chest. New opacity adjacent to the aortic knob
could represent pneumonia or fluid tracking
up into the fissure. There is no appreciable
pleural effusion or pneumothorax. The visual-
ized upper abdomen is unremarkable.

Possible small left upper lobe
pneumonia or pleural effusion
extending into the major fissure.
Large left lung mass, less likely
malignant.

Both Elevation of the left hemidiaphragm is new
since prior exams, with minimal adjacent
relaxation atelectasis of the left lower lobe.
The cardiomediastinal contours are within nor-
mal limits. The bilateral hila are unremarkable.
The lungs are clear without focal consolidation.
There is no evidence of pulmonary vascular
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New right hemidiaphragmatic
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right hemidiaphragm function.
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monary process.

Table 3: Examples of actual errors detected in MIMIC-CXR by RRED. We can see that the error actually exists in
the highlighted area for each error type. In the example of factual error, the location is described differently. In the
example of interpretive error, the mass of the left lung is overestimated as less malignant. In the last example, there
is not only a discrepancy of location, but also the important information of the findings is over-summarized.

AUPRC AUROC Precision(ppv) Recall(sensitivity) Specificity Accuracy
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Table 4: Mean performance improvement by Medical Knowledge-enhancing Pre-training for each dataset and
p-values of paired t-test. Open-I* indicates the performance of RRED tested after domain adaptation on the Open-I.

1-A 1-B 1-C 1-D 2-A 2-B 3 Total
w/o MKP 0.20 0.55 0.65 0.50 0.81 0.20 0.00 0.50
w/ MKP 0.50 0.55 0.70 0.75 0.81 0.60 0.2 0.64

Table 5: Comparison of recall for each type of error between models with and without MKP.
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AUPRC AUROC Precision(ppv) Recall(sensitivity) Specificity Accuracy
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Table 6: Ablation results of Medical Knowledge-enhancing Pre-training (MKP). These are the mean performance and
its standard deviation from 10 random bootstrap experiments on Radiologist-synthesized Dataset. � Abbreviation
& Phrase * indicates the case where only MLM is considered.
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A Appendix

Figure 3 and Figure 4 shows the Precision-Recall
curve and ROC curve on Radiologist-synthesized
dataset, respectively.

Figure 3: Precision-Recall curve on Radiologist-
synthesized dataset

Figure 4: ROC curve on Radiologist-synthesized dataset

Table 7 shows that, even with an precision of 1.0,
about 31% of errors can be detected, which means
that a certain amount of errors can be detected even
with a false-alarm rate close to zero in the real
world. When precision is set to 0.96, the recall
for factual error (type 2) rises remarkably. Also,
the recall of interpretive error (type 1) is increased
when it is set to 0.8 to 0.9. The recommended
precision settings for a false alarm rate is around
0.96, and for a better detection of interpretive errors
is around 0.8 to 0.9.

B Appendix

Table 8 shows the experimental results regarding
the effectiveness of the domain adaptation strat-
egy that can ideally improve the performance on
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Precision(ppv) 1-A 1-B 1-C 1-D 2-A 2-B 3 Total
1 0.1 0.35 0.5 0.35 0.38 0.2 0 0.31

0.96 0.1 0.35 0.55 0.4 0.71 0.6 0 0.41
0.9 0.35 0.5 0.65 0.6 0.81 0.6 0 0.56
0.8 0.55 0.6 0.7 0.8 0.86 0.6 0.2 0.68

Table 7: Recall by error type with different precision criterion

AUPRC AUROC Precision(ppv) Recall(sensitivity) Specificity Accuracy

Domain Adaptation X 0.993 (0.00) 0.994 (0.00) 0.986 (0.00) 0.935 (0.01) 0.988 (0.00) 0.963 (0.00)

Domain Adaptation O 0.997 (0.00) 0.998 (0.00) 0.994 (0.00) 0.944 (0.00) 0.995 (0.00) 0.970 (0.00)

Difference
(P Value of paired t-test) 0.004 (<.001) 0.004 (<.001) 0.008 (<.001) 0.009 (<.001) 0.007 (<.001) 0.008 (<.001)

Table 8: Performance increase by domain adaptation on Open-I dataset

external dataset. For domain adaptation, 1 epoch
training is performed on 500 reports of Open-I after
fine-tuning on MIMIC-CXR. Even with this light
training, a statistically significant level of consis-
tent performance improvement is observed for all
metrics. Therefore, when applying the proposed
framework to the real life scenarios, performance
improvement can be expected if domain adaptation
is performed with synthetic data generated by the
error generator.

C Appendix

Table 9 provides some examples of errors generated
by the error generator using MIMIC-CXR.
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Abstract

In this work, cross-linguistic span prediction
based on contextualized word embedding mod-
els is used together with neural machine trans-
lation (NMT) to transfer and apply the state-
of-the-art models in natural language process-
ing (NLP) to a low-resource language clinical
corpus. Two directions are evaluated: (a) En-
glish models can be applied to translated texts
to subsequently transfer the predicted annota-
tions to the source language and (b) existing
high-quality annotations can be transferred be-
yond translation and then used to train NLP
models in the target language. Effectiveness
and loss of transmission is evaluated using
the German Berlin-Tübingen-Oncology Cor-
pus (BRONCO) dataset with transferred exter-
nal data from NCBI disease, SemEval-2013
drug-drug interaction (DDI) and i2b2/VA 2010
data. The use of English models for translated
clinical texts has always involved attempts to
take full advantage of the benefits associated
with them (large pre-trained biomedical word
embeddings). To improve advances in this area,
we provide a general-purpose pipeline to trans-
fer any annotated BRAT or CoNLL format to
various target languages. For the entity class
medication, good results were obtained with
0.806 F1-score after re-alignment. Limited
success occurred in the diagnosis and treatment
class with results just below 0.5 F1-score due
to differences in annotation guidelines.

1 Introduction

Clinical texts contain many important buried in-
formation that can be accessed through natural
language processing (NLP). Systematic analysis
of this vast amount of data can improve clinical

care and aid in decision making. There are many
other applications already in use, such as cohort
selection, pharmacovigilance, and quality reporting
(Spasić et al., 2020). Clinical text is often available
as unstructured texts: Retrospective analysis there-
fore involves an enormous amount of work (Wu
et al., 2019). By using NLP, biomedical concepts
can be extracted and processed using named entity
recognition (NER), allowing large amounts of text
on specific topics of interest to be retrospectively
analyzed. While biomedical text is intended for
publications, clinical text is written by and aimed
at health care professionals. They are written un-
der time pressure and are heterogeneous in terms
of abbreviations, omission of words, and medical
jargon to keep information density high (Leaman
et al., 2015).

Compared to English texts, the processing of
non-English clinical texts by NLP is far from what
is actually possible by the current state-of-the-art
(Névéol et al., 2018; Schneider et al., 2020). This
is due to the fact that in the U.S., Health Insurance
Portability and Accountability (HIPAA) clearly reg-
ulates which 18 different identifiers of protected
health information (PHI) must be removed in or-
der for a document to be considered anonymized,
creating many facilitators for de-identification of
clinical texts (Yogarajan et al., 2020; Ahmed et al.,
2020). Based on these rules, large clinical datasets
such as Medical Information Mart for Intensive
Care III (MIMIC-III) (Johnson et al., 2016) and
shared tasks with high-quality annotations have
been published, resulting in research and tools for
processing English clinical texts being widely de-
veloped.
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With regard to the availability of NLP tools for
other languages, there are major differences, for
example in the processing of German clinical texts:
Anonymization is left to individual institutions,
data protection officers, and ethics committees,
which means that there are no uniform regulations.
The state-of-the-art for German texts lags behind
and, despite great efforts (Hahn et al., 2018), contin-
ues to be limited to rule-based systems (Roller et al.,
2020) or is often based on in-house data (Richter-
Pechanski et al., 2021), which means that neither
the data nor the trained models can be shared (Car-
lini et al., 2021). Freely available large anonymized
datasets with high-quality annotated German clini-
cal texts are therefore non-existent.

In order to bridge this gap, this work provides
a general-purpose pipeline to transfer annotated
datasets in BRAT or CoNLL format to various
target languages1. Approaches based on neural
machine translation (NMT) have recently been ap-
plied to NER tasks (Xie et al., 2018; Mayhew et al.,
2017; Yan et al., 2021). Improved translation qual-
ity through advances in neural machine translation
(Ng et al., 2019; Tran et al., 2021) have reached a
level that allows the transfer of predictions or an-
notated data in combination with word alignments
(Jalili Sabet et al., 2020; Dou and Neubig, 2021) to
other languages.

In this work, the Berlin-Tübingen-Oncology Cor-
pus (BRONCO) (Kittner et al., 2021) is used and
treated as a zero-resource dataset, for which En-
glish models and external biomedical and clinical
datasets are used instead. The aim is to evaluate
whether low-resource languages can benefit from
the available English resources. The methodol-
ogy of this work can be applied to other clinical
datasets and languages, as word alignment with
contextualized embeddings through multilingual
BERT (Devlin et al., 2019) covers 104 languages.
Accordingly, multilingual models are available for
translation, e.g., the mBART (Tang et al., 2021)
many-to-many model covers 50 languages.

2 Data

The BRONCO corpus (Kittner et al., 2021) is the
first small, fully anonymized dataset for German
clinical texts, that can be accessed via a data usage
agreement form request. The dataset contains 200
discharge reports of hepatocellular carcinoma and

1https://github.com/0xhesch/
CLAT-cross-lingual-annotation-transfer

Table 1: Berlin-Tübingen-Oncology Corpus
(BRONCO) descriptive statistics.

Entity BRONCO 150 BRONCO 50 Total
Diagnosis 4,080 1,165 5,245
Treatment 3,050 816 3,866
Medication 1,630 383 2,013
Total 8,760 2,364 11,124
No. of Documents 150 50 200
No. of Sentences 8,976 2,458 11,434
No. of Tokens 70,572 19,370 89,942

melanoma, with 50 reports retained by the authors
as independent test data. Due to strict data pro-
tection regulations and to make de-anonymization
more difficult, the discharge summaries were shuf-
fled into sentences so that the clinical context is
only preserved at sentence level. It includes three
annotated entity classes: diagnosis, medication and
treatment (see Table 1). According to Kittner et al.
(2021) the annotation process was performed by 2
groups of annotators, group A (2 medical experts)
and group B (3 medical experts and 3 medical stu-
dents). Conflicting annotations were resolved in
the final version of BRONCO.

For the 3 entity classes in BRONCO, 3 exist-
ing English external datasets are used. In order to
use external data, the underlying documents and
annotation guidelines should match if possible.

2.1 Medication

To fine-tune models for recognizing medication en-
tities in BRONCO, the SemEval-2013 drug-drug
interaction (DDI) (Segura-Bedmar et al., 2011) cor-
pus will serve as an external English resource. The
corpus is semantically annotated and contains doc-
uments describing drug-drug interactions from the
DrugBank database and MEDLINE, and includes
annotated medication text-spans. It is the only
corpus that covers both generic names and brand
names.

2.2 Diagnosis

The BRONCO entity class diagnosis is defined by
the annotation guidelines as a disease, symptom or
medical observation that can be matched with the
German modification of the International Classifi-
cation of Diseases (ICD-10). The NCBI disease
corpus (Doğan et al., 2014) is used for this purpose,
although it differs in terms of document style and
annotation guidelines.
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Patient management may need to be altered during the postobstructive phase of urinary tract     obstruction .

Möglicherweise muss das Patientenmanagement während der postobstruktiven Phase der Harnwegsblockade geändert werden .

B-Disease I-Disease I-Disease       

B-Disease                    

English

German

Figure 1: Behaviour of words in relation to the translated target language (here German). There are considerable
differences in sentence structure, number of words and required word count for the description of a single medical
term. The source to target token positions are to be resolved by word alignment systems to transfer annotations
across languages.

Table 2: The table shows a sentence in BIO format from
the NCBI dataset, translated into German along with the
aligned annotation of the tokens.

Identification O Identifizierung O
of O von O
APC2 O APC2 O
, O , O
a O einem O
homologue O Homologen O
of O des O
the O Tumorsuppressors B-Disease
adenomatous B-Disease der O
polyposis I-Disease adenomatösen B-Disease
coli I-Disease Polyposis I-Disease
tumour I-Disease coli I-Disease
suppressor O . O
. O

2.3 Treatment
Analogous to diagnosis, the BRONCO treatment
class is a diagnostic procedure, e.g., surgery or sys-
temic cancer treatment, found in the German Op-
erationen and Prozedurenschlüssel (OPS) coding
system. There is no exact match for this, although
the treatment class of the i2b2/VA 2010 challenge
data (Uzuner et al., 2011) shows overlapping an-
notation guidelines. Here, the treatment class also
comprises medications which has to be taken into
account in the methodology.

3 Methods

The experiments are divided into two parts. First,
the German clinical dataset is treated as a zero-
resource problem. This means that none of the an-
notated data is used to develop recognition models
for the three entity classes diagnosis, medication
and treatment. Instead, three existing English high-
quality annotated datasets as described in Section
2 are used to train on the entity classes. Inferences

are either made based on the translation and are
then retroactively aligned to the German text, or
models are fine-tuned on the translated form of
the English datasets and are directly applied to the
German clinical texts.

The second part focuses on the extent to which
English pre-trained biomedical language models
can be adapted for use in another language. For
this purpose, the German dataset is translated and
aligned in order to fine-tune large English pre-
trained biomedical transformer-based models. The
inference is then re-aligned to the German lan-
guage. This is compared to non-biomedical Ger-
man and cross-lingual transformer-based language
models. In this way, the loss due to translation
and subsequent alignment can be determined and
weighed against the benefits of large biomedical
language models that would not otherwise be avail-
able.

Based on current benchmarks (Ng et al., 2019;
Tran et al., 2021), the selection for translation mod-
els fell on the directional WMT 19 en ↔ de model
from Facebook AI Research (FAIR) as well as the
multilingual WMT 21 model that covers 7 different
languages. Since careful review of the translation
quality of some clinical texts did not reveal any
relevant deficiencies, the more resource-friendly
WMT 19 model was chosen. For the span align-
ment of the annotations, Simalign (Jalili Sabet et al.,
2020) is used without fine-tuning a parallel corpus.
The work of Jalili Sabet et al. (2020) has shown
that word alignments via contextualized embed-
dings from multilingual language models achieve
good results. Here, the Itermax algorithm is used
with contextualized word embeddings from multi-
lingual BERT (Devlin et al., 2019). Itermax aligns
two parallel sentences at token level with cosine-

55



similarity, where for each token the parallel vec-
tors co-represent the context of the token within
its sentence. Since for many sentences no mutual
argmaxes are available, the suggestion mentioned
by the authors to perform this process iteratively is
followed. This also allows for token of the source
language to be mapped to multiple token in the
target language. This seems reasonable for clinical
entities. For example, urinary tract obstruction is
merged to only one token Harnwegsblockade in the
German language (see Figure 1).

For fine-tuning language models, all experiments
use the hyperparameters as described in Table 6.
All experiments were conducted on an NVIDIA
V100 SXM2 GPU.

3.1 Zero-Resource

Here, two variants seem reasonable. First, datasets
with annotations can be translated from en → de
(forward-passed), thereby training models directly
in the target language. On the other hand, low-
resource language texts can be translated into En-
glish (de → en) and the prediction subsequently
re-aligned (en → de) to the originating language
(backward-pass). Both variants are visualized as
detailed workflows in Figure 2 (forward-pass) and
Figure 3 (backward-pass).

3.1.1 Forward-Pass
For medication, the DDI corpus will be forward-
passed to predict medication mentions in German
text. The DrugBank, as well as the MEDLINE
portion of the dataset, are merged. Except for drugs
and brand names, all other entities are omitted. The
two entity classes drug and brand name are then
merged into a single medication entity class.

For diagnosis, the NCBI data is forward-passed.
The general process of translation and word align-
ment for this class is shown as an example in Fig-
ure 1. A sample sentence of the resulting translated
German NCBI corpus is shown in Table 2.

For treatment, the i2b2/VA 2010 challenge data
is forward-passed. The i2b2 annotation guidelines
state, that treatment also covers medication. Prior
to training the model on the treatment entity class,
drug predictions based on the DDI model that over-
lap with i2b2 treatment entities are therefore re-
moved.

3.1.2 Backward-Pass
For the backward-pass, the three external re-
sources are used untranslated to directly fine-

tune Bio_Discharge_Summary_BERT (Alsentzer
et al., 2019), a state-of-the-art biomedical language
model that was initialized with BioBERT (Lee
et al., 2019) and then further trained on discharge
summaries from MIMIC-III.

For prediction, the German BRONCO 150
dataset is then translated into English using FAIR’s
WMT 19 model de → en, without word alignments.
The inference on translated BRONCO 150 sen-
tences are then re-aligned with the original German
sentences.

3.2 Fine-Tuning

This experiment aims to determine the loss in-
curred by translation and re-alignment for named
entity recognition within the clinical domain and
uses a large pre-trained biomedical language model.
Note that this does require available annotations.
Since the initial baseline of the authors of the
BRONCO dataset does not include transformer-
based results, this experiment also covers cross-
lingual and German-specific pre-trained experi-
ments. At the same time, these experiments will
test whether non-biomedical models are suitable
for German clinical texts. For this purpose mBERT
(Devlin et al., 2019), GBERT (Chan et al., 2020),
GELECTRA (Chan et al., 2020) and XLM-R (Con-
neau et al., 2020) are used in the base, as well as in
the large versions if available.

To take advantage of English biomed-
ical pre-trained language models,
Bio_Discharge_Summary_BERT is used as
described in Figure 3 which means that the
inference takes place on the translation and the an-
notations are retroactively aligned. BRONCO 150
results are reported through 5-fold cross-validation.
For BRONCO 50 evaluation, the models are
trained on the full BRONCO 150 data. Results
on BRONCO 50 are reported independently by
the dataset authors. The evaluation is done by
providing the models, as well as the pipeline for
translation and retroactive alignments. Since the
evaluation on BRONCO 50 must be performed by
the curators, the range of models is limited here.

4 Results

4.1 Zero-Resource

The results based on the external data are reported
for all 3 entity classes to see if there are differences
between translating external datasets into the target
language or aligning the inference of the English
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Figure 2: Schematic workflow (forward-pass) to perform prediction for clinical data with few resources. Here, the
external English data is translated with annotations and then used to fine-tune cross-lingual language models for the
target language. Prediction is then directly applied to the target language.
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Figure 3: Schematic workflow (backward-pass) to perform prediction for clinical data with few resources. Models
trained on external English data are applied to the translation and the prediction is aligned retrospectively.
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Table 3: Forward- and backward-pass results on 3 entity classes for BRONCO 150 corpus through external data
sources. State denotes if the results were obtained before- or after re-alignment in backward-pass runs.

Target Entity Method State External Data Source Model Precision Recall F1

Medication

Forward-pass -

DDI Corpus

deepset/gbert-base 0.637 0.809 0.712
Forward-pass - deepset/gelectra-base 0.605 0.824 0.698
Forward-pass - deepset/gelectra-large 0.803 0.769 0.785
Forward-pass - bert-base-multilingual-cased 0.525 0.793 0.631
Forward-pass - xlm-roberta-base 0.600 0.816 0.692
Forward-pass - xlm-roberta-large 0.782 0.798 0.790
Backward-pass before re-alignment Bio_Discharge_Summary_BERT 0.745 0.729 0.737
Backward-pass after re-alignment Bio_Discharge_Summary_BERT 0.788 0.826 0.806

Diagnosis

Forward-pass -

NCBI-Disease Corpus

deepset/gbert-base 0.433 0.445 0.439
Forward-pass - deepset/gelectra-base 0.410 0.374 0.391
Forward-pass - deepset/gelectra-large 0.537 0.419 0.471
Forward-pass - bert-base-multilingual-cased 0.469 0.370 0.414
Forward-pass - xlm-roberta-base 0.482 0.354 0.408
Forward-pass - xlm-roberta-large 0.476 0.387 0.427
Backward-pass before re-alignment Bio_Discharge_Summary_BERT 0.502 0.378 0.431
Backward-pass after re-alignment Bio_Discharge_Summary_BERT 0.524 0.474 0.498

Treatment

Forward-pass -

i2b2/VA 2010

deepset/gbert-base 0.510 0.429 0.466
Forward-pass - deepset/gelectra-base 0.521 0.456 0.486
Forward-pass - deepset/gelectra-large 0.523 0.454 0.486
Forward-pass - bert-base-multilingual-cased 0.473 0.402 0.434
Forward-pass - xlm-roberta-base 0.504 0.411 0.453
Forward-pass - xlm-roberta-large 0.526 0.434 0.475
Backward-pass before re-alignment Bio_Discharge_Summary_BERT 0.476 0.387 0.427
Backward-pass after re-alignment Bio_Discharge_Summary_BERT 0.536 0.463 0.497

Table 4: Average results of 5-fold cross-validation for BRONCO 150 with reported standard deviation. † denotes
initial baseline results by Kittner et al. (2021).

Target Entity Model Precision Recall F1
CRF† 0.960 (0.008) 0.850 (0.020) 0.900 (0.009)
CRF+WE† 0.960 (0.004) 0.840 (0.009) 0.900 (0.006)
LSTM† 0.910 (0.050) 0.860 (0.030) 0.880 (0.020)
LSTM+WE† 0.960 (0.020) 0.870 (0.060) 0.910 (0.040)

Medication
deepset/gbert-base 0.923 (0.019) 0.935 (0.016) 0.929 (0.012)
deepset/gbert-large 0.929 (0.027) 0.941 (0.018) 0.935 (0.011)
deepset/gelectra-base 0.850 (0.011) 0.912 (0.013) 0.880 (0.012)
deepset/gelectra-large 0.951 (0.006) 0.956 (0.018) 0.954 (0.008)
bert-base-multilingual-cased 0.926 (0.024) 0.937 (0.009) 0.931 (0.013)
xlm-roberta-base 0.923 (0.005) 0.932 (0.014) 0.927 (0.006)
xlm-roberta-large 0.929 (0.011) 0.941 (0.018) 0.935 (0.011)
CRF† 0.800 (0.010) 0.710 (0.020) 0.750 (0.020)
CRF+WE† 0.782 (0.006) 0.700 (0.020) 0.740 (0.010)
LSTM† 0.750 (0.030) 0.690 (0.030) 0.720 (0.010)
LSTM+WE† 0.810 (0.080) 0.740 (0.080) 0.770 (0.080)

Diagnosis
deepset/gbert-base 0.744 (0.012) 0.802 (0.020) 0.772 (0.016)
deepset/gbert-large 0.769 (0.009) 0.814 (0.015) 0.791 (0.008)
deepset/gelectra-base 0.692 (0.023) 0.773 (0.026) 0.730 (0.022)
deepset/gelectra-large 0.789 (0.008) 0.826 (0.013) 0.807 (0.008)
bert-base-multilingual-cased 0.740 (0.017) 0.797 (0.022) 0.768 (0.019)
xlm-roberta-base 0.728 (0.012) 0.792 (0.018) 0.759 (0.013)
xlm-roberta-large 0.767 (0.012) 0.815 (0.014) 0.790 (0.007)
CRF† 0.860 (0.020) 0.780 (0.010) 0.820 (0.010)
CRF+WE† 0.850 (0.020) 0.780 (0.010) 0.810 (0.010)
LSTM† 0.830 (0.040) 0.790 (0.030) 0.810 (0.020)
LSTM+WE† 0.850 (0.060) 0.820 (0.070) 0.840 (0.060)

Treatment
deepset/gbert-base 0.783 (0.009) 0.830 (0.012) 0.806 (0.009)
deepset/gbert-large 0.796 (0.023) 0.846 (0.019) 0.820 (0.020)
deepset/gelectra-base 0.678 (0.015) 0.791 (0.023) 0.730 (0.017)
deepset/gelectra-large 0.821 (0.009) 0.856 (0.011) 0.839 (0.010)
bert-base-multilingual-cased 0.783 (0.026) 0.839 (0.016) 0.810 (0.022)
xlm-roberta-base 0.753 (0.005) 0.825 (0.008) 0.788 (0.005)
xlm-roberta-large 0.821 (0.013) 0.857 (0.017) 0.839 (0.014)
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Table 5: Results for BRONCO 50. † denotes initial
baseline results by Kittner et al. (2021). * denotes that
the results are based on the translation and have been
re-aligned.

Target Entity Model Precision Recall F1

Medication

CRF† 0.940 0.870 0.900
CRF+WE† 0.950 0.850 0.900
LSTM† 0.950 0.850 0.890
LSTM+WE† 0.910 0.890 0.900
deepset/gbert-base 0.929 0.958 0.943
Bio_Discharge_Summary_BERT* 0.921 0.944 0.932

Diagnosis

CRF† 0.790 0.670 0.720
CRF+WE† 0.770 0.660 0.710
LSTM† 0.780 0.650 0.710
LSTM+WE† 0.790 0.650 0.720
deepset/gbert-base 0.792 0.772 0.782
Bio_Discharge_Summary_BERT* 0.661 0.689 0.675

Treatment

CRF† 0.830 0.730 0.780
CRF+WE† 0.810 0.730 0.760
LSTM† 0.850 0.690 0.760
LSTM+WE† 0.760 0.740 0.750
deepset/gbert-base 0.782 0.824 0.803
Bio_Discharge_Summary_BERT* 0.661 0.742 0.699

models. The results for the forward- and backward-
pass are shown in Table 3. For all classes, the
backward-pass resulted in better scores, although
the difference compared to the forward-pass is not
substantial. The results of the German and multi-
lingual models are comparable to the results before
the re-alignment step, i.e. on the BRONCO 150
translation. To estimate any loss that may occur
due to the translation quality of the WMT 19 en
↔ de model, the case-sensitive SacreBLEU score
(Post, 2018) on the re-translation of BRONCO150
is reported, which resulted in a score of 40.41. The
medication class achieved the best results after re-
alignment with 0.806 F1-score. The classes di-
agnosis and treatment both remained just below
0.5 F1-score, also after re-alignment. Aligning
the annotations back to German, increases recall in
particular, as e.g. in the case of medication by al-
most 0.1 F1-score. The forward-pass results show
that large models are superior. A general outperfor-
mance of German-specific language models over
multilingual language models is not present.

4.2 Fine-Tuning

Table 4 shows the 5-fold cross-validation results.
Here, the BRONCO 150 dataset was fine-tuned us-
ing multiple German transformer-based language
models and multilingual language models. In addi-
tion, the results are also compared to those reported
in (Kittner et al., 2021). For all target entities, all
transformer-based models except GELECTRAbase

outperformed the models used by Kittner et al.
(2021) and achieved a better F1-score. Although,
the Conditional Random Field (CRF) and Long

Short-Term Memory (LSTM) models reported bet-
ter precision for all classes, their recall scores were
outperformed with the transformer-based mod-
els. Overall, the large transformer-based models
achieved the highest scores, with GELECTRAlarge

performing the best and reaching an F1-score of
0.954 ± 0.008 for medication, 0.807 ± 0.008 for
diagnosis and 0.839 ± 0.010 for treatment. The
model was followed by XLM-Rlarge, which was
on par with GBERTlarge for all the target entities.
Altogether, the results show that large German-
specific language models perform the best, with
XLM-Rlarge being a strong multilingual language
model that can even compete with task language-
specific models.

The results achieved on the BRONCO 50 dataset
show similar findings, where the German-specific
language model GBERTbase reached the best F1-
score for all classes. Furthermore, the result
achieved through translation and alignment was
superior to the models reported in (Kittner et al.,
2021) for medication, but these models were not as
successful for the classes diagnosis and treatment.

5 Discussion

In the zero-resource setting, there is an advantage
in the backward-pass approach over the forward-
pass models. Good results could only be achieved
for the medication class, but this is not necessar-
ily due to translation and word alignment, but to
the nature of the data. For the diagnosis and treat-
ment class, there is no equivalent English dataset
that fully matches the annotation guidelines of the
German clinical text. The medication class seems
unproblematic in that medication terms are more
easily aligned, one-to-many token constellations
due to translation are rare, and medications are
often represented similarly in both languages. Nev-
ertheless, the underlying sentence structure is fun-
damentally different between English and German,
which means that the transfer of the results can
be considered successful. Further limitations are
discussed in Section 6.

These assumptions are also supported by the fine-
tuning results, which show that although translation
and alignment result in a loss, it is still competitive
compared to the initial baseline. Only in the com-
parison with multilingual and German transformer
architectures the disadvantage becomes clear. Pro-
vided that annotations are available, a general ad-
vantage of English biomedical models over non-
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Table 6: Hyperparameters used for fine-tuning
transformer-based models on external data and
BRONCO 150.

Hyperparameter Value
Batch size 64 (16 for large models)
Epochs 4
Manual seed 42
Learning rate 4e-5
Max sequence length 512
Optimizer AdamW (Loshchilov and Hutter, 2019)
Adam epsilon 1e-8

domain language models on German clinical texts
can therefore not be confirmed.

6 Conclusion and Future Work

The results of this work show that English lan-
guage models can in principle be applied to other
languages in clinical contexts. Translated training
data can serve as a good basis and approach for
languages where there are otherwise no resources.
In a zero-resource scenario, the approach is lim-
ited to the extent that it works for data where the
documents and annotation guidelines match across
languages. Cross-linguistic differences in the avail-
able standards that annotators work with also play
a limiting role here. BRONCO corpus is based
on German ICD-10 and German OPS standards,
which is also reflected in the annotation guidelines,
making it difficult to apply external data.

Transfer in the clinical setting was evaluated
with only one language pair (en ↔ de). Success
with other language pairs depends not only on the
annotation standard, but also on the similarity of
the languages (grammar and morphology). Trans-
fer can only succeed if the quality of translation
and word alignment is sufficient, which can be ex-
pected between Indo-European languages, but can
be much more difficult when transferring between
language families.

Practical applications on other low-resource lan-
guages is left for future work. It would be inter-
esting to see the effect of adding a few annotated
samples to the external data. In this context, zero-
shot and few-shot approaches would be a useful
addition as a comparator. For comparison, it would
also be helpful to have a non-alignment baseline
that is fine-tuned to English data and directly infers
German test data.
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Abstract
Decision support systems based on clinical
notes have the potential to improve patient care
by pointing doctors towards overseen risks. Pre-
dicting a patient’s outcome is an essential part
of such systems, for which the use of deep
neural networks has shown promising results.
However, the patterns learned by these net-
works are mostly opaque and previous work
revealed both reproduction of systemic biases
and unexpected behavior for out-of-distribution
patients. For application in clinical practice it is
crucial to be aware of such behavior. We thus
introduce a testing framework that evaluates
clinical models regarding certain changes in
the input. The framework helps to understand
learned patterns and their influence on model
decisions. In this work, we apply it to analyse
the change in behavior with regard to the pa-
tient characteristics gender, age and ethnicity.
Our evaluation of three current clinical NLP
models demonstrates the concrete effects of
these characteristics on the models’ decisions.
They show that model behavior varies drasti-
cally even when fine-tuned on the same data
with similar AUROC score. These results ex-
emplify the need for a broader communication
of model behavior in the clinical domain.

1 Introduction

Outcome prediction from clinical notes. The
use of automatic systems in the medical domain is
promising due to their potential exposure to large
amounts of data from earlier patients. This data can
include information that helps doctors make better
decisions regarding diagnoses and treatments of a
patient at hand. Outcome prediction models take
patient information as input and then output prob-
abilities for all considered outcomes (Choi et al.,
2018; Khadanga et al., 2019). We focus this work
on outcome models using natural language in the
form of clinical notes as an input, since they are a
common source of patient information and contain
a multitude of possible variables.

58yo man presents with stomach
pain and acute shortness of breath

58yo woman presents with stomach pain
and acute shortness of breath

58yo afro american man presents with
stomach pain and shortness of breath

58yo obese man presents with stomach
pain and shortness of breath

Predicted
Mortality Risk

Predicted
Diagnoses i.a.

86yo man presents with stomach pain
and shortness of breath

Original sample

Artificially altered testing samples

49% ... esophagitis ...

44% ... anxiety ...

63% ... abuse of drugs ...

31% ... hypertension ...

84% ... heart failure ...

Figure 1: Minimal alterations to the patient description
can have a large impact on outcome predictions of clin-
ical NLP models. We introduce behavioral testing for
the clinical domain to expose these impacts.

The problem of black box models for clinical
predictions. Recent models show promising re-
sults on tasks such as mortality (Si and Roberts,
2019) and diagnosis prediction (Liu et al., 2018;
Choi et al., 2018). However, since most of these
models work as black boxes, it is unclear which
features they consider important and how they in-
terpret certain patient characteristics. From earlier
work we know that highly parameterized models
are prone to emphasize systemic biases in the data
(Sun et al., 2019). Further, these models have high
potential to disadvantage minority groups as their
behavior towards out-of-distribution samples is of-
ten unpredictable. This behavior is especially dan-
gerous in the clinical domain, since it can lead to
underdiagnosis or inappropriate treatment (Straw,
2020). Thus, understanding models and allocative
harms they might cause (Barocas et al., 2017) is
an essential prerequisite for their application in
clinical practice. We argue that more in-depth eval-
uations are needed to know whether models have
learned medically meaningful patterns or not.

Behavioral testing for the clinical domain. As
a step towards this goal, we introduce a novel test-
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ing framework specifically for the clinical domain
that enables us to examine the influence of certain
patient characteristics on the model predictions.
Our work is motivated by behavioral testing frame-
works for general Natural Language Processing
(NLP) tasks (Ribeiro et al., 2020) in which model
behavior is observed under changing input data.
Our framework incorporates a number of test cases
and is further extendable to the needs of individual
data sets and clinical tasks.

Influence of patient characteristics. As an ini-
tial case study we apply the framework to analyse
the behavior of models trained on the widely used
MIMIC-III database (Johnson et al., 2016). We
analyse how sensitive these models are towards
textual indicators of patient characteristics, such as
age, gender and ethnicity, in English clinical notes.
These characteristics are known to be affected by
discrimination in health care (Stangl et al., 2019),
on the other hand, they can represent important risk
factors for certain diseases or conditions. That is
why we consider it especially important to under-
stand how these mentions affect model decisions.

Contributions. In summary, we present the fol-
lowing contributions in this work:
1) We introduce a behavioral testing framework
specifically for clinical NLP models. We release
the code for applying and extending the frame-
work1 to enable in-depth evaluations.
2) We present an analysis on the patient character-
istics gender, age and ethnicity to understand the
sensitivity of models towards textual cues regard-
ing these groups and whether their predictions are
medically plausible.
3) We show results of three state-of-the-art clinical
NLP models and find that model behavior strongly
varies depending on the applied pre-training. We
further show that highly optimised models tend to
overestimate the effect of certain patient character-
istics leading to potentially harmful behavior.

2 Related Work

2.1 Clinical Outcome Prediction
Outcome prediction from clinical text has been
studied regarding a variety of outcomes. The most
prevalent being in-hospital mortality (Ghassemi
et al., 2014; Jo et al., 2017; Suresh et al., 2018; Si
and Roberts, 2019), diagnosis prediction (Tao et al.,

1URL: https://github.com/bvanaken/
clinical-behavioral-testing

2019; Liu et al., 2018, 2019a) and phenotyping
(Liu et al., 2019b; Jain et al., 2019; Oleynik et al.,
2019; Pfaff et al., 2020). In recent years, most
approaches are based on deep neural networks due
to their ability to outperform earlier methods in
most settings. Most recently, Transformer-based
models have been applied for prediction of patient
outcomes with reported increases in performance
(Huang et al., 2019; Zhang et al., 2020a; Tuzhilin,
2020; Zhao et al., 2021; van Aken et al., 2021;
Rasmy et al., 2021). In this work we analyse three
Transformer-based models due to their upcoming
prevalence in the application of NLP in health care.

2.2 Behavioral Testing in NLP
Ribeiro et al. (2020) identify shortcomings of com-
mon model evaluation on held-out datasets, such as
the occurrence of the same biases in both training
and test set and the lack of broad testing scenarios
in the held-out set. To mitigate these problems,
they introduce CHECKLIST, a behavioral testing
framework for general NLP abilities. In partic-
ular, they highlight that such frameworks evalu-
ate input-output behavior without any knowledge
of internal structures of a system (Beizer, 1995).
Building upon CHECKLIST, Röttger et al. (2021)
introduce a behavioral testing suite for the domain
of hate speech detection to address the individual
challenges of the task. Following their work, we
create a behavioral testing framework for the do-
main of clinical outcome prediction, that comprise
idiosyncratic data and respective challenges.

2.3 Analysing Clinical NLP Models
Zhang et al. (2020b) highlight the reproduction of
systemic biases in clinical NLP models. They quan-
tify such biases with the recall gap among patient
groups and show that models trained on data from
MIMIC-III inherit biases regarding gender, ethnic-
ity, and insurance status–leading to higher recall
values for majority groups. Log’e et al. (2021) fur-
ther find disparities in pain treatment suggestions
by language models for different races and genders.
We take these findings as motivation to directly
analyse the sensitivity of large pre-trained models
with regard to patient characteristics. In contrast
to earlier work and following Ribeiro et al. (2020),
we want to eliminate the influence of existing data
labels on our evaluation. Further, our approach
simulates patient cases that are similar to real-life
occurrences. It thus displays the actual impact of
learned patterns on all analysed patient groups.
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TEST SET

...year old characteristic B patient ...

characteristic C

characteristic A

MODIFICATION OF ALL SAMPLES
INTO TEST GROUPS

ANALYSIS OF 
CHANGE IN
PREDICTIONS 
PER TEST GROUPM

O
D

EL

0.1

0.4

0.2

Figure 2: Behavioral testing framework for the clinical domain. Schematic overview of the introduced framework.
From an existing test set we create test groups by altering specific tokens in the clinical note. We then analyse the
change in predictions which reveals the impact of the mention on the clinical NLP model.

3 Behavioral Testing of Clinical NLP
Models

Sample alterations. Our goal is to examine how
clinical NLP models react to mentions of certain
patient characteristics in text. Comparable to ear-
lier approaches to behavioral testing we use sample
alterations to artificially create different test groups.
In our case, a test group is defined by one manifes-
tation of a patient characteristic, such as female as
the patient’s gender. To ensure that we only mea-
sure the influence of this certain characteristic, we
keep the rest of the patient case unchanged and ap-
ply the alterations to all samples in our test dataset.
Depending on the original sample, the operations
to create a certain test group thus include 1) chang-
ing a mention, 2) adding a mention or 3) keeping a
mention unchanged (in case of a patient case that
is already part of the test group at hand). This re-
sults in one newly created dataset per test group, all
based on the same patient cases and only different
in the patient characteristic under investigation.

Prediction analysis. After creating the test
groups, we collect the models’ predictions for all
cases in each test group. Different from earlier
approaches to behavioral testing we do not test
whether predictions on the altered samples are true
or false with regard to the ground truth. As van
Aken et al. (2021) pointed out, clinical ground
truth must be viewed critically, because the col-
lected data does only show one possible pathway
for a patient out of many. Further, existing biases
in treatments and diagnoses are likely included in
our testing data potentially leading to meaningless
results. To prevent that, we instead focus on de-
tecting how the model outputs change regardless
of the original annotations. This way we can also
evaluate very rare mentions (e.g. transgender) and
observe their impact on the model predictions reli-

ably. Figure 2 shows a schematic overview of the
functioning of the framework.

Extensibility. In this study, we use the introduced
framework to analyse model behavior with regard
to patient characteristics as described in 4.2. How-
ever, it can also be used to test other model behavior
like the ability to detect diagnoses when certain in-
dicators are present in the text or the influence of
stigmatizing language (cf. Goddu et al. (2018)). It
is further possible to combine certain patient groups
to test model behavior regarding intersectionality.
While such analyses are beyond the scope of this
paper, we include them in the published codebase
as an example for further extensions.

4 Case Study: Patient Characteristics

4.1 Data

We conduct our analysis on data from the MIMIC-
III database (Johnson et al., 2016). In particu-
lar we use the outcome prediction task setup by
van Aken et al. (2021). The classification task in-
cludes 48,745 English admission notes annotated
with the patients’ clinical outcomes at discharge.
We select the outcomes diagnoses at discharge
and in-hospital mortality for this analysis, since
they have the highest impact on patient care and
present a high potential to disadvantage certain pa-
tient groups. We use three models (see 4.3) trained
on the two admission to discharge tasks and con-
duct our analysis on the test set defined by the
authors with 9,829 samples.

4.2 Considered Patient Characteristics

We choose three characteristics for the analysis in
this work: Age, gender and ethnicity. While these
characteristics differ in their importance as clinical
risk factors, all of them are known to be subject
to biases and stigmas in health care (Stangl et al.,
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2019). Therefore, we want to test, whether the
analysed models have learned medically plausible
patterns or ones that might be harmful to certain
patient groups. We deliberately also include groups
that occur very rarely in the original dataset. We
want to understand the impact of imbalanced input
data especially on minority groups, since they are
already disadvantaged by the health care system
(Riley, 2012; Bulatao and Anderson, 2004).

When altering the samples in our test set, we uti-
lize the fact that patients are described in a mostly
consistent way in clinical notes. We collect all men-
tion variations from the training set used to describe
the different patient characteristics and alter the
samples accordingly in an automated setup. Details
regarding all applied variations can be found in the
public repository linked in 1.

Age. The age of a patient is a significant risk
factor for a number of clinical outcomes. Our
test includes all ages between 18 and 89 and the
[** Age over 90**] de-idenfitication label from
the MIMIC-III database. By analysing the model
behavior on changing age mentions we can get in-
sights on how the models interpret numbers, which
is considered challenging for current NLP models
(Wallace et al., 2019).

Gender. A patient’s gender is both a risk factor
for certain diseases and also subject to unintended
biases in healthcare. We test the model’s behavior
regarding gender by altering the gender mention
and by changing all pronouns in the clinical note.
In addition to female and male, we also consider
transgender as a gender test group in our study.
This group is extremely rare in clinical datasets like
MIMIC-III, but since approximately 1.4 million
people in the U.S. identify as transgender (Flores
et al., 2016), it is important to understand how
model predictions change when the characteristic
is present in a clinical note.

Ethnicity. The ethnicity of a patient is only occa-
sionally mentioned in clinical notes and its role in
medical decision-making is controversial, since it
can lead to disadvantages in patient care (Anderson
et al., 2001; Snipes et al., 2011). Earlier studies
have also shown that ethnicity in clinical notes is
often incorrectly assigned (Moscou et al., 2003).
We want to know how clinical NLP models inter-
pret the mention of ethnicity in a clinical note and
whether their behavior can cause unfair treatment.
We choose White, African American, Hispanic and

PubMedBERT CORe BioBERT

Diagnoses 83.75 83.54 82.81
Mortality 84.28 84.04 82.55

Table 1: Performance of three state-of-the-art models on
the tasks diagnoses (multi-label) and mortality predic-
tion (binary task) in % AUROC. PubMedBERT outper-
forms the other models in both tasks by a small margin.

Asian as ethnicity groups for our evaluation, as they
are the most frequent ethnicities in MIMIC-III.

4.3 Clinical NLP Models

In this study, we apply the introduced testing frame-
work to three existing clinical models which are
fine-tuned on the tasks of diagnosis and mortal-
ity prediction. We use public pre-trained model
checkpoints and fine-tune all models on the same
training data with the same hyperparameter setup2.
The models are based on the BERT architecture
(Devlin et al., 2019) as it presents the current state-
of-the-art in predicting patient outcomes. Their
performance on the two tasks is shown in Table
1. We deliberately choose three models based on
the same architecture to investigate the impact of
pre-training data while keeping architectural con-
siderations aside. In general the proposed testing
framework is model agnostic and works with any
type of text-based outcome prediction model.

BioBERT. Lee et al. (2020) introduced BioBERT
which is based on a pre-trained BERT Base (De-
vlin et al., 2019) checkpoint. They applied another
language model fine-tuning step using biomedical
articles from PubMed abstracts and full-text arti-
cles. BioBERT has shown improved performance
on both medical and clinical downstream tasks.

CORe. Clinical Outcome Representations
(CORe) by van Aken et al. (2021) are based on
BioBERT and extended with a pre-training step
that focuses on the prediction of patient outcomes.
The pre-training data includes clinical notes,
Wikipedia articles and case studies from PubMed.
The tokenization is similar to the BioBERT model.

PubMedBERT. Gu et al. (2020) recently intro-
duced PubMedBERT based on similar data as
BioBERT. They use PubMed articles and abstracts
but instead of extending a BERT Base model, they

2Batch size: 20; learning rate: 5e-05; dropout: 0.1;
warmup steps: 1000; early stopping patience: 20.

66



Figure 3: Influence of gender on predicted diagnoses. Blue: Predicted probability for diagnosis is below-average;
red: predicted probability above-average. PubMedBERT shows highest sensitivity to gender mention and regards
many diagnoses less likely if transgender is mentioned in the text. Graph shows deviation of probabilities on 24
most common diagnoses in test set.

Figure 4: Original distribution of diagnoses per gender
in MIMIC-III. Cell colors: Deviation from average prob-
ability. Numbers in parenthesis: Occurrences in the
training set. Most diagnoses occur less often in trans-
gender patients due to their very low sample count.

train PubMedBERT from scratch. The tokeniza-
tion is adjusted to the medical domain accordingly.
The model reaches state-of-the-art results on multi-
ple medical NLP tasks and outperforms the other
analysed models on the outcome prediction tasks.

5 Results

We present the results on all test cases by averaging
the probabilities that a model assigns to each test
sample. We then compare the averaged probabili-
ties across test cases to identify which characteris-
tics have a large impact on the model’s prediction
over the whole test set. The values per diagnosis
in the heatmaps shown in Figure 3, 4, 7 and 8 are
defined using the following formula:

ci = pi −
∑N

j pj

N
(1)

where ci is the value assigned to test group i, p
is the (predicted) probability for a given diagnosis
and N is the number of all test groups except i.

We choose this illustration based on the concept
of partial dependence plots (Friedman, 2001) to
highlight both positive and negative influence of
a characteristic on model behavior. Since all test
groups are based on the same patients and only dif-
fer regarding the characteristic at hand, even small
differences in the averaged predictions can point
towards general patterns that the model learned to
associate with a characteristic.

5.1 Influence of Gender

Transgender mention leads to lower mortal-
ity and diagnoses predictions. Table 2 shows
the mortality predictions of the three analysed
models with regard to the gender assigned in the
text. While the predicted mortality risk for female
and male patients lies within a small range, all
models predict the mortality risk of patients that
are described as transgender as lower than non-
transgender patients. This is probably due to the
relative young age of most transgender patients

PubMedBERT CORe BioBERT

Female 0.335 0.239 0.119
Male 0.333 0.245 0.121
Transgender 0.326 0.229 0.117

Table 2: Influence of gender on mortality predictions.
PubMedBERT assigns highest risk to female, the other
models to male patients. Notably, all models decrease
their mortality prediction for transgender patients.
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Figure 5: Influence of age on diagnosis predictions. The x-axis is the simulated age and the y-axis is the predicted
probability of a diagnosis. All models follow similar patterns with some diagnosis risks increasing with age and
some decreasing. The original training distributions (black dotted line) are mostly followed but attenuated.

in the MIMIC-III training data, but can be harm-
ful to older patients identifying as transgender at
inference time.

Sensitivity to gender mention varies per model.
Figure 3 shows the change in model prediction for
each diagnosis with regard to the gender mention.
The cells of the heatmap are the deviations from the
average score of the other test cases. Thus, a red
cell indicates that the model assigns a higher prob-
ability to a diagnosis for this gender group. We see
that PubMedBERT is highly sensitive to the change
of the patient gender, especially regarding transgen-
der patients. Except from few diagnoses such as
Cardiac dysrhythmias and Drug Use / Abuse, the
model predicts a lower probability to diseases if
the patient letter contains the transgender mention.
The CORe and BioBERT models are less sensitive
in this regard. The most salient deviation of the
BioBERT model is a drop in probability of Urinary
tract disorders for male patients, which is medi-
cally plausible due to anatomic differences (Tan
and Chlebicki, 2016).

Patterns in MIMIC-III training data are par-
tially inherited. In Figure 4 we show the original
distribution of diagnoses per gender in the training
data. Note that the deviations are about 10 times
larger than the ones produced by the model predic-
tions in Figure 3. This indicates that the models
take gender as a decision factor, but only among
others. Due to the very rare occurrence of trans-
gender mentions (only seven cases in the training

data), most diagnoses are underrepresented for this
group. This is partially reflected by the model pre-
dictions, especially by PubMedBERT, as described
above. Other salient patterns such as the prevalence
of Chronic ischemic heart disease in male patients
are only reproduced faintly by the models.

5.2 Influence of Age

Mortality risk is differently influenced by age.
Figure 6 shows the averaged predicted mortality
per age for all models and the actual distribution
from the training data (dotted line). We see that

0.0

0.1

0.2

0.3

0.4

0.5

18 26 34 42 50 58 66 74 82

[**A
ge over 90 **]

MIMIC-III training data BioBERT CORe PubMedBERT

Figure 6: Influence of age on mortality predictions. X-
axis: Simulated age; y-axis: predicted mortality risk.
The three models are differently calibrated and only
CORe is highly influenced by age.
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Figure 7: Influence of ethnicity on diagnosis predictions. Blue: Predicted probability for diagnosis is below-average;
red: predicted probability above-average. PubMedBERT’s predictions are highly influenced by ethnicity mentions,
while CORe and BioBERT show smaller deviations, but also disparities on specific groups.

Figure 8: Original distribution of diagnoses per
ethnicity in MIMIC-III. Cell colors: Deviation from av-
erage probability. Numbers in parenthesis: Occurrences
in the training set. Both the distribution of samples and
the occurrences of diagnoses are highly unbalanced in
the training set.

BioBERT does not take age into account when
predicting mortality risk except for patients over
90. PubMedBERT assigns a higher mortality risk
to all age groups with a small increase for patients
over 60 and an even steeper increase for patients
over 90. CORe follows the training data the most
while also inheriting peaks and troughs in the data.

Models are equally affected by age when pre-
dicting diagnoses. We exemplify the impact of
age on diagnosis prediction on eight outcome di-
agnoses in Figure 5. The dotted lines show the
distribution of the diagnosis within an age group
in the training data. The change of predictions re-
garding age are similar throughout the analysed
models with only small variations such as for Car-
diac dysrhythmias. Some diagnoses are regarded

more probable in older patients (e.g. Acute Kidney
Failure) and others in younger patients (e.g. Abuse
of drugs). The distributions per age group in the
training data are more extreme, but follow the same
tendencies as predicted by the models.

Peaks indicate lack of number understanding.
From earlier studies we know that BERT-based
models have difficulties dealing with numbers in
text (Wallace et al., 2019). The peaks that we ob-
serve in some predictions support this finding. For
instance, the models assign a higher risk of Cardiac
dysrhythmias to patients aged 73 than to patients
aged 74, because they do not capture that these are
consecutive ages. Therefore, the influence of age
on the predictions might solely be based on the
individual age tokens observed in the training data.

5.3 Influence of Ethnicity

Mention of any ethnicity decreases prediction of
mortality risk. Table 3 shows the mortality pre-
dictions when different ethnicities are mentioned
and when there is no mention. We observe that

PubMedBERT CORe BioBERT

No mention 0.333 0.243 0.120
White 0.329 0.235 0.119
African Amer. 0.329 0.239 0.116
Hispanic 0.331 0.237 0.118
Asian 0.330 0.238 0.118

Table 3: Influence of ethnicity on mortality predictions.
The mention of an ethnicity decreases the predicted
mortality risk. White and African American patients are
assigned with the lowest mortality risk (gray-shaded).
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the mention of any of the ethnicities leads to a de-
crease in mortality risk prediction in all models,
with White and African American patients receiv-
ing the lowest probabilities.

Diagnoses predicted by PubMedBERT are
highly sensitive to ethnicity mentions. Figure 7
depicts the influence of ethnicity mentions on the
three models. Notably, the predictions of PubMed-
BERT are strongly influenced by ethnicity men-
tions. Multiple diagnoses such as Chronic kidney
disease are more often predicted when there is no
mention of ethnicity, while diagnoses like Hyper-
tension and Abuse of drugs are regarded more likely
in African American patients and Unspecified ane-
mias in Hispanic patients. While the original train-
ing data in Figure 8 shows the same strong variance
among ethnicities, this is not inherited the same
way in the CORe and BioBERT models. However,
we can also observe deviations regarding ethnicity
in these models.

African American patients are assigned lower
risk of diagnoses by CORe and BioBERT.
The heatmaps showing predictions of CORe and
BioBERT reveal a potentially harmful pattern in
which the mention of African American in a clinical
note decreases the predictions for a large number
of diagnoses. This pattern is found more promi-
nently in the CORe model, but also in BioBERT.
Putting these models into clinical application could
result in fewer diagnostic tests to be ordered by
physicians and therefore lead to disadvantages in
the treatment of African American patients. This is
particularly critical as it would reinforce existing
biases in health care (Nelson, 2002).

6 Discussion

Model behaviors show large variance. The re-
sults described in 5 reveal large differences in the
influence of patient characteristics throughout mod-
els. The analysis shows that there is no overall
best model, but each model has learned both useful
patterns (e.g. age as a medical plausible risk factor)
and potentially dangerous ones (e.g. decreases in
diagnosis risks for minority groups). The large vari-
ance is surprising since the models have a shared
architecture and are fine-tuned on the same data–
they only differ in their pre-training. And while
the reported AUROC scores for the models (Table
1) are close to each other, the variance in learned
behavior show that we should consider in-depth

analyses a crucial part of model evaluation in the
clinical domain. This is especially important since
harmful patterns in clinical NLP models are often
fine-grained and difficult to detect.

Model scoring can obfuscate critical behavior.
The analysis has shown that PubMedBERT which
outperforms the other models in both mortality and
diagnosis prediction by AUROC show larger sen-
sitivity to mentions of gender and ethnicity in the
text. Many of them–like lower diagnosis risk as-
signment to African American patients–might lead
to undertreatment. This is alerting since it partic-
ularly affects minority groups which are already
disadvantaged by the health care system. It also
shows that instead of measuring clinical models
regarding rather abstract scores, looking at their po-
tential impact to patients should be further empha-
sized. To communicate model behavior to medical
professionals one possible direction could be to
use behavioral analysis results as a part of clinical
model cards as proposed by Mitchell et al. (2019).

Limitations of the proposed framework. Un-
like other behavioral testing setups (see 2.2), results
of our framework cannot be easily categorized into
correct and false behavior. While increased risk
allocations can be beneficial to a patient group due
to doctors running additional tests, they can also
lead to mistreatment or other diagnoses being over-
looked. Same holds for the influence of rare men-
tions, such as transgender: One could argue that
based on only seven occurrences in the training
set the characteristic should have less impact on
model decisions overall. However, some features
e.g. regarding rare diseases should be recognized as
important even if very infrequent. Since our mod-
els often lack such judgement, the decision about
which patient characteristic to consider a risk fac-
tor and their impact on outcome predictions is still
best made by medical professionals. Nevertheless,
decision support systems can be beneficial if their
behavior is transparently communicated. With this
framework we want to take a step towards improv-
ing this communication.

7 Conclusion

In this work, we introduced a behavioral testing
framework for the clinical domain to understand
the effects of textual variations on model predic-
tions. We apply this framework to three current
clinical NLP models to examine the impact of cer-
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tain patient characteristics. Our results show that
the models–even with very close AUROC scores–
have learned very different behavioral patterns,
some of them with high potential to disadvantage
minority groups. With this work, we want to em-
phasize the importance of model evaluation beyond
common metrics especially in sensitive areas like
health care. We recommend to use the results of
these evaluations for discussions with medical pro-
fessionals. Being aware of specific model behavior
and incorporating this knowledge into clinical de-
cision making is a crucial step towards safe deploy-
ment of such models. For future work we consider
iterative model fine-tuning with medical profes-
sionals in the loop a promising direction to teach
models which patterns to stick to and which ones
to discard.
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Abstract

Existing question answering (QA) datasets de-
rived from electronic health records (EHR)
are artificially generated and consequently
fail to capture realistic physician informa-
tion needs. We present Discharge Summary
Clinical Questions (DiSCQ), a newly curated
question dataset composed of 2,000+ ques-
tions paired with the snippets of text (triggers)
that prompted each question. The questions
are generated by medical experts from 100+
MIMIC-III discharge summaries. We analyze
this dataset to characterize the types of infor-
mation sought by medical experts. We also
train baseline models for trigger detection and
question generation (QG), paired with unsuper-
vised answer retrieval over EHRs. Our baseline
model is able to generate high quality questions
in over 62% of cases when prompted with hu-
man selected triggers. We release this dataset
(and all code to reproduce baseline model re-
sults) to facilitate further research into realistic
clinical QA and QG. 1

1 Introduction

Physicians often query electronic health records
(EHR) to make fully informed decisions about pa-
tient care (Demner-Fushman et al., 2009). How-
ever, D’Alessandro et al. (2004) found that it takes
an average of 8.3 minutes to answer a single ques-
tion, even when physicians are trained to retrieve
information from an EHR platform. Natural lan-
guage technologies such as automatic question an-
swering (QA) may partially address this problem.

There have been several dataset collection ef-
forts that aim to facilitate the training and evalua-
tion of clinical QA models (Pampari et al., 2018;
Yue et al., 2021; Raghavan et al., 2021; Kell et al.,
2021). However, template-based (Pampari et al.,
2018; Raghavan et al., 2021) and other kinds of
automated generation (Yue et al., 2021) methods

∗lehmer16@mit.edu
1https://github.com/elehman16/discq

 His past medical history is signi�cant for
prostate cancer, benign prostatic hypertrophy,
hypothyroidism, status post radiation for non
Hodgkin's lymphoma, chronic painless hematuria,
degenerative joint disease and history of a murmur.

prostate cancer, benign prostatic
hypertrophy 
Date of diagnosis? Any interventions done
(RT, surgery)?

hypothyroidism 
Maintenance medications?

(1)

(2)

Figure 1: Example of an annotated discharge summary
section. The highlighted portion shows the “trigger” for
the questions.

are by nature brittle and have limited evidence of
producing questions that medical professionals ask.

Datasets such as emrQA (Pampari et al., 2018)
and emrKBQA (Raghavan et al., 2021) attempt to
simulate physician queries by defining templates
derived from actual questions posed by physicians
and then performing slot-filling with clinical enti-
ties. This method yields questions that are struc-
turally realistic, but not consistently medically rele-
vant. Yue et al. (2020) found that sampling just 5%
of the emrQA questions was sufficient for training
a model. They further note that 96% of the ques-
tions in a subsection of emrQA contain key phrases
that overlap with those in the selected answer.

In follow-up work, Yue et al. (2021) provide
a new dataset of 975 questions generated using a
diverse question generation model with a human-in-
the-loop and 312 questions generated by medical
experts from scratch, with the caveat that they must
be answerable on the given discharge summary.
However, a random sample of 100 questions from
the former reveals that 96% of the 975 questions
were slot-filled templates directly from emrQA. A
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separate random sample of 100 questions from the
latter set reveals that 54% of the questions also use
the same slot-filled templates from emrQA. Simi-
larly, we find that 85% of the machine-generated
questions and 75% of the human-generated ques-
tions contain the exact same key phrases as in the
selected answer. Although Yue et al. (2020) does
not discuss how they prompt physician questions,
our analysis strongly suggests that even in the case
of questions “written” by physicians, answer spans
are likely identified in advance; this significantly
constrains the set of questions a medical profes-
sional can ask.

To address this paucity of natural, clinically rele-
vant questions, we collect queries that might plausi-
bly be asked by healthcare providers during patient
handoff (i.e., transitions of care). We use patient
discharge summaries from the Medical Information
Mart for Intensive Care III (MIMIC-III) English
dataset (Johnson et al., 2016) to mimic the handoff
process. We expect this process to produce more
natural questions than prior work. We work with
10 medical experts of varying skill levels. We ask
them to review a given discharge summary as the
receiving physician in a patient handoff and record
any questions they have as well as the piece of
text within the discharge summary (trigger) that
prompted the question. A sample of questions and
corresponding triggers can be seen in Figure 1.

We train question trigger detection and question
generation (QG) models on DiSCQ, paired with un-
supervised answer retrieval over the EHR. Finally,
we propose a new set of guidelines for human eval-
uation of clinical questions and evaluate the per-
formance of our pipeline using these guidelines.
Concretely, our contributions are summarized as
follows:

• We work with 10 medical experts to compile
DiSCQ, a new dataset of 2000+ questions and
1000+ triggers from over 100+ discharge sum-
maries, providing an important new resource
for research in clinical NLP.

• We demonstrate the dataset’s utility by train-
ing baseline models for trigger detection and
question generation.

• We develop novel guidelines for human evalu-
ation of clinical questions. Our experiments
show that widely used automated QG metrics
do not correlate with human-evaluated ques-
tion quality.

2 Related Work

2.1 Clinical Question Datasets

Clinical information retrieval, and in particular clin-
ical question answering, is a challenging research
task with direct potential applications in clinical
practice. Several dataset collection efforts gather
consumer health questions and pair them with an-
swers from sources like WebMD and PubMED (Yu
et al., 2007; Cao et al., 2011; Abacha and Zweigen-
baum, 2015; Abacha et al., 2017; Zahid et al., 2018;
Demner-Fushman et al., 2020; Savery et al., 2020;
Zhu et al., 2020; Abacha et al., 2019). Likewise,
Suster and Daelemans (2018) automatically gen-
erate 100,000+ information retrieval queries from
over 11,000+ BMJ Case Reports. While these re-
sources are helpful in testing a model’s understand-
ing and information retrieval ability on biomedical
texts, these datasets consist of broad medical ques-
tions asked by the general population. Doctors will
not only ask more specific and targeted questions,
but also query the EHR to make fully informed
decisions about patient care.

The number of publicly available QA datasets
derived from EHR systems is quite limited due to
the labor intensiveness and high skill requirement
needed to create such a dataset. As mentioned
previously, to help alleviate this dearth of clinical
questions, Pampari et al. (2018) introduced emrQA,
a QA dataset constructed from templatized physi-
cian queries slot-filled with n2c2 annotations.2 Fan
(2019) extended emrQA by explicitly focusing on
“why” questions. Soni et al. (2019) introduced a
novel approach for constructing clinical questions
that can be slot-filled into logical-forms. Yue et al.
(2021) applied an emrQA-trained question gener-
ation model paired with a human-in-the-loop to
collect 1287 questions conditioned on and answer-
able from the given context.

In contrast, in our data collection process we do
not restrict the medical expert to ask only questions
answerable from a particular part of the discharge
summary. This leads to more diverse and natural
questions. Additionally, in DiSCQ each question
is associated with a span of text that triggered the
question.

2.2 Question Generation

Question Generation (QG) is a challenging task
that requires a combination of reading comprehen-

2https://www.i2b2.org/NLP/DataSets/
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Discharge Summary 
Provider: Jane Doe, MD 
Patient: Patient A Provider's Pt ID:

00000000 Sex: Female 
Lorem  ipsum dolor sit amet, alii

torquatos id per, eam dicat

reprehendunt ut. Suas diam ad nec. An

cum solum paulo diceret, eu vide

splendide rationibus vis, dicat

"cholangitis with
probable sepsis"

"cholangitis with probable sepsis"

(1) Identification of triggers (2) Generation of questions given the discharge
summary and trigger

"stent was placed
and patient was
treated with
antibiotics"

Were antibiotics
given?QG

Model

(3) Unsupervised retrieval of answer

Discharge Summary Unstructured EHR

Figure 2: Schematic of the pipeline process used to generate and answer questions.

sion and text generation. Successful QG models
may aid in education (Heilman and Smith, 2010;
Du et al., 2017), creating dialogue systems or chat-
bots (Shang et al., 2015; Mostafazadeh et al., 2016;
Shum et al., 2018), building datasets (Duan et al.,
2017) or improving question answering models
through data augmentation (Tang et al., 2017; Dong
et al., 2019; Puri et al., 2020; Yue et al., 2021).

Most QG approaches can be broken down into
either rule-based or neural methods. Rule-based
approaches often involve slot filling templatized
questions (Heilman and Smith, 2010; Mazidi and
Nielsen, 2014; Labutov et al., 2015; Chali and
Hasan, 2015; Pampari et al., 2018). While often
effective at generating numerous questions, these
methods are very rigid, as virtually any domain
change requires a new set of rules. This problem is
particularly important in medical QG, as different
types of practices may focus on varying aspects of
a patient and therefore ask different questions.

Compared to rule-based methods, sequence-to-
sequence models (Serban et al., 2016; Du et al.,
2017) and more recently transformer-based models
(Dong et al., 2019; Qi et al., 2020; Lelkes et al.,
2021; Murakhovs’ka et al., 2021; Luo et al., 2021)
allow for generation of more diverse questions and
can potentially mitigate the problem of domain
generalization via large-scale pre-training (Brown
et al., 2020) or domain adaptation techniques. We
choose to train both BART (Lewis et al., 2020)
and T0 (Sanh et al., 2021) models for the task of
question generation due to their high performance
and ability to generalize to new tasks.

3 DiSCQ Dataset

We work with 10 medical experts of varying skill
levels, ranging from senior medical students to
practicing MDs, to construct a dataset of 2029
questions over 100+ discharge summaries from
MIMIC-III (Johnson et al., 2016).

3.1 Dataset Collection
The goal of our question collection is to gather
questions that may be asked by healthcare
providers during patient handoff (i.e., transitions
of care). We use the patient discharge summary to
simulate the handoff process,3 where the discharge
summary is the communication from the previous
physician regarding the patient’s care, treatment
and current status. Annotators are asked to review
the discharge summary as the receiving physician
and ask any questions they may have as the physi-
cian taking over the care of this patient.

Annotators are instructed to read the discharge
summary line-by-line and record (1) any questions
that may be important with respect to the patient’s
future care, and, (2) the text within the note that
triggered the question. This may mean that ques-
tions asked early on may be answered later in the
discharge summary. Annotators are permitted to go
back and ask questions if they feel the need to do
so. To capture the annotators’ natural thought pro-
cesses, we purposely provide only minimal guid-
ance to annotators on how to select a trigger or what
type of questions to ask. We only ask that annota-
tors use the minimum span of text when specifying
a trigger.4

We also encourage all questions to be asked in
whatever format they feel appropriate. This leads
to many informal queries, in which questions are
incomplete or grammatically incorrect (Figure 1).
Further, we encourage all types of questions to
be asked, regardless of whether they could be an-
swered based on the EHR. We also allow the anno-
tators to ask an arbitrary number of questions. This
allows for annotators to skip discharge summaries
entirely should they not have any questions.

3.2 Dataset Statistics
The trigger/question pairs are generated over en-
tire discharge summaries. We instruct annotators

3We discard any records pertaining to neonatal or deceased
patients.

4Instructions given to annotators will be available here.
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Figure 3: We randomly sample 100 gold triggers and
have one of the authors, a physician, categorize the type
of information that the trigger contains.

to select the minimum span that they used as the
trigger to their question; this leads to triggers of
length 5.0± 14.1 tokens. We additionally find that
there are 1.86 ± 1.56 questions per trigger. As
mentioned previously, we encourage our medical
experts to ask questions however they feel most
comfortable. This led to a wide variety in how ques-
tions were asked, with some entirely self-contained
(46%), others requiring the trigger for understand-
ing (46%), and some requiring the entire sentence
containing the trigger to comprehend (8%).5 We
also observe that 59% of the bi-grams in our ques-
tions are unique (i.e., over half of all bi-grams that
appear in one question are not seen in any other
question), demonstrating the diversity of how our
questions are asked (Table 1).

We additionally examine where in the discharge
summary annotators tend to select triggers from.
We find that a majority of triggers are selected from
the Hospital Course (13%) and History
of Present Illness (39%) sections. This
is unsurprising, as these are the narrative sections
of the note where the patient’s history prior to ad-
mission and their medical care during hospitaliza-
tion are described. Further, we find that a major-
ity of triggers selected are either a Problem or
Sign/Symptom (Figure 3). This aligns with our
intuition, as clinicians are often trained to orga-
nize patient information from a problem-oriented
perspective. Moreover, developing a differential
diagnosis usually begins with gathering details of
the patient’s clinical presentation.

In Figure 4, we examine the types of infor-
mation needs exhibited by our questions. We
find that 83% and 80% of the questions cate-

5Based on a sample of 100 questions.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
% of Questions

Treatment

Assessment

Sign/Symptom

Vitals

Problem

Test Results
Treatment
Indication

Etiology

Medical Services

Other

Figure 4: We randomly sample 100 questions and have
one of the authors, a physician, categorize what type of
information the question is asking for.

Characteristics emrQA CliniQG4QA DiSCQ
Total Articles 2,425 36 114
Total Questions 455,837 1287 2029
Questions / Article 187 35.8 17.8
Article Length 3828 2644 1481
Question Length 7.8 8.7 4.4
Unique Question
Bi-grams - 24% 59%
Physician Generated 0% 24% 100%
Indicates Question
Motivation No No Yes

Table 1: Comparison of emrQA, CliniQG4QA and our
dataset. Question and article length scale given in to-
kens. Unique question bi-grams is given as a ratio.

gorized as Sign/Symptom and Problem, re-
spectively, stem from the same category of trig-
ger. Sign/Symptom questions generated from
Sign/Symptom triggers are usually asking about
associated symptoms (e.g., Trigger: dysuria; Ques-
tion: Any perineal rash or irritation?) or addi-
tional details about the trigger (e.g., onset, tim-
ing). Similarly, Problem questions generated
from Problem triggers are usually asking about
associated comorbid conditions or additional de-
tails of a diagnosis (e.g., date of diagnosis, severity).
We interestingly find that 62% of the Treatment
questions and 56% of the Test Results ques-
tions are derived from triggers of type Problem.
This can be attributed to diagnostic tests being used
to monitor disease progression and treatment ques-
tions asking about how a problem is managed.

As a soundness check, we randomly sample 100
questions from our dataset and find that only 22%
of them directly map to emrQA templates. Of
the 22 that match, 17 of them map directly to
|problem|? and |test|?. Additionally, we
sample 100 questions to determine where a physi-
cian would hypothetically search the EHR should
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they choose to find the answers to these questions.6

We find that one of the authors, a physician, would
search external resources 3% of the time, the struc-
tured data 20% of the time and both the structured
and unstructured data 21% of the time. The remain-
ing 56% of questions would be answered solely
from unstructured EHR data. This differs signif-
icantly from both emrQA and CliniQG4QA, in
which all questions are answerable using unstruc-
tured EHR data.

As mentioned previously, we provide only min-
imal guidance on how to select a trigger or what
type of question to ask, in order to capture the an-
notators’ natural thought processes. The task is
purposely presented in an open-ended fashion to
encourage natural questions. This may lead to situ-
ations in which two annotators examining the same
discharge summary focus on entirely different as-
pects of the patient. Such a scenario is likely to
be common, as if most experts agree that a piece
of information is important, then it would likely
already be in the discharge summary. We can at-
tempt to measure this variation between medical
experts by calculating trigger level agreement in
documents annotated by two different annotators
(roughly 50% of discharge summaries in DiSCQ).
We find a Cohen Kappa of 0.08.7

This lower agreement can be expected, as dif-
ferent spans can express the same information due
to information redundancy in clinical notes. Fur-
thermore, clinical reasoning is not a linear process;
therefore, different triggers can lead to the same
question. For example, an expression of elevated
blood pressure ("blood pressure of 148 to 162/45
to 54") and a diagnosis of hypertension ("Hyper-
tension") led two annotators to both ask about the
patient’s normal blood pressure range. We do not
measure agreement of questions asked, as this is an
inherently subjective task and questions are asked
because of differences between medical experts.

4 Task Setup

We consider the task of generating questions that
are relevant to a patient’s care, given a discharge
summary and a trigger. Afterwards, we attempt
to find answers to these generated questions (Fig-
ure 2). We also examine model performance for
when the trigger is not provided and must instead be
predicted. The task of generating questions without

6We use the same sample of 100 questions as before.
7This is calculated on a per-token level.

triggers can be viewed similarly to answer-agnostic
question generation. We take a similar approach to
(Subramanian et al., 2018), in which we implement
a pipeline system that first selects key phrases from
the passage and then generates questions about the
selected key phrases.

While a majority of past works attempt to ensure
that the generated question is answerable (Nema
et al., 2019; Pan et al., 2020; Wang et al., 2020a;
Huang et al., 2021), we do not impose this con-
straint. In fact, we argue that the ability to gener-
ate unanswerable questions is necessary for real-
world applications, as a question answering system
should be able to identify such questions. These
questions can be used as hard-negatives to train and
calibrate QA systems.

5 Models

Pre-trained transformers have become ubiquitous
in many natural language processing tasks (Devlin
et al., 2019; Raffel et al., 2020; Sanh et al., 2021),
including natural language generation (Lewis et al.,
2020; Bao et al., 2020). Additionally, large-scale
transformers have demonstrated the importance of
parameter count for both upstream (Kaplan et al.,
2020) and downstream tasks, especially in low-
resource settings (Brown et al., 2020; Sanh et al.,
2021). As these results were mainly shown in non-
clinical general domains, we find it important to
evaluate both medium-sized and large models.

We formulate trigger detection as a tagging
problem, for which we fine-tune ClinicalBERT
(Alsentzer et al., 2019). For question generation,
we experiment with both BART (406M parameters)
(Lewis et al., 2020) and T0 (11B parameters) (Sanh
et al., 2021). Question generation is formulated as
a conditional generation problem and modelled via
a sequence-to-sequence approach. During evalua-
tion, we use greedy sampling to produce generated
text.

Reducing context size Due to memory con-
straints and the limited sequence length of pre-
trained models, we only select the part of the dis-
charge summary containing the trigger. This is
done in two possible ways: (1) extracting the sen-
tence8 with the trigger or multiple sentences if a
trigger spans across sentence boundaries or (2) ex-
tracting a chunk of size 512 containing the trigger
in it. To check if this context is actually used by

8Sentence splitting is performed using ScispaCy’s
en_core_sci_md.
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the models we also fine-tune BART without extra
discharge summary context (trigger text only).

Handling multiple questions 41% of the DiSCQ
examples have multiple questions per trigger.
Sometimes the questions depend on each other:

• What meds was used? dosage? and route of
administration?

• Any culture done? What were the findings?

For this reason, we train and evaluate models in two
different setups: split questions (by the ?-symbol)
and combined questions. While the split-questions
format might be more comparable to pre-existing
work, the combined-questions setting likely models
more realistic behavior of medical professionals.

Prompting Schick and Schütze (2021) demon-
strate that adding natural language instructions to
the model input can significantly improve model
quality. The area of prompting has recently gained
widespread popularity (Liu et al., 2021) and has
had particular success in low-supervision scenarios
(Schick and Schütze, 2021). T0 (Sanh et al., 2021)
is a fine-tuned T5 (Raffel et al., 2020) model trained
on 64 datasets and prompts from the Public Pool
of Prompts (Bach et al., 2022). Given a trigger and
some context from the discharge summary, we fine-
tune T0++ and BART with the following prompt:
“{context}After reading the above EMR, what
question do you have about "{trigger}"? Ques-
tion:”.

6 Results

We split 2029 questions into train (70%), validation
(10%) and test (20%) sets9 and fine-tune the mod-
els as described in Section 5. To evaluate trigger
detection, we use token-level precision, recall and
F1 score. For automated evaluation of question gen-
eration we use ROUGE-L (Lin, 2004), METEOR
(Banerjee and Lavie, 2005) and BERTScore (Zhang
et al., 2020) metrics. To monitor the diversity of
generated questions, we measure the fraction of
unique questions on the evaluation set. As the ques-
tion generation task has high variability of plau-
sible generations, the utility of automatic metrics
is debatable due to poor correlation with human
evaluation (Callison-Burch et al., 2006; Novikova
et al., 2017; Elliott and Keller, 2014; Zhang et al.,
2020; Bhandari et al., 2020). For this reason, we
additionally perform human evaluation (Section 7).

9We use a document level split.

6.1 Trigger detection
As mentioned in Section 3, we collect triggers for
each question asked. We train a simple Clinical-
BERT model to predict whether or not each token-
piece is a trigger. To ground these results, we addi-
tionally use ScispaCy Large (Neumann et al., 2019)
to tag and classify all clinical entities as triggers.
Results are shown in Table 2.

Model Recall Precision F1
ScispaCy 0.186 0.033 0.056
ClinicalBERT 0.184 0.196 0.190

Table 2: Trigger detection results on the test set.

We see that our model exhibits poor performance
likely due to the fact that there is low agreement
between annotators about which spans to highlight
when asking questions.

6.2 Question generation
Automated metrics for question generation exper-
iments are available in Table 4. While generation
diversity changes significantly between different
models, ranging from 30% of unique questions to
79%, METEOR, ROUGE-L and BERTScore show
very similar and low performance across the board.

However, upon observation, many of the gener-
ated questions seem reasonable (Table 3), suggest-
ing that these metrics might not fit the task. We
hypothesize that this is caused by two reasons: (1)
the short length of our questions and (2) a high
number of potentially reasonable questions that
could be generated. As we observe during the data
collection process, different annotators seem to ask
different questions despite citing the same trigger.
For these reasons, human evaluation (Section 7)
might be a more appropriate approach for testing
the quality of these models.

6.3 Answer Selection
In addition to identifying triggers and generating
questions, we attempt to find answers to these ques-
tions. We only consider the unstructured portion of
the EHR data. We train a ClinicalBERT model on
emrQA augmented with unanswerable questions
via negative sampling (Liang et al., 2022). Due
to the question’s frequent dependency on the trig-
ger, given a trigger and a question, we prompt the
model with the following text: “With respect to
{trigger}, {question}?”. We first query the
remainder of the discharge summary that the ques-
tion was generated from. If we are unable to find
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Question to Annotate 
 

Not Understandable Understandable

Trivial Nontrivial

Irrelevant to  
Trigger 

Medically 
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Relevant to  
Trigger 

Medically 
 Insignificant 

Figure 5: A breakdown of how questions are annotated.

an answer with probability above some threshold10,
we query the model on prior patient notes. We then
select the highest probability span and expand it
to a sentence level prediction. We always return
a prediction even in cases where all sentences are
equally unlikely to be the answer.

7 Human Evaluation

Human evaluation is still the most reliable way to
compare generative models for diverse tasks like
question generation. Common categories for ques-
tion generation to consider are grammar, difficulty,
answerability and fluency (Nema et al., 2019; Tuan
et al., 2019; Wang et al., 2020b; Huang et al., 2021).
However, not all of these categories are relevant to
clinical question generation. We evaluate questions
generated using our pipeline, as well as gold stan-
dard questions on the following four categories (bi-
nary scale):

Understandability Can an individual familiar
with medical/clinical language understand the infor-
mation needs expressed, even if the question is not
a complete sentence or contains grammar/spelling
errors?

Nontriviality Is the question unanswerable with
respect to the sentence it was triggered/generated
from? A question that would be considered trivial
would be “Did the patient have a fever?” if the
context presented was “The patient had a fever”.

Relevancy to trigger Is the trigger or the sen-
tence containing the trigger related to the question?

10This threshold was chosen manually by examining
question-answer pairs on a validation set.

Clinical meaningfulness Will the answer to this
question be helpful for further treatment of this
patient or understanding the patient’s current con-
dition? Or alternatively, is it reasonable that a med-
ical professional would ask this question given the
provided context?

Annotations were divided evenly between medi-
cal experts. Each question is scored independently
by two different annotators. However, due to time
constraints, there are no discussions between an-
notators about their decisions. We also ensure that
annotators did not receive discharge summaries
that they had seen previously. Lastly, it is impor-
tant to note that annotations were assigned blindly.
Annotators were informed that they would be scor-
ing both human and machine generated questions,
but were not informed about (1) where the ques-
tion was generated from (i.e., human or machine)
and (2) the proportion of human:machine generated
questions.

We score questions using the tree presented in
Figure 5. In cases in which the question is both
understandable and nontrivial, we additionally ask
medical experts to determine whether or not the
proposed answer fully answers, partially answers
or is irrelevant to the question. Results can be seen
in Table 5 and Table 6.

8 Discussion

We evaluate performance of both the best BART
and T0 model with respect to ROUGE-L score. We
select 400 questions generated from each model,
half of which are generated with gold triggers and
the other half with predicted triggers, as described
in Section 6.1. Two medical experts score each
question. Due to the subjective nature of the task,
we find moderate agreement between annotators
with respect to scoring questions (κ = 0.46) and
scoring answer sufficiency (κ = 0.47). We use
the “Satisfies All” column (i.e., satisfies all four hu-
man evaluation categories) to calculate agreement
between questions.

Results show that the T0 model prompted with
gold triggers successfully generates a high-quality
question 62.5% of the time (Table 5). This model
significantly outperforms BART when given gold-
standard triggers. However, the performance sig-
nificantly drops when the triggers are no longer
provided. We find that T0 produces a large number
of trivial questions when given a predicted trigger.
More testing and investigation is needed to further
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Context Generated Question Trigger Type Question Type

Pt reports that he noticed a right neck mass last
October

Size, outline (asymmetry), color,
elevation, evolving?

sign/symptom sign/symptom

She was also significantly tachypneic were there interventions done to
address this?

sign/symptom treatment

According to Dr. <name>, she has had sta-
ble deficits for many years without any flare-like
episodes.

How is her vision now? assessment sign/symptom

Her bicarb began to drop and she developed an
anion gap acidosis

confusion? confusion? agitation?
hand tremors? bounding pulses?

problem sign/symptom

Table 3: Example T0 model generations, cherry-picked. This model examines single sentences and is trained with
combined questions. Trigger phrases are italicized.

Model Type Context Split Qs Unique Question Ratio METEOR BERTScore ROUGE-L

BART Trigger N 0.301 3.6 0.856 10.2
BART Trigger Y 0.037 0.1 0.838 3.4

BART Sentence N 0.526 6.1 0.860 10.2
BART Sentence Y 0.468 7.8 0.858 12.0
BART Chunk N 0.741 7.9 0.861 11.9
BART Chunk Y 0.619 7.2 0.861 11.6

T0-11B Sentence N 0.779 3.9 0.861 11.9
T0-11B Sentence Y 0.410 8.4 0.884 12.2
T0-11B Chunk N 0.398 3.7 0.860 12.4
T0-11B Chunk Y 0.400 6.7 0.879 10.9

Table 4: Automated metrics for baseline models on the question generation task. Sentence and Chunk contexts
include both the text surrounding the trigger and the trigger itself. Trigger context only includes trigger text. Split
Qs means splitting multiple questions for a trigger into multiple examples (unique question ratio of these models
should not be compared). Results given on dev set.

understand this large drop in performance, as we
do not observe this same behavior with BART.

As human evaluation demonstrates, despite
low automatic metric scores, both BART and T0
achieve reasonable success in generating coherent,
relevant and clinically interesting questions. To
evaluate if the automated metrics can capture the
quality of generated questions, we calculate the
Spearman’s Rank Correlation Coefficient between
human evaluation and automatic metrics. We find
extremely low and statistically insignificant corre-
lation for ROUGE-L (-0.09), METEOR (-0.04) and
BERTScore (-0.04). This is unsurprising, as these
automatic metrics are not designed to capture the
categories we examine during human evaluation.

We also score the answers selected by our Clin-
icalBERT model trained on emrQA (Section 6.3).
Interestingly, we find that of the answers the model
successfully recovers, 44% are extracted from the
remainder of the discharge summary used to gen-

erate the question. The remaining 56% come from
nursing notes, Radiology/ECG reports and previ-
ous discharge summaries. However, for a majority
of the questions, we are unable to recover a suffi-
cient answer (Table 6). We sample 50 gold standard
questions whose suggested answers were marked
as invalid, in order to determine if this was due to
the model’s poor performance. We find that 36% of
the questions do in fact have answers in the EHR,
thus demonstrating the need for improved clinical
QA resources and models.

9 Conclusion

We present Discharge Summary Clinical Questions
(DiSCQ), a new human-generated clinical ques-
tion dataset composed of 2000+ questions paired
with the snippets of text that prompted each ques-
tion. We train baseline models for trigger detec-
tion and question generation. We find that despite
poor performance on automatic metrics, we are
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Model Triggers Understandable Nontrivial Relevant Clinically Meaningful Satisfies All

Gold - 93.8% 86.0% 83.3% 82.3% 80.5%
BART Gold 81.5% 59.8% 52.3% 54.8% 47.8%
T0 Gold 85.8% 72.3% 68.0% 66.5% 62.5%

BART Predicted 78.3% 57.3% 49.3% 49.8% 41.8%
T0 Predicted 76.8% 49.0% 45.0% 44.5% 41.0%

Table 5: We present results of human evaluation on generated questions. Gold refers to questions generated by
medical experts. We do not annotate whether or not a question is nontrivial, relevant and clinically meaningful if it
is not understandable, thus lowering the number of questions that satisfy these categories.

Model Triggers Partially Fully

Gold - 15.0% 7.50%
BART Gold 13.75% 7.75%
T0 Gold 11.5% 6.00%
BART Predicted 14.5% 6.25%
T0 Predicted 9.75% 3.25%

Table 6: Percent of the time that the answer retrieved
by our model partially answers and fully answers the
question.

able to produce reasonable questions in a majority
of cases when given triggers selected by medical
experts. However, we find that performance signifi-
cantly drops when given machine predicted triggers.
Further, we find that baseline models trained on
emrQA are insufficient for recovering answers to
both human and machine generated questions. Our
results demonstrate that existing machine learn-
ing systems, including large-scale neural networks,
struggle with the tasks we propose. We encourage
the community to improve on our baseline models.
We release this dataset and our code to facilitate
further research into realistic clinical question an-
swering and generation here.
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A Appendix

A.1 Model and Metric Implementation
To run BART and T0, we make use of the Hug-
gingface implementations (Wolf et al., 2019). We
additionally calculate automated metrics for ques-
tion generation using Huggingface. For calculating
Cohen Kappa, precision, recall, and F1 score, we
use sklearn (Pedregosa et al., 2011).

A.2 Model Hyperparameters
We use a majority of the default settings provided
by the Huggingface library (Wolf et al., 2019).
However, we do experiment with varying learn-
ing rates (2e-5, 2e-4, 3e-4, 4e-4), warm up steps
(100, 200), and weight-decay (0, 1e-6, 1e-3, 1e-1).
For the best BART model, we find that using a
learning rate of 2e-4, warm up steps of 200, and
weight decay of 1e-6 led to the best model. For
the T0 model, we find that using a learning rate
of 3e-4, running for 100 warmup steps and using
a weight-decay of 0.1 led to the best performance.
We run for 50 epochs on the BART model and 30
epochs on the T0 model. We use the best epoch
with respect to evaluation loss. In our dev set eval-
uation, we use a beam search width of 5. We use
a gradient accumulation step of 32 and 16 for our
BART model and T0 model, respectively,

A.3 GPUs and Run Time
For the BART models, we run on 4 GeForce GTX
TITAN X. Due to the limited size of these GPUs,
we only use a batch size of 1 per GPU. The BART
style models take roughly 8 hours to finish training.

For the T0 models, we train using eight V100
GPUs. We set batch size to be 2 per GPU. These
models take roughly 24 hours to train.

A.4 Risk of Patient Privacy
We will release our code and data under MIMIC-III
access. Carlini et al. (2021) warns against training
large-scale transformer models (particularly ones
for generation) on sensitive data. Although MIMIC-
III notes consist of deidentified data, we will not re-
lease our model weights to the general public. With
respect to the trigger detection system, there is less
risk in releasing the model weights, as BERT has
not been pretrained with generation tasks (Lehman
et al., 2021). We caution all follow up work to take
these privacy concerns into account.
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Abstract
Word embeddings have been widely used in
Natural Language Processing (NLP) tasks. Al-
though these representations can capture the
semantic information of words, they cannot
learn the sequence-level semantics. This prob-
lem can be handled using contextual word em-
beddings derived from pre-trained language
models, which have contributed to significant
improvements in several NLP tasks. Fur-
ther improvements are achieved when pre-
training these models on domain-specific cor-
pora. In this paper, we introduce Clinical Flair,
a domain-specific language model trained on
Spanish clinical narratives. To validate the qual-
ity of the contextual representations retrieved
from our model, we tested them on four named
entity recognition datasets belonging to the clin-
ical and biomedical domains. Our experiments
confirm that incorporating domain-specific em-
beddings into classical sequence labeling archi-
tectures improves model performance dramati-
cally compared to general-domain embeddings,
demonstrating the importance of having these
resources available.

1 Introduction

Word embeddings are dense, semantically meaning-
ful vector representations of a word. This method
has proven to be a fundamental building block
when constructing neural network-based architec-
tures. However, the main drawback of using these
embeddings is that they provide only a single repre-
sentation of a given word across many documents.
This is not optimal in practice, as the representation
depends on the sentence in which the word appears.
Contextual word embeddings address this problem
by capturing syntactic and semantic information at
the sentence level to represent words according to
their context.

Contextualized embeddings are commonly re-
trieved from language models trained on giant text
corpora. These models are usually composed of se-
quential or attention neural networks, which allows

obtaining sentence-level semantics. This method
has contributed to major advances in several NLP
tasks such as named entity recognition, text classifi-
cation, and relation extraction. Classic examples of
contextual representation models are Flair (Akbik
et al., 2018), ELMo (Peters et al., 2018), and BERT
(Devlin et al., 2019).

Regarding specific domains such as clinical and
biomedical, there are widely used models for the
English language, such as BioBERT (Lee et al.,
2020), BioELMo (Jin et al., 2019), and the PubMed
version of Flair. These studies have shown that
incorporating domain-specific contextual word em-
beddings contributes to a significant improvement
in the performance of the models. However, al-
though unstructured clinical texts are abundant in
Spanish, there is still a significant lack of language
models. Most of the domain-specific contextual
representation models available for Spanish focus
on data obtained from scientific articles and not
from texts written in a more realistic context.

To fill this gap, we trained and publicly released
Clinical Flair1, a character-level language model
trained on a corpus with real diagnoses in Span-
ish. To measure the potential impact of using these
representations, we provide an empirical study of
the effects of using language models trained on
domain-specific against general-domain corpora.
We evaluated the effectiveness of the proposed em-
beddings on four named entity recognition datasets
belonging to the clinical and biomedical domain in
Spanish. The results suggest that the embeddings
obtained from our model contribute to achieving a
better model performance compared to the general-
domain contextualized embeddings by a wide mar-
gin.

1https://github.com/plncmm/
spanish-clinical-flair
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2 Related Work

Language models allow us to generate high-quality
representations of words based on their surround-
ing context, better known as contextual word em-
beddings. These models are usually trained with
large corpora, either general-domain or domain-
specific. Most of the available models have been
trained with English resources, where the most pop-
ular ones are BERT (Devlin et al., 2019), ELMo
(Peters et al., 2018), GPT-2 (Radford et al., 2019),
and Flair (Akbik et al., 2018).

As pointed out in Lee et al. (2020), building
domain-specific language models allows to im-
prove models performance compared to general-
domain language models. In relation to biomedi-
cal information retrieval (IR) tasks in English, the
most well-known architectures are BioBERT (Lee
et al., 2020), Clinical BERT (Alsentzer et al., 2019),
SciBERT (Beltagy et al., 2019), Pubmed BERT
(Gu et al., 2022), BioELMo (Jin et al., 2019) and
Pubmed Flair.

Regarding the clinical domain in Spanish, we
found the models Biomedical Roberta (Carrino
et al., 2022) and SciELO Flair (Akhtyamova et al.,
2020). In the first case, the main difference with
our model is that Biomedical Roberta was trained
on a corpus formed by several biomedical and clin-
ical corpora, while we only used clinical narratives.
In the case of SciELO Flair, a point of differentia-
tion is that they used data obtained from medical
publications, whereas our data comes from primary
care diagnoses. Moreover, they only tested their
model on the PharmaCoNER corpus, created from
the same data source they trained SciELO Flair. In
contrast, we tested the effectiveness of our model
using four clinical and biomedical datasets.

3 Methods

This section describes the clinical dataset used to
train our language model, the details of the training
process, and, finally, the task and datasets used in
our experiments.

3.1 Clinical Flair
Flair (Akbik et al., 2018) is a character-level lan-
guage model, which represents words as sequences
of characters contextualized by the surrounded text.
Flair authors created a method to obtain contextual-
ized representations by retrieving the internal states
of a bidirectional character-level LSTM. Specifi-
cally, the embedding is created by concatenating

the output of the hidden state after the last charac-
ter and before the first character of the word. This
process allows obtaining the word context in the
sentence in both directions.

We decided to use Flair instead of BERT because
the character-level language model is beneficial for
handling misspelled and out-of-vocabulary words,
which are abundant in clinical and biomedical texts.
This is because BERT is limited to a predefined vo-
cabulary used to perform the tokenization. When
a word is outside the vocabulary, the BERT model
combines the embeddings of its subwords to com-
pute the final representation, which may decrease
the quality of the embeddings. This does not occur
in the case of Flair, where each word has an em-
bedding independent of its subword embeddings.

To create our clinical version of Flair, we used
as a starting point the existing language models es-
forward and es-backward. These models trained on
a large corpus obtained from the Spanish Wikipedia
are freely available in the Flair framework (Akbik
et al., 2019). To incorporate key information from
the clinical context, we fine-tuned these models on
the Chilean Waiting List corpus (Báez et al., 2020),
which is a clinical corpus created from real diag-
noses from the Chilean public healthcare system.

The Chilean Waiting List corpus consists of
5, 157, 902 free-text diagnostic suspicions compris-
ing 14, 057, 401 sentences and 68, 541, 727 tokens.
Although the general purpose of this dataset was to
be a new resource for named entity recognition,
it has also been used to obtain static word em-
beddings from the clinical domain (Villena et al.,
2021b). These representations have boosted the
model’s performance in several clinical NLP tasks
such as tumor encoding (Villena et al., 2021a) and
named entity recognition (Báez et al., 2022).

We did not perform any pre-processing of the
data for training our language model. The cor-
pus was divided into 60% for training, 20% for
validation, and 20% for testing. According to the
suggestions of Flair authors, we set the maximum
sentence length to 250, the mini-batches to 100
sentences, the maximum training epochs to 1, 000,
and the learning rate to 20. The experiments were
performed with a Tesla V100 GPU and 192 GB
RAM. After one week of training, we reached a
final perplexity value of 1.61 and 1.63 for our es-
clinical-forward and es-clinical-backward models,
respectively.
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CANTEMIST PharmaCoNER Clinical Trials NUBes
Train Test Dev Train Test Dev Train Test Dev Train Test Dev

Tokens 442, 097 240, 326 396, 457 210, 778 104, 201 100, 147 208, 188 68, 994 69, 319 255, 897 51, 233 35, 416
Sentences 19, 397 11, 168 18, 165 8, 177 3, 976 3, 790 12, 555 4, 506 4, 550 13, 802 2, 762 1, 840
Avg sentence length 22.8 21.5 21.8 25.8 26.2 26.4 16.6 15.3 15.3 18.5 18.6 19, 2
Entities 6, 347 3, 596 5, 948 3, 821 1, 876 1, 926 24, 224 7, 717 8, 258 17, 122 3, 548 2, 293
Avg entity length 2.4 2.3 2.3 1.4 1.4 1.4 2.0 2.0 2.0 2.6 2.6 2.6

Table 1: Statistics of the NER datasets used in our experiments.

3.2 Datasets
To evaluate the quality of our contextual repre-
sentations, we used the Named Entity Recogni-
tion (NER) task, which seeks to identify spans of
text expressing references to predefined categories.
Specifically, we performed our experiments on four
NER corpora belonging to the clinical and biomed-
ical domains. The statistics for each corpus are
shown in Table 1.

• CANTEMIST2 (Miranda-Escalada et al.,
2020): An open annotated corpus that com-
prises 1, 301 oncologic clinical case reports
written in Spanish and manually annotated
by clinical experts with mentions of tumor
morphology. It contains a total of 48, 730 sen-
tences and 15, 891 entity mentions.

• PharmaCoNER3 (Gonzalez-Agirre et al.,
2019): Biomedical corpus created for recog-
nizing chemical and protein entities. It con-
sists of 1, 000 clinical cases with 7, 623 entity
mentions, corresponding to four entity types.

• Clinical Trials4 (Campillos-Llanos et al.,
2021): It consists of 1, 200 texts collected
from 500 abstracts of journal articles about
clinical trials and 700 announcements of trial
protocols. It comprises a total of 40, 199 en-
tity mentions, which belong to a subset of
semantic groups from the Unified Medical
Language System (UMLS).

• NUBes5 (Lima Lopez et al., 2020): Biomed-
ical corpus obtained from anonymized health
records annotated with negation and uncer-
tainty. It consists of 18, 404 sentences, includ-
ing 22, 963 mentions of negation and uncer-
tainty.

2https://zenodo.org/record/3978041
3https://zenodo.org/record/4270158
4http://www.lllf.uam.es/ESP/

nlpmedterm_en
5https://github.com/Vicomtech/

NUBes-negation-uncertainty-biomedical-corpus

Parameter Value
max epochs 150
optimizer SGD
batch size 32

initial learning rate 0.1
word dropout 0.05

BiLSTM layers 1
BiLSTM hidden size 256

Table 2: Hyperparameters used in our experiments.

3.3 NER Model

To solve the NER task, we used the LSTM-CRF
approach proposed by Lample et al. (2016), which
is one of the most widely used architectures for
sequence labeling tasks. The model consists of
three main modules: the embedding layer, the en-
coding layer with a BiLSTM, and the classification
layer, where the most likely sequence of labels is
obtained using the CRF algorithm. Our contextu-
alized embeddings were incorporated in the first
layer, replacing traditional representations such as
word and character-level embeddings.

To compare the performance of our language
model, we used two baselines: the Spanish
Flair model trained on the general domain using
Wikipedia articles and the SciELO Flair model,
which was trained over a subset of SciELO text.

In addition, it is worth mentioning that some of
the datasets had nested entities, i.e., entities con-
tained within other entity mentions (Finkel and
Manning, 2009). Since traditional sequence label-
ing architectures cannot address this problem, we
followed the simplifications made in previous work,
keeping only the outermost entities in each nesting.

3.4 Settings

To select the best hyperparameters, we performed
the random search strategy, which selects the best
values by exhaustively testing different combina-
tions of hyperparameters over a range of values.
We measured the performance using the validation
partition to establish the best combination.
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Spanish Flair SciELO Flair Clinical Flair
Dataset P R F1 P R F1 P R F1

CANTEMIST 0.827 (0.002) 0.842 (0.003) 0.834 (0.001) 0.850 (0.001) 0.864 (0.001) 0.857 (0.001) 0.857 (0.004) 0.867 (0.001) 0.862 (0.002)
PharmaCoNER 0.876 (0.002) 0.849 (0.001) 0.862 (0.001) 0.905 (0.001) 0.889 (0.002) 0.897 (0.001) 0.901 (0.001) 0.875 (0.002) 0.888 (0.001)
Clinical Trials 0.809 (0.003) 0.815 (0.001) 0.812 (0.001) 0.814 (0.005) 0.832 (0.001) 0.823 (0.002) 0.836 (0.002) 0.834 (0.003) 0.835 (0.001)

NUBes 0.887 (0.002) 0.901 (0.003) 0.894 (0.001) 0.888 (0.002) 0.905 (0.001) 0.896 (0.001) 0.905 (0.002) 0.897 (0.001) 0.901 (0.001)

Table 3: Overall results on four clinical and biomedical NER datasets. Data shown are mean (SD).

In Table 2, we list the main hyperparameters
used throughout our experiments, which were the
ones that gave us the best results in most of the
datasets. We trained the NER models using the
SGD optimizer to a maximum of 150 epochs, with
mini-batches of size 32 and a learning rate of 0.1.
To control overfitting, we used the early stopping
strategy and a dropout regularization of 0.05 after
the embedding layer.

Performance was evaluated using precision, re-
call, and micro F1-score, which is the standard met-
ric used in NER. This metric is strict since an entity
is considered correct when both entity types and
boundaries are predicted correctly. Three rounds
of evaluation were computed using different seeds,
reporting the mean and standard deviation. All the
experiments were performed using the Flair frame-
work, and the source code is available to reproduce
our experiments6.

4 Results

Table 3 shows the overall performance of the NER
model comparing contextualized embeddings re-
trieved from our Clinical Flair model, Spanish
Flair, and SciELO Flair. We can see that across
all datasets, the performance of our model is su-
perior to the model trained on a general domain,
demonstrating the importance of incorporating con-
textualized embeddings trained on domain-specific
corpora.

On the other hand, although we did not train our
model on biomedical corpora, we observe that it is
also beneficial for solving NER on those datasets.
Although we did not outperform the SciELO Flair
model in PharmaCoNER, we obtained competi-
tive results. However, as mentioned in their paper,
they selected a subset of SciELO texts to train the
language model in line with the PharmaCoNER
corpus. Therefore, we expected that their results
would be superior.

Compared with Spanish Flair, the major differ-
ence occurs in CANTEMIST, reaching an average

6https://github.com/plncmm/
clinical-flair

difference of +0.028, while the slightest difference
is observed in NUBes with +0.007 according to
the F1 measure. One possible reason for the similar
performance between our model and Spanish Flair
in NUBes is that, although the dataset belongs to
the biomedical domain, the task aims to identify
entities associated with negations and uncertain-
ties; therefore, the target labels are general-domain
and distant from the original corpus on which we
trained our model.

Finally, and as expected, in both corpora belong-
ing to the clinical domain CANTEMIST and Clin-
ical Trials, our model outperforms both Spanish
Flair and SciELO Flair. In the case of Clinical Tri-
als, we reached an average difference of +0.023
and +0.012 compared to both models, respectively,
while in the case of CANTEMIST, we obtained
improvements of +0.028 and +0.005 according to
the F1 measure.

5 Conclusions and Future Work

Despite the growing interest of the NLP research
community in contextualized embeddings, there
is still a lack of language models for the Spanish
language, a gap that increases even more concern-
ing domain-specific texts. To address this issue,
this paper introduced Clinical Flair, a character-
level language model for clinical NLP in Spanish.
Specifically, we used a general-domain language
model as a starting point and then fine-tuned it on
Chilean clinical narratives. Our experimental re-
sults on four clinical and biomedical NER datasets
show that incorporating our domain-specific em-
beddings outperforms by a wide margin the results
obtained with general-domain embeddings, demon-
strating the importance of having these resources
available for languages not as widely explored.

Future work includes extending our study to
other NLP tasks and using different combinations
of embeddings, such as concatenating Word2vec
or character-level embeddings. In addition, to pro-
vide a variety of contextual representation models
for clinical texts, we are training a clinical ver-
sion of BERT in Spanish. Although preliminary

90



results have been inferior to those obtained with
our Clinical Flair model, we expect to collect a
larger clinical corpus to improve performance.
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Abstract

Recent studies show that neural natural pro-
cessing models for medical code prediction suf-
fer from a label imbalance issue. This study
aims to investigate further imbalance in a med-
ical code prediction dataset in terms of de-
mographic variables and analyse performance
differences in demographic groups. We use
sample-based metrics to correctly evaluate the
performance in terms of the data subject. Also,
a simple label distance metric is proposed to
quantify the difference in the label distribution
between a group and the entire data. Our anal-
ysis results reveal that the model performs dif-
ferently towards different demographic groups:
significant differences between age groups and
between insurance types are observed. Interest-
ingly, we found a weak positive correlation be-
tween the number of training data of the group
and the performance of the group. However, a
strong negative correlation between the label
distance of the group and the performance of
the group is observed. This result suggests that
the model tends to perform poorly in the group
whose label distribution is different from the
global label distribution of the training data set.
Further analysis of the model performance is re-
quired to identify the cause of these differences
and to improve the model building.

1 Introduction

Medical coding is the process of assigning standard
codes, such as The International Classification of
Diseases (ICD) codes, to each clinical document
for documenting records and medical billing pur-
poses. Even though medical coding is an important
process in the healthcare system, it is expensive,
time-consuming, and error-prone (O’malley et al.,
2005).

Researchers have investigated approaches for au-
tomated ICD coding systems and there has been
great progress with neural network architectures
(Kalyan and Sangeetha, 2020). However, current

state-of-the-art models still suffer from data imbal-
ance issues: since the benchmark dataset is imbal-
anced in terms of assigned ICD codes, the model
performances differ across ICD codes (Mullenbach
et al., 2018; Li and Yu, 2020; Kim and Ganapathi,
2021; Vu et al., 2021; Ji et al., 2021). Moreover, a
recent study argues that the performances of mod-
els tend to decrease when the ICD codes have fewer
training instances (Ji et al., 2021).

Based on this observation from the literature (i.e.,
imbalanced ICD code distribution results in the per-
formance imbalance between the ICD codes), the
goal of this paper is to investigate the effect of
the imbalance of different demographic groups in
the training data set on the performances of the
demographic groups. More specifically, we study
the following questions: 1) Is a benchmark dataset
for medical code prediction imbalance in terms of
the data subject’s demographic variables (i.e., age,
gender, ethnicity, socioeconomic status)?; 2) If so,
would it result in performance differences between
demographic groups? To answer these questions,
we analyse the benchmark dataset, reproduce one
of the state-of-the-art models (Li and Yu, 2020),
and analyse the performance of the model. To
the best of our knowledge, this is the first attempt
to study the demographic imbalance of the medi-
cal code prediction benchmark dataset and analyse
the performance differences between demographic
groups.

Our contribution is three-fold. Firstly, we
analysed the medical code prediction benchmark
dataset to investigate the underlying imbalance in
the dataset (Section 4.1) and reproduced one of the
state-of-the-art medical code prediction models pro-
posed by Li and Yu (2020). Secondly, we propose
sample-based evaluation metrics (Section. 3.4) to
identify potential biases inside a model and poten-
tial risk of the bias (Section. 4.2). Thirdly, we pro-
pose a simple label distance metric to quantify the
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differences in the label distribution between each
group and the global data (Section. 3.2) and found
that the label distance metric is strongly correlated
with the performance negatively (Section. 4.3). We
expect that these analytic results could provide a
valuable insight to the natural language processing
(NLP) research community working for clinical
applications.

2 Data

This section includes the information on the bench-
mark dataset used and the details of pre-processing
steps taken for preparing data for the experiments.
Note that we followed the previous approach to re-
produce the result from the literature. More details
are explained in the following subsections.

2.1 MIMIC-III dataset

We used Medical Information Mart for Intensive
Care (MIMIC-III v1.4.) dataset (Johnson et al.,
2016)1 for the experiments. MIMIC-III is the
benchmark dataset that has been widely used to
build a system for automated medical code pre-
diction (Shi et al., 2017; Mullenbach et al., 2018;
Li and Yu, 2020; Kim and Ganapathi, 2021). For
medical code prediction, discharge summary texts2

are used as inputs and corresponding ICD-9 codes3

are used as output of a system. In other words, the
medical code prediction is formulated as a multi-
label classification where the ground truth of the
given input includes one or more ICD-9 codes.

For benchmarking purposes, Mullenbach et al.
(2018) provides script codes that pre-process the
discharge summary text data and splits the dataset
by patient IDs into training, validation, and test-
ing sets4. Also, Mullenbach et al. (2018) cre-
ates two benchmark sets, with full ICD codes as
well as with the top 50 most frequent ICD codes,
which are denoted as MIMIC-III full and
MIMIC-III 50, respectively. The MIMIC-III
full dataset contains 52,728 discharge sum-
maries with 8,921 unique ICD codes and the
MIMIC-III 50 dataset contains 11,368 dis-
charge summaries with 50 unique ICD codes.

In this paper, we only consider the MIMIC-III
50 dataset. Following the previous works (Li and

1https://physionet.org/content/mimiciii/1.4/
2A discharge summary is a note that summarises informa-

tion about a hospital stay
3MIMIC-III dataset includes both diagnoses and proce-

dures which occurred during the patient’s stay
4https://github.com/jamesmullenbach/caml-mimic

Yu, 2020; Kim and Ganapathi, 2021; Vu et al.,
2021), we used Mullenbach et al. (2018)’s scripts
to split the data which results in 8,066 discharge
summaries for training, 1,573 for validation, and
1,729 for testing. Additionally, we extracted pa-
tients’ demographic information from the MIMIC-
III dataset, including gender, age, ethnicity, and
insurance type as a socioeconomic proxy.

2.2 Data pre-processing
Discharge Summary texts One of our objectives
is to reproduce the results by Li and Yu (2020)
and analyse the performance. Therefore, we fol-
lowed the Li and Yu (2020)’s pre-processing steps
which are the same as the work by Mullenbach
et al. (2018). Data cleaning and pre-processing
include the following steps: the discharge sum-
mary texts were tokenized, tokens that contain no
alphabetic characters were removed, and all tokens
were lowercased. All documents are truncated to a
maximum length of 2500 tokens. More details can
be found in the original paper (Mullenbach et al.,
2018).

Demographic data In the MIMIC-III dataset,
each unique hospital visit for a patient is assigned
with a unique admission ID. Therefore we used
admission ID to extract the demographic informa-
tion of patients. The following steps were taken
to pre-process the demographic data: firstly, age
values are computed based on the date of birth data
and the admission time data5. Secondly, the four
most frequent values in ethnicity data, including
‘WHITE’, ‘BLACK’, ‘ASIAN’, ‘HISPANIC’, are
being kept, whereas the remaining values are com-
bined into one group and labelled as ‘OTHER’.
Thirdly, the three most frequent values in insurance
type data, including ‘Medicare’, ‘Private’, ‘Medi-
caid’, are being kept, whereas the other values are
combined into one group ‘Other’.

3 Methods

3.1 Data analysis
We analysed the size, as well absolute as relative,
of each group and investigated relationships be-
tween variables. Also, we analysed the length of
discharge summary notes and the number of as-
signed ICD codes per note to investigate relation-

5The date of birth data of patients older than 89 have been
shifted and the original values cannot be recovered. Therefore,
we assigned the same age value of 90 to all patients who are
older than 89.
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ships between the length of notes and demographic
variables and between the number of ICD codes per
note and demographic variables. We also calculate
the differences in the ICD code label distributions
between the entire data and each group.

3.2 Label distribution distance metric
To calculate the differences in the ICD code la-
bel distributions between the entire data and each
group, we used cosine distance6 between ICD code
label representations, each of which is a multi-hot
vector R1×50. Specifically, we compute the aver-
age distances between the globally averaged label
vector and the label vector of each data point in
groups, which is defined as:

Dk =
1

Nk

Nk∑

i

1− u · vi
||u||2||vi||2

(1)

where u is the globally averaged label vector of the
entire data and vi is a label vector of a single data
point in the group k that contains Nk of data points.
A low distance score means the group contains
patients whose label set is close to the global label
distribution of the entire data.

3.3 Medical code prediction model
In this study, we study one of the state-of-the-art
medical code prediction models proposed by Li
and Yu (2020). There are three important architec-
tural details in Li and Yu (2020)’s model: firstly,
it uses a convolutional layer with multiple filters
where each filter has a different kernel size (Kim,
2014). This multi-filter convolutional layer allows
a model to capture various text patterns with differ-
ent word lengths. Secondly, residual connections
(He et al., 2016) are used on top of each filter in the
multi-filter convolutional layer. This residual con-
volutional layer enlarges the receptive field of the
model. Thirdly, the label attention layer (Mullen-
bach et al., 2018) is deployed after the multi-filter
convolutional layer. More details on the model ar-
chitecture can be found in the original paper (Li
and Yu, 2020). For implementation, we re-trained
a model by using a script7 and followed the same
hyperparameter setting except the early-stopping
setting: we used a macro-averaged F1 score as an
early-stopping criterion with a patience value 10.

6We used cosine distance because it is widely used to
calculate the similarity between high-dimensional vectors and
the distance is always normalised between 0 and 1.

7https://github.com/foxlf823/Multi-Filter-Residual-
Convolutional-Neural-Network

3.4 Evaluation metrics

Performance metrics To evaluate the model’s
performance, micro-and macro-averaged F1 scores
are widely used in the literature (Shi et al., 2017;
Mullenbach et al., 2018; Li and Yu, 2020). Micro-
averaged scores are calculated by treating each
<text input, code label> pair as a separate predic-
tion. Macro-averaged scores are calculated by av-
eraging metrics computed per label. For recall, the
metrics are computed as follows:

Micro-R =

∑L
l=1 TPl∑L

l=1 TPl + FNl

(2)

Macro-R =
1

|L|
L∑

l=1

TPl

TPl + FNl
(3)

where TPl and FNl, denote true positive exam-
ples and false negative examples for a specific
ICD-9 code label l, respectively. Since we use
MIMIC-III 50 dataset, |L| equals 50

Since we focus on performance differences in
terms of data subject’s demographics, we addi-
tionally use sample-averaged F1 scores. Sample-
averaged scores are calculated by computing scores
at the instance level and averaging over all in-
stances in the data set. For sample-averaged recall,
the metric is computed as follows:

Sample-R =
1

|N |
N∑

n=1

|yn ∩ ŷn|
|yn|

(4)

where yn and ŷn denote the ground truth labels
and the predicted labels for the n-th test example,
respectively and N denotes the total number of
test samples. Precision is computed in a similar
manner.

For statistical analysis, we conducted the
Kruskal-Wallis tests to investigate differences be-
tween the average performance scores of each
group. Also, we computed the Pearson correlation
coefficient and p-value for testing the correlation
between the training data size of the group and the
model performance on the group and between label
distance of the group and the model performance
on the group. All statistical tests were done by
using sample-F1 scores.

Error metrics Following previous studies (Hardt
et al., 2016; Chouldechova, 2017), we consider two
metrics to quantify the error of a trained model:
false negative rate (FNR) and false positive rate
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Count (n) Percentage (%)
Total 8066
Gender
F 3593 44.5
M 4473 55.5
Age
0-17 440 5.5
18-29 300 3.7
30-49 1148 14.2
50-69 2931 36.3
70-89 2817 34.9
90+ 430 5.3
Ethnicity
WHITE 5651 70.1
OTHER 1097 13.6
BLACK 799 9.9
HISPANIC 311 3.9
ASIAN 208 2.6
Insurance
Medicare 4440 55.0
Private 2636 32.7
Medicaid 709 8.8
Other 281 3.5

Table 1: Sample size (absolute and relative) of the
groups of gender, age, ethnicity, and insurance type.

(FPR) in the sample level. FNR is the fraction
of ICD codes that are failed to be predicted by a
system but included in a ground truth label set. FPR
is the fraction of ICD codes that are erroneously
predicted by a system but not included in a ground
truth label set. High FNR scores imply low recall
scores and high FPR implies low precision scores.
Two metrics are computed as follows:

FNR =
1

|N |
N∑

n=1

1− |yn ∩ ŷn|
|yn|

(5)

FPR =
1

|N |
N∑

n=1

1− |yn ∩ ŷn|
|ŷn|

(6)

To assess the risk of errors, we use the worst-case
comparison method (Ghosh et al., 2021). Also, we
conducted Mann–Whitney U tests to investigate
the differences between the error scores of the best
and the error scores of the worst models.

(a) Percentage of Medicare
within each ethnic group

(b) Percentage of Medicaid
within each ethnic group

Figure 1: Relationship between insurance and demographic
variables. 95% confidence intervals are illustrated by lines.

4 Results

4.1 Data analysis results
Table 1 summarizes the sample sizes of the data
set. It is shown that only gender variables are well-
balanced. For age groups, patients who are 50-89
take up to 71.2% of the data. Also, the data set
includes more White patients than patients from
other ethnic groups. Also, more than half of the
entire patients in the data set are patients with Medi-
care insurance and only 8.8% of patients are with
Medicaid insurance.

Figure 2: Kernel density estimate plot for visualising
the age distribution of each insurance type

Figure 1 shows the relationship between insur-
ance types, Medicare and Medicaid, and ethnic-
ity variables. It is observed that insurance type
has a certain relationship with the patient’s race:
57.7% of White patients are paying with Medicare,
whereas 38.9% of Hispanic patients are paying with
Medicare. On the other hand, 26.4% of Hispanic
patients are paying with Medicaid, whereas only
0.63% of White patients are paying with Medicaid.

Figure 2 illustrate the age distribution of each
insurance type. Medicare and Medicaid are two
separate, government-run insurance in the United
States. Medicare is available for people age 65 or
above and younger people with severe illnesses and
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(a) #. tokens/note (b) #. ICD codes/note

(c) #. tokens/note (d) #. ICD codes/note

Figure 3: The distribution of the length of a discharge sum-
mary note (a) and the number of ICD codes assigned per note
(d). Relationship between the length of notes and age groups
(c) and between the number of ICD codes per note and age
groups (d). X-axes indicate the average number of tokens in a
note (a, c) and the average number of ICD codes per note (b,d
). 95% confidence intervals are illustrated by lines.

Medicaid is available to low-income individuals
under the age of 65 and their families. Because
of the eligibility criteria for Medicare, Medicare
includes more older patients compared to other
insurance types, as we can see from the Figure 2.

Figure 3a and Figure 3b show the distribution
of the length of a discharge summary note and the
number of ICD codes assigned per note, respec-
tively. The average length is 1529.7 (std=754.9)
and the average number of codes per note is 5.7
(std=3.3). Figure 3c and Figure 3d illustrate re-
lationship between patients age and the length of
note and the number of codes per note, respectively.
From Figure 3c, it is observed that the length of
note tends to increase until age group 50-69 and
starts to decrease afterwards. From Figure 3d, pos-
itive correlations between age and the number of
ICD codes per note are observed. Other noticeable
patterns are not observed in other demographic vari-
ables (i.e., gender, insurance, ethnicity) with the
respect to the length of a discharge summary note
and the number of ICD codes assigned per note.

Figure 4 illustrates ICD code distributions. Fig-
ure 4a shows the entire data set has long-tail distri-
bution. Between female and male patient groups,
no noticeable difference between the label distribu-
tions is not observed. In terms of insurance type
and ethnicity, each group shows slightly different

Distance
Gender
F 0.613 (0.137)
M 0.615 (0.133)
Age
0-17 0.737 (0.097)
18-29 0.746 (0.111)
30-49 0.684 (0.133)
50-69 0.610 (0.129)
70-89 0.564 (0.116)
90+ 0.560 (0.118)
Ethnicity
WHITE 0.610 (0.135)
OTHER 0.607 (0.131)
BLACK 0.633 (0.135)
HISPANIC 0.646 (0.135)
ASIAN 0.626 (0.143)
Insurance
Medicare 0.579 (0.124)
Private 0.653 (0.135)
Medicaid 0.658 (0.136)
Other 0.691 (0.139)

Table 2: Average label distribution distances between
each group and the global data. Standard deviations are
added in parentheses.

ICD code distributions. Clear differences are ob-
served between age groups: patients whose ages
are younger than 30 (0-17, 18-29) show less spread
ICD code distributions with fewer ICD codes than
other age groups. The label distribution distances
between each group and the global data are sum-
marised in Table 2. Similar to the observations
from Figure 4, age groups 0-17 and 18-29 have the
bigger distance scores.

4.2 Performance & error analysis results

Table 3 summarises the prediction results on the
test set. It is observed that a re-trained model slight
underperforms compared to the original model (Li
and Yu, 2020). The different early-stopping set-
tings might cause this difference. Both models
achieve higher scores in micro-averaged metrics
than macro-averaged metrics, which means the
model’s performance on rare labels is worse than
on frequent labels. The sample-averaged metrics
are higher than macro-averaged metrics but lower
than micro-averaged metrics.

Noticeable performance differences are observed
between age groups, especially between patients
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(a) Entire data set

(b) Gender (c) Insurance type

(d) Age group (e) Ethnicity

Figure 4: ICD code distribution. X-axis indicates the sorted ICD code class label and Y-axis indicate the percentage of labels
observed in the training set.

younger than 30 years (18-29) and older than 90
(90+). The percentages of both groups in the train-
ing set are low but patients younger than 30 years
get distinctively worse predictions in terms of all F-
1 scores. Between different ethnic groups, it is ob-
served that Hispanic and Asian patients get worse
predictions compared to other patients. Between in-
surance types, it is also observed that patients with
other types of insurance and Medicaid insurance
get worse predictions compared to patients with
Medicare and Private insurance in sample-averaged
F-1 scores.

As the result of the Kruskal-Wallis test,
we found statistically significant differences in
sample-averaged F1 scores according to age
group (H(4)=46.57, p<0.001) and insurance type
(H(3)=18.58, p<0.001), separately. Close to be-
ing statistically significant is found according to
gender (H(1)=3.65, p=0.056) and no statistically

significant difference is found according to ethnic-
ity (H(4)=2.657, p=0.657).

Error metrics per group are summarised in Ta-
ble 4. Error metrics between groups show a similar
trend as the performance metrics: differences be-
tween age groups are the most pronounced. It is
observed that FNR scores tend to decrease as age
increases. However, the largest difference between
age groups is not significant (p=0.06). FPR also
tends to increase as the age increases in the age
groups under 90 and the largest difference between
the younger group (18-29) and the older group (70-
89) is significant (p<0.001). Patients with other
types of insurance take significantly worse scores
compared to Medicare patients in terms of FNR
scores. Interestingly, FPR shows different patterns.
For example, patients with Medicare get the worst
FPR scores and patients with Private insurance get
the best FPR scores.
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F-1 (%)
Micro Macro Sample

Total
Li and Yu (2020) 67.3† 60.8† -
Reproduced 64.4 59.2 60.6
Gender
F (44.5) 63.2 58.1 59.7
M (55.5) 65.3 59.4 61.4
Age
18-29 (3.7) 53.9 36.1 48.2
30-49 (14.2) 58.9 58.2 52.4
50-69 (36.3) 64.2 57.7 60.9
70-89 (34.9) 65.6 59.2 63.6
90+ (5.3) 67.1 55.9 65.0
Ethnicity
WHITE (70.1) 64.3 59.2 60.8
OTHER (13.6) 64.3 60.9 60.7
BLACK (9.9) 66.2 60.2 61.7
HISPANIC (3.9) 62.0 54.6 56.0
ASIAN (2.6) 64.7 51.2 59.3
Insurance
Medicare (55.0) 65.3 58.4 62.5
Private (32.7) 63.4 58.8 59.0
Medicaid (8.8) 62.9 59.3 57.8
Other (3.5) 56.0 49.3 50.5

Table 3: Performances on the MIMIC-III 50 test set. †

indicates performances reported in the paper by Li and
Yu (2020). Other results are obtained from a reproduced
model. The percentage of training samples (%) is added
in parentheses after the group labels. Best performances
are boldfaced and worst performances are underlined.

Figure 5: Label distance of each group and the model
performance on each group. Linear relationships are
illustrated by lines determined through linear regression.

4.3 Correlation test result.

As the result of correlation tests, we found a weak
positive correlation (0.43, p=0.09) between training
set size and performance. This result shows that
even though the model performs well for groups

FNR (%) FPR (%)
Total 40.6 3.8
Gender
F (44.5) 39.7 4.3
M (55.5) 38.0 4.2
largest diff. (↓) 1.7 0.1
smallest ratio (%) (↑) 95.8 98.2
Age
18-29 (3.7) 46.2 2.9
30-49 (14.2) 45.9 3.3
50-69 (36.3) 39.5 3.9
70-89 (34.9) 35.7 5.0
90+ (5.3) 34.1 4.4
largest diff. (↓) 12.2 2.1∗ ∗ ∗

smallest ratio (%) (↑) 73.7 57.7
Ethnicity
WHITE (70.1) 38.7 4.2
OTHER (13.6) 39.3 4.5
BLACK (9.9) 37.0 4.2
HISPANIC (3.9) 42.5 4.2
ASIAN (2.6) 40.3 3.8
largest diff. (↓) 5.4 0.8
smallest ratio (%) (↑) 87.2 83.3
Insurance
Medicare (55.0) 37.0 4.7
Private (32.7) 40.7 3.4
Medicaid (3.5) 41.0 3.6
Other (8.8) 46.9 4.2
largest diff. (↓) 9.8∗ 1.3∗ ∗ ∗

smallest ratio (%) (↑) 79.0 71.5

Table 4: Errors on the MIMIC-III 50 test set. The
percentage of training samples (%) is added in paren-
theses. Best performances are boldfaced and worst per-
formances are underlined. ∗ and ∗ ∗ ∗ indicate the er-
ror of the worst model is greater than the error of the
best with statistical significance of p=0.05 and p=0.001
(Mann–Whitney U test), respectively.

with more training data in general, the relation-
ship is not statistically significant. Contrary to this
result, we found a very strong negative correla-
tion (-0.95, p<0.001) between label distance and
performance. This result implies that the model
performs poorly in the groups containing many pa-
tients whose label set is different from the global
label distribution of the entire data. The group-
specific correlations between label distances and
the performances are illustrated in Figure 5. It is
observed that the negative correlation is much more
pronounced between different age groups than in
other groups.
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5 Discussion

Impact of the study. The MIMIC-II dataset for
medical code prediction provides opportunities to
develop and benchmark models and facilitates nat-
ural language processing research in the clinical
domain. Since it is one of the most frequently used
benchmark datasets for medical code prediction,
it has a huge impact on the quality of the devel-
oped models. For example, previous studies (Mul-
lenbach et al., 2018; Li and Yu, 2020; Kim and
Ganapathi, 2021; Vu et al., 2021; Ji et al., 2021)
have shown that the ICD code distribution in the
MIMIC-III dataset is imbalanced and it results in
performance differences between ICD codes. In
this study, we investigated the data imbalance of
the MIMIC-III 50 data, in terms of the data sub-
ject’s demographic factors, and its effect on the
model performance for ICD code prediction.

Evaluation metrics for fairness. In this paper,
we proposed metrics that can correctly evaluate
the model’s performance in terms of individual pa-
tients’ benefits and potential harms. Especially,
we formulated the medical code prediction task
as a multi-label classification task. From a ma-
chine learning perspective, sample-based metrics
and label-based metrics are used to evaluate the
performance of a model in a multi-label classifica-
tion task (Zhang and Zhou, 2013). Sample-based
and label-based metrics focus on different aspects
of model performance, one in sample-wise perfor-
mance and the other in label-wise performance.
However, label-based metrics are more frequently
used in the literature (Xiao et al., 2018; Mullenbach
et al., 2018; Li and Yu, 2020; Kim and Ganapathi,
2021; Vu et al., 2021; Ji et al., 2021). Considering a
healthcare application setting where all patients are
expected to receive an equal quality of service, we
argue that using sample-based metrics is required
to evaluate the model performance. Also, we pro-
pose to use disaggregated metrics (Barocas et al.,
2021), which are metrics evaluated on each group
of data, to ensure that a model is equally accurate
for patients from different demographic groups (Ra-
jkomar et al., 2018; Gichoya et al., 2021).

Correlation between demographic variables
We analysed the MIMIC-III dataset to identify the
underlying data imbalance of demographic vari-
ables. Our data analysis results show that the
MIMIC-III dataset is imbalanced in terms of the
data subject’s demographics. However, we also

found a correlation between demographic variables.
For example, age is correlated with insurance type:
patients older than 65 are likely to be insured with
Medicare. This confounding factor across demo-
graphic variables makes it complicated to interpret
the main effects of the data subject’s demographics
on the model performance.

Correlation between label distance and perfor-
mance Based on the previous study arguing the
performances of models tend to decrease when the
ICD codes have fewer training samples (Ji et al.,
2021), we hypothesised that the performance of the
model on a demographic group is correlated with
the number of data of that group in the training
data set. However, the analysis results do not sup-
port this hypothesis: even though the performance
differences are observed across some demographic
groups (i.e., across age groups and insurance types),
the correlation between the number of training data
of the group and the performance of the group is
weak. Instead, we found that the label distance of
the group is negatively correlated with the perfor-
mance of the group. This result suggests that when
the group contains patients whose label set is differ-
ent from the global label distribution of the entire
data, it is likely that the model performs poorly in
that group.

In terms of machine learning perspective, this
issue can be seen as a label shift: the train and test
label distribution is different while the feature dis-
tribution remains the same (Lipton et al., 2018; Guo
et al., 2020). To address this issue, one interesting
area for future work may be in re-training the classi-
fier with adjusted training sample weights (Lipton
et al., 2018) or adapting the predictions of a pre-
trained classifier (Saerens et al., 2002; Du Plessis
and Sugiyama, 2014; Alexandari et al., 2020).

Limitations and future directions There are
several limitations to this study. Firstly, we used a
subset of MIMIC-III data with the top 50 most fre-
quent ICD codes to simplify the analysis. Since the
full MIMIC-III dataset contains more than 47,000
ICD codes, further study is required. Secondly,
we only studied the model proposed by Li and Yu
(2020). One potential direction is to investigate
the performance of models using pre-trained lan-
guage models (Zhang et al., 2020; Ji et al., 2021).
Thirdly, we found an issue of confounding across
demographic variables, which makes it complicates
the interpretation of the main effects of the data
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subject’s demographic factors on the model perfor-
mance. To address this issue, further analysis of
multiple intersectional groups or causal analysis is
required. In future work, we will also investigate
how to build a model that can perform equally well
on across all demographic groups.

6 Conclusion

In this study, we performed an empirical analysis to
investigate the data imbalance of the MIMIC-III 50
dataset and its effect on the model performance for
ICD code prediction. We found that demographic
imbalance exists in the MIMIC-III 50 dataset and a
medical code prediction model performs differently
across some demographic groups. Interestingly, the
correlation between the number of training data of
the group and the performance of the group is weak.
Instead, we found a negative correlation between
the label distance of the group and the performance
of the group. This result suggests that the model
tends to perform poorly in the group whose la-
bel distribution is different from the global label
distribution. Potential future research direction in-
cludes further analysis of the main effects of the
data subject’s demographic factors on the model
performance and investigation of building a robust
and fair model that can perform equally well across
demographic groups with different label distribu-
tions.
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Abstract

In this paper, we investigate ensemble methods
for fine-tuning transformer-based pretrained
models for clinical natural language processing
tasks, specifically temporal relation extraction
from the clinical narrative. Our experimental
results on the THYME data show that ensem-
bling as a fine-tuning strategy can further boost
model performance over single learners opti-
mized for hyperparameters. Dynamic snapshot
ensembling is particularly beneficial as it fine-
tunes a wide array of parameters and results in
a 2.8% absolute improvement in F1 over the
base single learner.

1 Introduction

The clinical narrative in electronic medical records
(EMRs) can provide critical information for im-
proving quality of care, patient outcomes, and
safety. Extracting information from EMRs has
been an active area of research in recent years
due to the advances in natural language processing
(NLP) techniques. As transformer-based neural
language models, such as Bidirectional Encodings
Representations from Transformers (BERT) (De-
vlin et al., 2019), have achieved state-of-the-art
performance for a variety of NLP tasks they have
gained increased prominence in clinical NLP.

However, in the clinical domain, data is often
sparsely labeled and not shareable as it is guarded
by patient confidentiality provisions. Building
large transformer-based models from scratch using
such data is thus often infeasible. A common ap-
proach has been to take models pretrained on large
general domain corpora, and continue pretraining
them on clinical corpora to derive domain-specific
language models (Lee et al., 2020; Alsentzer et al.,
2019; Beltagy et al., 2019; Lin et al., 2021).

The weights of pretrained models are adjusted
for a specific clinical NLP task through the process
of fine-tuning. This process often involves search-
ing for optimal hyperparameters while continuing

to train the pretrained model on a domain-specific
dataset. The search is challenging due to the high
dimensionality of the search space, which includes
random seed, initial learning rate, batch size, etc.
Given the limited computing resources available in
practice, only a small number of values for each
hyperparameter can be explored, and often only a
subset of hyperparameters can be fine-tuned. Are
we able to retain the benefits from the existing
search efforts and to further improve model perfor-
mance for the same task or new tasks without too
much extra effort? Ensemble methods have been
successful in boosting predictive performance of
single learners (Wang et al., 2003; CireşAn et al.,
2012; Xie et al., 2013) and thus are promising. In
this paper, we will investigate ensemble-based fine-
tuning methods to answer this question.

Another downside of the limited search capabil-
ity is that some hyperparameters are unexplored in
past efforts. For example, learning rate schedules
have rarely been explored in previous efforts of
fine-tuning. One promising approach is training
with cyclical learning rates (e.g., cosine annealing
learning rate and slanted triangular learning rate),
which have been shown to achieve improved clas-
sification accuracy in fewer iterations (Loshchilov
and Hutter, 2016; Smith, 2017). We will explore
the impact of cyclical learning rates in fine-tuning
methods in the context of an ensemble algorithm.
Major contributions: In this work, (1) we use en-
sembles to investigate the impact of various hyper-
parameters for fine-tuning pretrained transformer-
based models for the clinical domain by focusing
on one critical task – temporal relation extraction;
(2) we conduct comprehensive experiments and the
empirical findings show that training epoch, ran-
dom initialization, and data order have potentially
significant influence; (3) we explore multiple hy-
perparameters in a single framework with the aim
of building computationally efficient fine-tuning
strategies to boost model performance on top of
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any given base setting.

2 Temporal Relation Extraction in
Clinical Narratives

We explore the ensemble-based fine-tuning meth-
ods within the context of temporal relation extrac-
tion from the EMR clinical narrative. Temporal
relation extraction and reasoning in the clinical do-
main continues to be a primary area of interest due
to the potential impact on disease understanding
and, ultimately, patient care. A significant body
of text available for this purpose is the THYME
(Temporal Histories of Your Medical Events) cor-
pus (Styler IV et al., 2014), consisting of 594 de-
identified clinical and pathology notes on colon
cancer patients and 600 radiology, oncology and
clinical notes on brain cancer patients, all from the
EMR of a leading US medical center. This dataset
has previously undergone a variety of annotation ef-
forts, most notably temporal annotation (Styler IV
et al., 2014). It has been part of several SemEval
shared tasks such as Clinical TempEval (Bethard
et al., 2017) where state-of-the-art results have been
established. We use the THYME++ version of the
corpus and the train/dev/test splits as described by
Wright-Bettner et al. (2020).

3 Ensemble-based Fine-Tuning and
Experimental Setup

Our intuition behind using ensembles for fine-
tuning is to leverage models from local optima
to obtain greater coverage of the feature space, and
get consensus for the predictions so that the ensem-
ble learner can reduce the overall risk of making a
poor selection. In this section, we first describe our
setting and implementation of a base model based
on the state-of-the-art setting described by Lin et al.
(2021). Then we discuss fine-tuning several hy-
perparameters during training and their potential
impact on model performance. Based on these dis-
cussions, we then introduce the bagging ensemble
method (Breiman, 1996) and the dynamic snapshot
ensemble method (Wang et al., 2020) and apply
them to the fine-tuning process.

3.1 Base setting and implementation

To set up an ensemble learning method, we
first need to set up a base setting as a start-
ing point. Based on the results and dis-
cussions of Lin et al. (2021), we choose

PubmedBERTbase-MimicBig-EntityBERT1 as our
pretrained model. The fine-tuning setting in that
work includes random seed 42, batch size 32, epoch
number 3, learning rate 4e-5, learning rate sched-
uler linear, max sequence length 100, and gradient
accumulation steps 2. We adopt the same setting in
our base implementation. We use an NVIDIA Titan
RTX GPU cluster of 7 nodes for fine-tuning exper-
iments through HuggingFace’s Transformer API
(Wolf et al., 2020) version 4.13.0. We leverage the
run_glue.py pytorch version as our fine-tuning
script. Unless specified, default settings are used
in our experiments. Due to differences in the fine-
tuning script and some missing settings, we were
unable to reproduce the exact scores reported in
Lin et al. (2021). Results with our implementation
are reported as BASE. We use our implementation
as the starting point to conduct the ensemble exper-
iment and compare ensemble results with BASE.

3.2 Hyperparameters in fine-tuning
There are more than a hundred hyperparameters in
the fine-tuning process. Among those hyperparam-
eters, not every one has a major impact on model
performance. Some of them are preset with default
values that have been shown to be robust in empir-
ical experiments, such as the default values of β1,
β2, and ϵ for AdamW optimizer. In our work, we
investigate several hyperparameters which poten-
tially have high impact on model performance. We
apply ensemble learning on the following hyperpa-
rameters to reduce the variance of predictions and
reduce generalization error:

Random seed is set at the beginning of training.
It impacts the initialization of models and trainers,
as well as the convergence of scholastic learning
algorithms. We run base fine-tuning 5 times but
with 5 random seed values (42, 52, 62, 72, 82).

Learning rate scheduler is the scheduling algo-
rithm for changing the learning rate during training.
In the previous fine-tuning works, the linear sched-
uler is used by default. We run base fine-tuning
with 3 different learning rate schedulers: linear,
cosine with restarts, and polynomial.

Epoch number is the number of passes over
the data that the training process takes. A small
epoch number may lead to underfitting while a
large epoch number tends to cause overfitting to

1https://physionet.org/content/
entity-bert/1.0.0/
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the domain-specific training data. We run the base
fine-tuning with 5 epoch numbers (3, 6, 9, 12, 15).

Pretrained model is the model checkpoint from
which fine-tuning begins. The PubMedBERT
model (Gu et al., 2021) has been shown to
outperform other BERT-based models for temporal
relation extraction in clinical narratives (Lin et al.,
2021). In our experiments, we leverage the three
PubMedBERT models released by Lin et al. (2021):
PubmedBERTbase-MimicBig-EntityBERT,
PubmedBERTbase-MimicSmall-EntityBERT,
and PubmedBERTbase-MimicBig-RandMask.

Random shuffling of training and validation data
can avoid selecting models that overfit to a single
validation set during fine-tuning. In contrast to
traditional random shuffling of training instances
during training, the random shuffling in this work
refers to mixing training and validation datasets and
then resampling train/validation datasets with the
same size and class distribution from the mix pool.
We generate 5 different samplings of splits using
random seeds (42, 52, 62, 72, 82). We then run
base fine-tuning 5 times with different samplings.

3.3 Bagging ensemble
Bagging ensemble is the simple and straightfor-
ward thus is commonly used in various tasks. Com-
ponent learners are trained independently in paral-
lel and are combined following some kind of com-
bination method. We leverage bagging ensemble
and use majority voting for generating ensemble
predictions on each hyperparameter variable. For
example, for the random seed variable, we com-
bine predictions from 5 fine-tuned models trained
with different random seeds using majority voting,
denoted as Seed-ENS. We report the ensemble per-
formance regarding each hyperparameter variable
in Table 1 together with BASE.

3.4 Dynamic snapshot ensemble
We also explore dynamic snapshot ensembles first
proposed in (Wang et al., 2020), which we call
DynSnap-ENS in this paper. The DynSnap-ENS
framework allows a pretrained model to be fine-
tuned multiple times (i.e., multiple training runs)
sequentially with different random seeds and data
samplings of train/validation splits. It uses a cyclic
annealing schedule and cyclic snapshot strategy to
periodically save the best model during each train-
ing run. After each training run, a dynamic pruning
algorithm is applied to select a few single learners

Figure 1: Training history of DynSnap-ENS on learning
rate, training loss, and validation accuracy along epochs.
Ensemble size is 5. The sequential training runs are
run1-run2-run3. The selected single learners are high-
lighted with yellow squares.

from the saved ones which can lead to better per-
formance of the ensemble learner with theoretical
guarantees. The sequential training runs stop when
the accumulated number of selected single learners
reaches a preset ensemble size. The total amount
of training runs is a dynamic value rather than a
preset value, which is determined by the snapshot
strategy and pruning factor during the sequential
training. Take Figure 1 as an example. The preset
ensemble size is 5, and training epoch is 15. Train-
ing run1 is set with random seed 42 and a data split.
After the training, top 4 models are saved based
on validation accuracy, and among those 2 models
are selected as ensemble components after pruning.
Since 2 is smaller than 5, training run2 is triggered
with random seed 52 and another data split. This
process will repeat until the accumulated number
of ensemble components reaches the ensemble size.
More details of the learning algorithm can be found
in the original paper.

We are the first to apply DynSnap-ENS to
solve challenges in clinical text classifications. It
enables diversity in data and model parameters
through a cyclic learning rate, multiple random
seeds, epoch numbers, and training and validation
datasets. These hyperparameters are explored in
one learning framework, which is computationally
efficient compared to independent searches for each
hyperparameter in Lin et al. (2021).

In our experiments, we implemented DynSnap-
ENS on the top of the base fine-tuning script. The
ensemble size is set as 5 (equal to the ensemble
size of bagging ensemble learners) and majority
voting is used to generate ensemble predictions. We
reuse base fine-tuning settings except that we set
cosine with restarts as the learning rate scheduler
and set the learning rate to restart every 3 epochs
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OVERLAP CONTAINS-1 CONTAINS BEFORE-1 BEFORE

Method P R F1 P R F1 P R F1 P R F1 P R F1
BASE 0.611 0.482 0.539 0.749 0.758 0.754 0.775 0.777 0.776 0.51 0.428 0.465 0.537 0.416 0.469
Seed-ENS 0.672 0.46 0.546 0.753 0.757 0.755 0.785 0.79 0.788 0.562 0.404 0.47 0.57 0.411 0.477
LRScheduler-ENS 0.652 0.48 0.553 0.741 0.758 0.749 0.789 0.781 0.785 0.535 0.406 0.462 0.568 0.396 0.467
Epoch-ENS 0.681 0.471 0.556 0.774 0.765 0.769 0.807 0.779 0.793 0.599 0.376 0.462 0.627 0.379 0.472
PretrainedModel-ENS 0.676 0.458 0.546 0.735 0.769 0.752 0.786 0.788 0.787 0.536 0.42 0.471 0.564 0.408 0.473
DataShuffle-ENS 0.711 0.458 0.557 0.737 0.771 0.754 0.806 0.788 0.797 0.586 0.384 0.464 0.617 0.429 0.506
DynSnap-ENS 0.695 0.464 0.557 0.769 0.762 0.766 0.816 0.778 0.796 0.579 0.381 0.459 0.636 0.404 0.494

NOTED-ON-1 BEGINS-ON NOTED-ON ENDS-ON OVERALL

Method P R F1 P R F1 P R F1 P R F1 P R F1
BASE 0.739 0.824 0.779 0.637 0.581 0.608 0.706 0.55 0.618 0.773 0.574 0.659 0.671 0.599 0.633
Seed-ENS 0.766 0.809 0.787 0.705 0.537 0.61 0.794 0.55 0.65 0.799 0.602 0.687 0.712 0.591 0.646
LRScheduler-ENS 0.765 0.81 0.787 0.669 0.569 0.615 0.792 0.543 0.644 0.763 0.582 0.66 0.697 0.592 0.640
Epoch-ENS 0.771 0.816 0.793 0.771 0.569 0.655 0.782 0.564 0.656 0.807 0.635 0.711 0.732 0.596 0.657
PretrainedModel-ENS 0.769 0.801 0.784 0.664 0.531 0.59 0.777 0.521 0.624 0.812 0.602 0.692 0.702 0.589 0.640
DataShuffle-ENS 0.758 0.832 0.793 0.682 0.562 0.616 0.758 0.536 0.628 0.854 0.553 0.672 0.723 0.590 0.650
DynSnap-ENS 0.768 0.822 0.794 0.726 0.613 0.664 0.777 0.571 0.658 0.831 0.623 0.712 0.733 0.602 0.661

Table 1: Ensemble model performance on THYME test colon data. NONE - no relation, CONTAINS-1 - arg 2
contains arg 1, CONTAINS - arg 1 contains arg2, BEFORE-1 - arg 2 before arg 1, BEFORE - arg 1 before arg 2,
NOTED-ON-1 - arg 2 noted on arg 1, BEGINS-ON - arg 1 begins on arg 2, NOTED-ON - arg 1 noted on arg 2,
ENDS-ON - arg 1 ends on arg 2. NONE scores are omitted from the table and the OVERALL is the macro average
score excluding NONE.

which, based on the base setting, allows the model
to converge to a reasonable state before each restart.
The total number of epochs for each training run
is 15 and we save the top 4 models for pruning
based on validation accuracy. The random seeds
and shuffling datasets for the sequential training
runs are the same with the 5 options described in
Section 3.2. The logic behind the above settings
is to retain the benefits from the base fine-tuning
settings as much as possible. Codes and settings to
reproduce the results are available here2.

4 Results and Discussion

We show model performance in Table 1. Compared
with BASE, all ensemble methods boost the overall
F1 score, with DynSnap-ENS achieving the highest
improvement, 2.8% absolute. The improvement is
mainly due to the increase in precision, 6.2% abso-
lute. This complies with the theoretical findings in
Wang et al. (2020) that ensemble can improve pre-
diction accuracy (i.e. precision). However, there is
no proof that ensembling can improve recall.

Among the bagging ensembles, diversity in
epoch number (Epoch-ENS) leads to the largest
improvement, 2.4% absolute. Diversity in data
order (DataShuffle-ENS) and random seeds (Seed-
ENS) achieve the next best improvement, 1.7%

2https://github.com/christa60/
transformer-dynamic-snapshot-ensemble

and 1.3% absolute, while diversity in learning rate
schedulers (LRScheduler-ENS) and PubMedBERT
variants (PretrainedModel-ENS) obtain the least
improvement, 0.7% absolute. In general, we see
that selecting a single model is a riskier choice than
ensembling several models when trying to avoid
overfitting or underfitting the training data.

However, all sources of diversity are not equal,
with the diversity from different epochs of a train-
ing run being most helpful, and diversity of learn-
ing rate schedulers and diversity of PubMedBERT
variants helping little. A possible reason is that
both LRScheduler-ENS and PretrainedModel-ENS
have only 3 components while the other ensemble
learners have 5 components, as Wang et al. (2020)
proved that a better precision can be achieved if
more component learners are combined. However,
that would not explain the superiority of Epoch-
ENS to DataShuffle-ENS and Seed-ENS, and an
improvement of the ensemble’s performance is not
guaranteed if many poor learners are combined.
DynSnap-ENS outperforms all the other ensemble
learners, likely because it takes advantage of all the
individual types of diversity: data, model parame-
ters, epochs, and learning rate. Figure 1 presents
the training history on learning rate, training loss,
and validation accuracy along epochs. We can ob-
serve that learning behavior changes a lot with re-
spect to each source of diversity. DynSnap-ENS
combines those sources in a computationally effi-

106



cient way and selects top single learners (marked
in yellow squares) from a more diversified pool to
guarantee an improvement in the final ensemble
learner.

5 Conclusion

We investigated ensemble methods in fine-tuning
transformer-based pretrained models for clinical
NLP tasks, specifically temporal relation extrac-
tion from the clinical narrative. Our experimental
results on the THYME++ data showed that ensem-
bling can further boost performance, and that dy-
namic snapshot ensembling is especially effective.
Future works include: 1) investigating the impact
of ensemble size in model performance; 2) explor-
ing hyperparameters regarding the snapshot strat-
egy and pruning algorithm; 3) testing the trained
ensemble learners on an expanded set of clinical
domain tasks.
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Abstract
Sequence-to-sequence models are appealing be-
cause they allow both encoder and decoder to
be shared across many tasks by formulating
those tasks as text-to-text problems. Despite
recently reported successes of such models, we
find that engineering input/output representa-
tions for such text-to-text models is challeng-
ing. On the Clinical TempEval 2016 relation
extraction task, the most natural choice of out-
put representations, where relations are spelled
out in simple predicate logic statements, did
not lead to good performance. We explore a
variety of input/output representations, with the
most successful prompting one event at a time,
and achieving results competitive with standard
pairwise temporal relation extraction systems.

1 Introduction

Extracting temporal information from texts is criti-
cal in the medical domain for prognostication mod-
els, studying disease progression, and understand-
ing longitudinal effects of medications and treat-
ments. The standard route for extracting temporal
information is by casting it as a relation task be-
tween time expressions and medical events. This
relation extraction task is approached by forming
relation candidates by pairing potential relation
arguments and training a classifier to determine
whether a relation exists between them. This pair-
wise approach is taken by a state-of-the-art tem-
poral relation extraction system (Lin et al., 2019),
which uses a pretrained language model such as
BERT (Devlin et al., 2019) for representing the
training examples.

The goal of this paper is to investigate a genera-
tive approach to relation extraction as an alternative

to the traditional pairwise method. We investigate
whether it is possible for a sequence-to-sequence
(seq2seq) model such as T5 (Raffel et al., 2020),
BART (Lewis et al., 2020), and SciFi (Phan et al.,
2021) to ingest a chunk of clinical text, often con-
taining multiple sentences, and generate human-
readable output containing all relation instances in
the input. This goal proved to be more ambitious
than we anticipated, but ultimately we succeeded
in designing input/output representations that were
competitive with state-of-the-art.

Using generative models for relation extraction
has received little attention and no work exists on
using these models for temporal relation extraction.
Paolini et al. (2021) use natural language to encode
sentence-level relations but mapping the output
text to the input arguments is not trivial and re-
quires an alignment algorithm. Huang et al. (2021)
formulate relation extraction as a template genera-
tion problem but their approach requires a complex
cross-attention guided copy mechanism. We ex-
plore sentence- as well as cross-sentence relations
and encode relations in a structured and human-
readable form in which the relation arguments can
be easily mapped to the reference entities in the
input.

In our experiments, we use SemEval-2016 Task
12: Clinical TempEval data (Bethard et al., 2016),
which annotated time expressions, events, and tem-
poral relations, specifically the CONTAINS rela-
tion that links times and events to their narrative
containers (Pustejovsky and Stubbs, 2011). For ex-
ample, in Table 1 the time expression postop in the
second sentence contains the event chemotherapy.
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2 Methods

2.1 Input and output representation variants
While a natural input/output representation would
have been to keep everything fully in the realm
of words (e.g., the NATURAL row in table 1), this
would have made reconstructing the character off-
sets of these relations difficult. For example, if the
system produced 1998 contains tumor for an input
where the surface form tumor appeared multiple
times (a common occurrence in clinical data), we
would not be able to determine which tumor event
to link to the date.

Thus, we focused on representations where we
could deterministically recover the character off-
sets of the events and times being related. We took
as input chunks of text, typically spanning multiple
sentences to capture cross-sentence relations. We
appended a slash character and an integer index to
each event and time expression to disambiguate sur-
face forms that occured multiple times in the text.
We also marked all reference events and time ex-
pressions with special tags to make the candidates
for relation arguments transparent to the model. Ex-
amples of such input formatting can be found in
the bottom three rows of table 1.

Given this setup, our original goal was a seq2seq
model that would take as input the formatted text
and generate all temporal relations as output. Our
first input/output representation encoded the rela-
tions as predicate logic statements with contains as
the predicate, event/time indices as the arguments,
and predicates sorted by the position of the first ar-
gument (table 1, RELATIONS variant). The sorting
is necessary to introduce a notion of order into an
otherwise order-less relation extraction problem,
i.e., to transform a set prediction problem into a
sequence prediction problem.

Our second input/output representation encoded
the temporal relations as classifications over each
event or time, where the model must predict a tem-
poral container for each event and each time, gen-
erating the underscore character if no container is
found (table 1, CONTAINERS variant). Preliminary
error analysis had indicated that models based on
the RELATIONS variant struggled to decide when
to produce or omit an argument, and the CONTAIN-
ERS variant removed that choice.

Our final input/output representation was similar
to CONTAINERS, but rather than asking the model
to predict all temporal containers, it prompted the
model with a focus event or time and asked only for

the temporal container for that. We achived this by
attaching the index of the focus event or time at the
end of the formatted input text after a vertical bar
separator character, and using as output only the
index of the container event or time or underscore
to indicate no relation (table 1, 1-CONTAINER vari-
ant). Thus, for every chunk of text, the number of
examples that we generate equals the total number
of events and times in the chunk.

Note that traditional pairwise relation extraction
models, require O(n2) examples to encode the re-
lations, where n is the total number of events and
times in the chunk. Our RELATIONS and CON-
TAINERS representations require m training exam-
ples, where m is the number of chunks (m << n)
and our 1-CONTAINER representation requires n
examples, thus potentially reducing training time
and memory requirements.

2.2 Models

For seq2seq models, we compare BART, T5, and
SciFive (a clinical version of T5). The models
are trained to receive a chunk of text and generate
output as described in section 2.1.

Chunk size plays an important role in in-
put/output representations: short chunks have
fewer relation instances and seq2seq models have
less trouble predicting them correctly. But short
chunks miss long-distance relations, which often
span multiple sentences. Longer chunks are harder
for seq2seq models, but they capture more long-
distance relations. This tension plays a role in the
performance of our models and we treat chunk size
as a hyperparameter that we tune on the develop-
ment set.

Additionally, we observe that our 1-CONTAINER

variant does not require a full auto-regressive de-
coder since models only need to generate a sin-
gle integer (the index of the container). We thus
study two encoder-only models. In BERT-softmax,
we follow the standard text classification approach
with BERT: add a randomly-intitialized softmax
layer on top of the last layer’s contextualized rep-
resenatation of the [cls] token, where the sof-
max is over all items in the vocabulary. In BERT-
similarity, we instead compute similarity (the dot
product) between the [cls] token and all word
piece embeddings in the vocabulary, apply softmax
to the similarity scores, and select the item with the
largest score. Note that the classification layer of
BERT-softmax must be trained from scratch, while
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Variant Input Output

NATURAL 2001: Left breast lumpectomy followed by radiation
therapy. She received no postop chemotherapy. She
was given tamoxifen for five years and then Femara.

2001 contains lumpectomy.
postop contains chemotherapy.
five years contains tamoxifen.

RELATIONS task: relext; text: <t> 2001/0 </t>: Left breast
<e> lumpectomy/3 </e> followed by radiation <e>
therapy/4 </e>. She received no <t> postop/1
</t> <e> chemotherapy/5 </e>. She was given
<e> tamoxifen/6 </e> for <t> five years/2 </t>
and then <e> Femara/7 </e>.

contains(0; 3) contains(1; 5)
contains(2; 6)

CONTAINERS task: relext; text: <t> 2001/0 </t>: Left breast
<e> lumpectomy/3 </e> followed by radiation <e>
therapy/4 </e>. She received no <t> postop/1
</t> <e> chemotherapy/5 </e>. She was given
<e> tamoxifen/6 </e> for <t> five years/2 </t>
and then <e> Femara/7 </e>.

contains(0; _) contains(3; 0)
contains(4; _) contains(1; _)
contains(5; 1) contains(6; 2)
contains(2; _) contains(7; _)

1-CONTAINER task: relext; text: <t> 2001/0 </t>: Left breast
<e> lumpectomy/3 </e> followed by radiation <e>
therapy/4 </e>. She received no <t> postop/1
</t> <e> chemotherapy/5 </e>. She was given
<e> tamoxifen/6 </e> for <t> five years/2 </t>
and then <e> Femara/7 </e>. | 3

0

Table 1: Sample input/output (I/O) representation variants. Bold text indicates task prompt conventions. Note that
the 1-Container variant shows only one relation; seven more instances would be required to represent classifications
for all eight input events and times.

BERT-similarity does not require any layer to be
trained from scratch.

2.3 Experiments

We use BART (facebook/bart-base), T5 (t5-base),
SciFive (razent/SciFive-base-Pubmed_PMC), and
BERT (bert-base-uncased) from the HuggingFace
model hub1. Our code is based on the HuggingFace
Transformers library (Wolf et al., 2020) and will
be released publically upon publication. We use
AdamW optimizer and tune its learning rate and
weight decay as well as other model hyperparame-
ters such as chunk size, beam size, and the number
of epochs on the official Clinical TempEval devel-
opment set. After tuning the models, we retrained
on the training and development sets combined.
We report the results on the Clinical TempEval test
set using the official evaluation script.

We compare to three baselines from Lin et al.
(2019). BERT-T and BioBERT are standard pair-
wise relation extraction BERT-based (‘bert-base’

1https://huggingface.co/models

and ‘biobert’, respectively) models that generate
relation candidates by pairing all events and times
in a 60-token chunk of text and train a three-way
classifier to predict whether a relation exists be-
tween them. The negative class represents the no-
relation scenario. The positive class is split into
two labels, CONTAINS, and CONTAINED-BY, de-
pending on the order of the arguments. BERT-TS
augments the aforementioned BERT system with
high-confidence ’silver’ instances obtained through
self-training. The BioBERT-based system is cur-
rently the state-of-the-art on this dataset.

Chunks: We apply simple preprocessing to the
TempEval data to generate the inputs and outputs
for our models as follows: (1) we split the corpus
into sections (e.g. medications, family history),
which are marked with standardized section head-
ers; (2) we split sections into sentences using a sim-
ple regular expression; (3) we form chunks by con-
catenating adacent sentences up to the chunk_size
hyperparameter. A sample chunk is shown in ta-
ble 1.
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N Model I/O Representation Chunk P R F1

1 BERT-T (Lin et al., 2019) Pairwise n/a 0.735 0.613 0.669
2 BERT-TS (Lin et al., 2019) Pairwise n/a 0.670 0.697 0.683
3 BioBERT (Lin et al., 2019) Pairwise n/a 0.674 0.695 0.684

4 BERT-softmax 1-CONTAINER 50 0.714 0.530 0.608
5 BERT-similarity 1-CONTAINER 50 0.712 0.540 0.615

6 BART RELATIONS 50 0.709 0.231 0.348
7 BART CONTAINERS 75 0.480 0.266 0.342
8 BART 1-CONTAINER 175 0.651 0.671 0.661

9 T5 RELATIONS 50 0.675 0.570 0.618
10 T5 CONTAINERS 75 0.684 0.625 0.654
11 T5 1-CONTAINER 75 0.718 0.632 0.672
12 T5 1-CONTAINER 175 0.717 0.675 0.696

13 SciFive RELATIONS 50 0.669 0.503 0.574
14 SciFive CONTAINERS 75 0.657 0.609 0.632
15 SciFive 1-CONTAINER 175 0.691 0.683 0.687

Table 2: Generative relation extraction and baseline performance on Clinical TempEval test set using reference
relation arguments (events and times). Top three systems include current SOTA (line 3) on this dataset.

3 Results and Discussion

Only one input/output variant was competitive with
baseline systems: the 1-CONTAINER variant (ta-
ble 2, lines 12 and 15) performed at least as well
or better than all three baselines (lines 1-3). T5’s
good performance is notable since it is more com-
parable with BERT-T (line 1), which, unlike the
other two baselines did not have acccess to addi-
tional training examples (BERT-TS) or in-domain
data (BioBERT). On the other hand, suprisingly,
SciFive did not have an advantage over T5 despite
having been pretrained on in-domain data.

Our encoder-only systems (lines 4 and 5)
performed much worse than the comparable 1-
CONTAINER variant for the seq2seq models. This
is likely due to the lack of a full pretrained decoder,
although the similarity-based variant (line 5) miti-
gated that disadvantage a little.

BART performed worse than the other seq2seq
models across all input/output variants although its
performance could potentially be improved by a
much more extensive hyperparameter search. We
leave an exploration into why its “out-of-the-box”
performance was inferior for future work.

Chunk size issues: The number of reference
relations can grow quadratically with the size of the
input as the number of potential relation arguments
in the input grows (e.g. it is possible for a time

expression to contain multiple events). Because of
this, the CONTAINERS input/output variant had a
problem on the output side: we observed that the
seq2seq maximum length limit (512 word pieces)
was not enough to accomodate all relation instances
for chunk sizes above 75-100 word pieces. Our
1-CONTAINER input/output variant mitigates that
problem by essentially trading the output size for
a larger number of training examples, resulting in
the best performance (line 12). However, the 1-
CONTAINER variant (line 11) is still better when
we set the chunk size to the same value as the best
CONTAINERS variant (line 10). This hints at a
fundamental advantage of this type of model over
a full seq2seq model. We hypothesize that this is
due to a difficulty on the part of seq2seq models to
produce structured outputs such as predicate logic
statements.

4 Conclusion

Engineering input/output representations for
seq2seq models proved difficult as obvious choices
of output representations, such as explicit relations
encoded as predicate logic statements led to poor
performance. By exploring alternative input/output
representations, we were able to improve perfor-
mance. Our 1-CONTAINER input/output variant
with a T5 model was competitive with or better
than the current state-of-the-art without requiring
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additional training data. This is likely due to sev-
eral factors. First, predicting one relation at a time
allowed the model to mitigate the limitation on the
maximum length of the output and capture long-
distance relations, which was more challenging for
the other variants. Second, it required generating
only a single word, which is more like the text
generation tasks the seq2seq models were trained
on than generating predicate logic expressions like
the other variants required. Future research may
want to explore different pretraining objectives for
seq2seq models that would be more appropriate
when downstream tasks require generating struc-
tured output.
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