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Abstract

In this work, cross-linguistic span prediction
based on contextualized word embedding mod-
els is used together with neural machine trans-
lation (NMT) to transfer and apply the state-
of-the-art models in natural language process-
ing (NLP) to a low-resource language clinical
corpus. Two directions are evaluated: (a) En-
glish models can be applied to translated texts
to subsequently transfer the predicted annota-
tions to the source language and (b) existing
high-quality annotations can be transferred be-
yond translation and then used to train NLP
models in the target language. Effectiveness
and loss of transmission is evaluated using
the German Berlin-Tübingen-Oncology Cor-
pus (BRONCO) dataset with transferred exter-
nal data from NCBI disease, SemEval-2013
drug-drug interaction (DDI) and i2b2/VA 2010
data. The use of English models for translated
clinical texts has always involved attempts to
take full advantage of the benefits associated
with them (large pre-trained biomedical word
embeddings). To improve advances in this area,
we provide a general-purpose pipeline to trans-
fer any annotated BRAT or CoNLL format to
various target languages. For the entity class
medication, good results were obtained with
0.806 F1-score after re-alignment. Limited
success occurred in the diagnosis and treatment
class with results just below 0.5 F1-score due
to differences in annotation guidelines.

1 Introduction

Clinical texts contain many important buried in-
formation that can be accessed through natural
language processing (NLP). Systematic analysis
of this vast amount of data can improve clinical

care and aid in decision making. There are many
other applications already in use, such as cohort
selection, pharmacovigilance, and quality reporting
(Spasić et al., 2020). Clinical text is often available
as unstructured texts: Retrospective analysis there-
fore involves an enormous amount of work (Wu
et al., 2019). By using NLP, biomedical concepts
can be extracted and processed using named entity
recognition (NER), allowing large amounts of text
on specific topics of interest to be retrospectively
analyzed. While biomedical text is intended for
publications, clinical text is written by and aimed
at health care professionals. They are written un-
der time pressure and are heterogeneous in terms
of abbreviations, omission of words, and medical
jargon to keep information density high (Leaman
et al., 2015).

Compared to English texts, the processing of
non-English clinical texts by NLP is far from what
is actually possible by the current state-of-the-art
(Névéol et al., 2018; Schneider et al., 2020). This
is due to the fact that in the U.S., Health Insurance
Portability and Accountability (HIPAA) clearly reg-
ulates which 18 different identifiers of protected
health information (PHI) must be removed in or-
der for a document to be considered anonymized,
creating many facilitators for de-identification of
clinical texts (Yogarajan et al., 2020; Ahmed et al.,
2020). Based on these rules, large clinical datasets
such as Medical Information Mart for Intensive
Care III (MIMIC-III) (Johnson et al., 2016) and
shared tasks with high-quality annotations have
been published, resulting in research and tools for
processing English clinical texts being widely de-
veloped.
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With regard to the availability of NLP tools for
other languages, there are major differences, for
example in the processing of German clinical texts:
Anonymization is left to individual institutions,
data protection officers, and ethics committees,
which means that there are no uniform regulations.
The state-of-the-art for German texts lags behind
and, despite great efforts (Hahn et al., 2018), contin-
ues to be limited to rule-based systems (Roller et al.,
2020) or is often based on in-house data (Richter-
Pechanski et al., 2021), which means that neither
the data nor the trained models can be shared (Car-
lini et al., 2021). Freely available large anonymized
datasets with high-quality annotated German clini-
cal texts are therefore non-existent.

In order to bridge this gap, this work provides
a general-purpose pipeline to transfer annotated
datasets in BRAT or CoNLL format to various
target languages1. Approaches based on neural
machine translation (NMT) have recently been ap-
plied to NER tasks (Xie et al., 2018; Mayhew et al.,
2017; Yan et al., 2021). Improved translation qual-
ity through advances in neural machine translation
(Ng et al., 2019; Tran et al., 2021) have reached a
level that allows the transfer of predictions or an-
notated data in combination with word alignments
(Jalili Sabet et al., 2020; Dou and Neubig, 2021) to
other languages.

In this work, the Berlin-Tübingen-Oncology Cor-
pus (BRONCO) (Kittner et al., 2021) is used and
treated as a zero-resource dataset, for which En-
glish models and external biomedical and clinical
datasets are used instead. The aim is to evaluate
whether low-resource languages can benefit from
the available English resources. The methodol-
ogy of this work can be applied to other clinical
datasets and languages, as word alignment with
contextualized embeddings through multilingual
BERT (Devlin et al., 2019) covers 104 languages.
Accordingly, multilingual models are available for
translation, e.g., the mBART (Tang et al., 2021)
many-to-many model covers 50 languages.

2 Data

The BRONCO corpus (Kittner et al., 2021) is the
first small, fully anonymized dataset for German
clinical texts, that can be accessed via a data usage
agreement form request. The dataset contains 200
discharge reports of hepatocellular carcinoma and

1https://github.com/0xhesch/
CLAT-cross-lingual-annotation-transfer

Table 1: Berlin-Tübingen-Oncology Corpus
(BRONCO) descriptive statistics.

Entity BRONCO 150 BRONCO 50 Total
Diagnosis 4,080 1,165 5,245
Treatment 3,050 816 3,866
Medication 1,630 383 2,013
Total 8,760 2,364 11,124
No. of Documents 150 50 200
No. of Sentences 8,976 2,458 11,434
No. of Tokens 70,572 19,370 89,942

melanoma, with 50 reports retained by the authors
as independent test data. Due to strict data pro-
tection regulations and to make de-anonymization
more difficult, the discharge summaries were shuf-
fled into sentences so that the clinical context is
only preserved at sentence level. It includes three
annotated entity classes: diagnosis, medication and
treatment (see Table 1). According to Kittner et al.
(2021) the annotation process was performed by 2
groups of annotators, group A (2 medical experts)
and group B (3 medical experts and 3 medical stu-
dents). Conflicting annotations were resolved in
the final version of BRONCO.

For the 3 entity classes in BRONCO, 3 exist-
ing English external datasets are used. In order to
use external data, the underlying documents and
annotation guidelines should match if possible.

2.1 Medication

To fine-tune models for recognizing medication en-
tities in BRONCO, the SemEval-2013 drug-drug
interaction (DDI) (Segura-Bedmar et al., 2011) cor-
pus will serve as an external English resource. The
corpus is semantically annotated and contains doc-
uments describing drug-drug interactions from the
DrugBank database and MEDLINE, and includes
annotated medication text-spans. It is the only
corpus that covers both generic names and brand
names.

2.2 Diagnosis

The BRONCO entity class diagnosis is defined by
the annotation guidelines as a disease, symptom or
medical observation that can be matched with the
German modification of the International Classifi-
cation of Diseases (ICD-10). The NCBI disease
corpus (Doğan et al., 2014) is used for this purpose,
although it differs in terms of document style and
annotation guidelines.
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Patient management may need to be altered during the postobstructive phase of urinary tract     obstruction .

Möglicherweise muss das Patientenmanagement während der postobstruktiven Phase der Harnwegsblockade geändert werden .

B-Disease I-Disease I-Disease       

B-Disease                    

English

German

Figure 1: Behaviour of words in relation to the translated target language (here German). There are considerable
differences in sentence structure, number of words and required word count for the description of a single medical
term. The source to target token positions are to be resolved by word alignment systems to transfer annotations
across languages.

Table 2: The table shows a sentence in BIO format from
the NCBI dataset, translated into German along with the
aligned annotation of the tokens.

Identification O Identifizierung O
of O von O
APC2 O APC2 O
, O , O
a O einem O
homologue O Homologen O
of O des O
the O Tumorsuppressors B-Disease
adenomatous B-Disease der O
polyposis I-Disease adenomatösen B-Disease
coli I-Disease Polyposis I-Disease
tumour I-Disease coli I-Disease
suppressor O . O
. O

2.3 Treatment
Analogous to diagnosis, the BRONCO treatment
class is a diagnostic procedure, e.g., surgery or sys-
temic cancer treatment, found in the German Op-
erationen and Prozedurenschlüssel (OPS) coding
system. There is no exact match for this, although
the treatment class of the i2b2/VA 2010 challenge
data (Uzuner et al., 2011) shows overlapping an-
notation guidelines. Here, the treatment class also
comprises medications which has to be taken into
account in the methodology.

3 Methods

The experiments are divided into two parts. First,
the German clinical dataset is treated as a zero-
resource problem. This means that none of the an-
notated data is used to develop recognition models
for the three entity classes diagnosis, medication
and treatment. Instead, three existing English high-
quality annotated datasets as described in Section
2 are used to train on the entity classes. Inferences

are either made based on the translation and are
then retroactively aligned to the German text, or
models are fine-tuned on the translated form of
the English datasets and are directly applied to the
German clinical texts.

The second part focuses on the extent to which
English pre-trained biomedical language models
can be adapted for use in another language. For
this purpose, the German dataset is translated and
aligned in order to fine-tune large English pre-
trained biomedical transformer-based models. The
inference is then re-aligned to the German lan-
guage. This is compared to non-biomedical Ger-
man and cross-lingual transformer-based language
models. In this way, the loss due to translation
and subsequent alignment can be determined and
weighed against the benefits of large biomedical
language models that would not otherwise be avail-
able.

Based on current benchmarks (Ng et al., 2019;
Tran et al., 2021), the selection for translation mod-
els fell on the directional WMT 19 en ↔ de model
from Facebook AI Research (FAIR) as well as the
multilingual WMT 21 model that covers 7 different
languages. Since careful review of the translation
quality of some clinical texts did not reveal any
relevant deficiencies, the more resource-friendly
WMT 19 model was chosen. For the span align-
ment of the annotations, Simalign (Jalili Sabet et al.,
2020) is used without fine-tuning a parallel corpus.
The work of Jalili Sabet et al. (2020) has shown
that word alignments via contextualized embed-
dings from multilingual language models achieve
good results. Here, the Itermax algorithm is used
with contextualized word embeddings from multi-
lingual BERT (Devlin et al., 2019). Itermax aligns
two parallel sentences at token level with cosine-
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similarity, where for each token the parallel vec-
tors co-represent the context of the token within
its sentence. Since for many sentences no mutual
argmaxes are available, the suggestion mentioned
by the authors to perform this process iteratively is
followed. This also allows for token of the source
language to be mapped to multiple token in the
target language. This seems reasonable for clinical
entities. For example, urinary tract obstruction is
merged to only one token Harnwegsblockade in the
German language (see Figure 1).

For fine-tuning language models, all experiments
use the hyperparameters as described in Table 6.
All experiments were conducted on an NVIDIA
V100 SXM2 GPU.

3.1 Zero-Resource

Here, two variants seem reasonable. First, datasets
with annotations can be translated from en → de
(forward-passed), thereby training models directly
in the target language. On the other hand, low-
resource language texts can be translated into En-
glish (de → en) and the prediction subsequently
re-aligned (en → de) to the originating language
(backward-pass). Both variants are visualized as
detailed workflows in Figure 2 (forward-pass) and
Figure 3 (backward-pass).

3.1.1 Forward-Pass
For medication, the DDI corpus will be forward-
passed to predict medication mentions in German
text. The DrugBank, as well as the MEDLINE
portion of the dataset, are merged. Except for drugs
and brand names, all other entities are omitted. The
two entity classes drug and brand name are then
merged into a single medication entity class.

For diagnosis, the NCBI data is forward-passed.
The general process of translation and word align-
ment for this class is shown as an example in Fig-
ure 1. A sample sentence of the resulting translated
German NCBI corpus is shown in Table 2.

For treatment, the i2b2/VA 2010 challenge data
is forward-passed. The i2b2 annotation guidelines
state, that treatment also covers medication. Prior
to training the model on the treatment entity class,
drug predictions based on the DDI model that over-
lap with i2b2 treatment entities are therefore re-
moved.

3.1.2 Backward-Pass
For the backward-pass, the three external re-
sources are used untranslated to directly fine-

tune Bio_Discharge_Summary_BERT (Alsentzer
et al., 2019), a state-of-the-art biomedical language
model that was initialized with BioBERT (Lee
et al., 2019) and then further trained on discharge
summaries from MIMIC-III.

For prediction, the German BRONCO 150
dataset is then translated into English using FAIR’s
WMT 19 model de → en, without word alignments.
The inference on translated BRONCO 150 sen-
tences are then re-aligned with the original German
sentences.

3.2 Fine-Tuning

This experiment aims to determine the loss in-
curred by translation and re-alignment for named
entity recognition within the clinical domain and
uses a large pre-trained biomedical language model.
Note that this does require available annotations.
Since the initial baseline of the authors of the
BRONCO dataset does not include transformer-
based results, this experiment also covers cross-
lingual and German-specific pre-trained experi-
ments. At the same time, these experiments will
test whether non-biomedical models are suitable
for German clinical texts. For this purpose mBERT
(Devlin et al., 2019), GBERT (Chan et al., 2020),
GELECTRA (Chan et al., 2020) and XLM-R (Con-
neau et al., 2020) are used in the base, as well as in
the large versions if available.

To take advantage of English biomed-
ical pre-trained language models,
Bio_Discharge_Summary_BERT is used as
described in Figure 3 which means that the
inference takes place on the translation and the an-
notations are retroactively aligned. BRONCO 150
results are reported through 5-fold cross-validation.
For BRONCO 50 evaluation, the models are
trained on the full BRONCO 150 data. Results
on BRONCO 50 are reported independently by
the dataset authors. The evaluation is done by
providing the models, as well as the pipeline for
translation and retroactive alignments. Since the
evaluation on BRONCO 50 must be performed by
the curators, the range of models is limited here.

4 Results

4.1 Zero-Resource

The results based on the external data are reported
for all 3 entity classes to see if there are differences
between translating external datasets into the target
language or aligning the inference of the English
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Clinical Data 
EN 

(high quality 
annotations)

Diseases 
Drugs 
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Clinical Data 
DE (prediction)

Figure 2: Schematic workflow (forward-pass) to perform prediction for clinical data with few resources. Here, the
external English data is translated with annotations and then used to fine-tune cross-lingual language models for the
target language. Prediction is then directly applied to the target language.

Clinical Data 
DE (low-resource)

Clinical Data  
EN

Clinical Data 
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(high quality 
annotations)
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Drugs 

···

translate
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Encoder 
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EN 

(fine-tuned)

re-align Clinical Data 
EN (prediction)
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DE (prediction)

Harnwegsinfektion

Figure 3: Schematic workflow (backward-pass) to perform prediction for clinical data with few resources. Models
trained on external English data are applied to the translation and the prediction is aligned retrospectively.
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Table 3: Forward- and backward-pass results on 3 entity classes for BRONCO 150 corpus through external data
sources. State denotes if the results were obtained before- or after re-alignment in backward-pass runs.

Target Entity Method State External Data Source Model Precision Recall F1

Medication

Forward-pass -

DDI Corpus

deepset/gbert-base 0.637 0.809 0.712
Forward-pass - deepset/gelectra-base 0.605 0.824 0.698
Forward-pass - deepset/gelectra-large 0.803 0.769 0.785
Forward-pass - bert-base-multilingual-cased 0.525 0.793 0.631
Forward-pass - xlm-roberta-base 0.600 0.816 0.692
Forward-pass - xlm-roberta-large 0.782 0.798 0.790
Backward-pass before re-alignment Bio_Discharge_Summary_BERT 0.745 0.729 0.737
Backward-pass after re-alignment Bio_Discharge_Summary_BERT 0.788 0.826 0.806

Diagnosis

Forward-pass -

NCBI-Disease Corpus

deepset/gbert-base 0.433 0.445 0.439
Forward-pass - deepset/gelectra-base 0.410 0.374 0.391
Forward-pass - deepset/gelectra-large 0.537 0.419 0.471
Forward-pass - bert-base-multilingual-cased 0.469 0.370 0.414
Forward-pass - xlm-roberta-base 0.482 0.354 0.408
Forward-pass - xlm-roberta-large 0.476 0.387 0.427
Backward-pass before re-alignment Bio_Discharge_Summary_BERT 0.502 0.378 0.431
Backward-pass after re-alignment Bio_Discharge_Summary_BERT 0.524 0.474 0.498

Treatment

Forward-pass -

i2b2/VA 2010

deepset/gbert-base 0.510 0.429 0.466
Forward-pass - deepset/gelectra-base 0.521 0.456 0.486
Forward-pass - deepset/gelectra-large 0.523 0.454 0.486
Forward-pass - bert-base-multilingual-cased 0.473 0.402 0.434
Forward-pass - xlm-roberta-base 0.504 0.411 0.453
Forward-pass - xlm-roberta-large 0.526 0.434 0.475
Backward-pass before re-alignment Bio_Discharge_Summary_BERT 0.476 0.387 0.427
Backward-pass after re-alignment Bio_Discharge_Summary_BERT 0.536 0.463 0.497

Table 4: Average results of 5-fold cross-validation for BRONCO 150 with reported standard deviation. † denotes
initial baseline results by Kittner et al. (2021).

Target Entity Model Precision Recall F1
CRF† 0.960 (0.008) 0.850 (0.020) 0.900 (0.009)
CRF+WE† 0.960 (0.004) 0.840 (0.009) 0.900 (0.006)
LSTM† 0.910 (0.050) 0.860 (0.030) 0.880 (0.020)
LSTM+WE† 0.960 (0.020) 0.870 (0.060) 0.910 (0.040)

Medication
deepset/gbert-base 0.923 (0.019) 0.935 (0.016) 0.929 (0.012)
deepset/gbert-large 0.929 (0.027) 0.941 (0.018) 0.935 (0.011)
deepset/gelectra-base 0.850 (0.011) 0.912 (0.013) 0.880 (0.012)
deepset/gelectra-large 0.951 (0.006) 0.956 (0.018) 0.954 (0.008)
bert-base-multilingual-cased 0.926 (0.024) 0.937 (0.009) 0.931 (0.013)
xlm-roberta-base 0.923 (0.005) 0.932 (0.014) 0.927 (0.006)
xlm-roberta-large 0.929 (0.011) 0.941 (0.018) 0.935 (0.011)
CRF† 0.800 (0.010) 0.710 (0.020) 0.750 (0.020)
CRF+WE† 0.782 (0.006) 0.700 (0.020) 0.740 (0.010)
LSTM† 0.750 (0.030) 0.690 (0.030) 0.720 (0.010)
LSTM+WE† 0.810 (0.080) 0.740 (0.080) 0.770 (0.080)

Diagnosis
deepset/gbert-base 0.744 (0.012) 0.802 (0.020) 0.772 (0.016)
deepset/gbert-large 0.769 (0.009) 0.814 (0.015) 0.791 (0.008)
deepset/gelectra-base 0.692 (0.023) 0.773 (0.026) 0.730 (0.022)
deepset/gelectra-large 0.789 (0.008) 0.826 (0.013) 0.807 (0.008)
bert-base-multilingual-cased 0.740 (0.017) 0.797 (0.022) 0.768 (0.019)
xlm-roberta-base 0.728 (0.012) 0.792 (0.018) 0.759 (0.013)
xlm-roberta-large 0.767 (0.012) 0.815 (0.014) 0.790 (0.007)
CRF† 0.860 (0.020) 0.780 (0.010) 0.820 (0.010)
CRF+WE† 0.850 (0.020) 0.780 (0.010) 0.810 (0.010)
LSTM† 0.830 (0.040) 0.790 (0.030) 0.810 (0.020)
LSTM+WE† 0.850 (0.060) 0.820 (0.070) 0.840 (0.060)

Treatment
deepset/gbert-base 0.783 (0.009) 0.830 (0.012) 0.806 (0.009)
deepset/gbert-large 0.796 (0.023) 0.846 (0.019) 0.820 (0.020)
deepset/gelectra-base 0.678 (0.015) 0.791 (0.023) 0.730 (0.017)
deepset/gelectra-large 0.821 (0.009) 0.856 (0.011) 0.839 (0.010)
bert-base-multilingual-cased 0.783 (0.026) 0.839 (0.016) 0.810 (0.022)
xlm-roberta-base 0.753 (0.005) 0.825 (0.008) 0.788 (0.005)
xlm-roberta-large 0.821 (0.013) 0.857 (0.017) 0.839 (0.014)
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Table 5: Results for BRONCO 50. † denotes initial
baseline results by Kittner et al. (2021). * denotes that
the results are based on the translation and have been
re-aligned.

Target Entity Model Precision Recall F1

Medication

CRF† 0.940 0.870 0.900
CRF+WE† 0.950 0.850 0.900
LSTM† 0.950 0.850 0.890
LSTM+WE† 0.910 0.890 0.900
deepset/gbert-base 0.929 0.958 0.943
Bio_Discharge_Summary_BERT* 0.921 0.944 0.932

Diagnosis

CRF† 0.790 0.670 0.720
CRF+WE† 0.770 0.660 0.710
LSTM† 0.780 0.650 0.710
LSTM+WE† 0.790 0.650 0.720
deepset/gbert-base 0.792 0.772 0.782
Bio_Discharge_Summary_BERT* 0.661 0.689 0.675

Treatment

CRF† 0.830 0.730 0.780
CRF+WE† 0.810 0.730 0.760
LSTM† 0.850 0.690 0.760
LSTM+WE† 0.760 0.740 0.750
deepset/gbert-base 0.782 0.824 0.803
Bio_Discharge_Summary_BERT* 0.661 0.742 0.699

models. The results for the forward- and backward-
pass are shown in Table 3. For all classes, the
backward-pass resulted in better scores, although
the difference compared to the forward-pass is not
substantial. The results of the German and multi-
lingual models are comparable to the results before
the re-alignment step, i.e. on the BRONCO 150
translation. To estimate any loss that may occur
due to the translation quality of the WMT 19 en
↔ de model, the case-sensitive SacreBLEU score
(Post, 2018) on the re-translation of BRONCO150
is reported, which resulted in a score of 40.41. The
medication class achieved the best results after re-
alignment with 0.806 F1-score. The classes di-
agnosis and treatment both remained just below
0.5 F1-score, also after re-alignment. Aligning
the annotations back to German, increases recall in
particular, as e.g. in the case of medication by al-
most 0.1 F1-score. The forward-pass results show
that large models are superior. A general outperfor-
mance of German-specific language models over
multilingual language models is not present.

4.2 Fine-Tuning

Table 4 shows the 5-fold cross-validation results.
Here, the BRONCO 150 dataset was fine-tuned us-
ing multiple German transformer-based language
models and multilingual language models. In addi-
tion, the results are also compared to those reported
in (Kittner et al., 2021). For all target entities, all
transformer-based models except GELECTRAbase

outperformed the models used by Kittner et al.
(2021) and achieved a better F1-score. Although,
the Conditional Random Field (CRF) and Long

Short-Term Memory (LSTM) models reported bet-
ter precision for all classes, their recall scores were
outperformed with the transformer-based mod-
els. Overall, the large transformer-based models
achieved the highest scores, with GELECTRAlarge

performing the best and reaching an F1-score of
0.954 ± 0.008 for medication, 0.807 ± 0.008 for
diagnosis and 0.839 ± 0.010 for treatment. The
model was followed by XLM-Rlarge, which was
on par with GBERTlarge for all the target entities.
Altogether, the results show that large German-
specific language models perform the best, with
XLM-Rlarge being a strong multilingual language
model that can even compete with task language-
specific models.

The results achieved on the BRONCO 50 dataset
show similar findings, where the German-specific
language model GBERTbase reached the best F1-
score for all classes. Furthermore, the result
achieved through translation and alignment was
superior to the models reported in (Kittner et al.,
2021) for medication, but these models were not as
successful for the classes diagnosis and treatment.

5 Discussion

In the zero-resource setting, there is an advantage
in the backward-pass approach over the forward-
pass models. Good results could only be achieved
for the medication class, but this is not necessar-
ily due to translation and word alignment, but to
the nature of the data. For the diagnosis and treat-
ment class, there is no equivalent English dataset
that fully matches the annotation guidelines of the
German clinical text. The medication class seems
unproblematic in that medication terms are more
easily aligned, one-to-many token constellations
due to translation are rare, and medications are
often represented similarly in both languages. Nev-
ertheless, the underlying sentence structure is fun-
damentally different between English and German,
which means that the transfer of the results can
be considered successful. Further limitations are
discussed in Section 6.

These assumptions are also supported by the fine-
tuning results, which show that although translation
and alignment result in a loss, it is still competitive
compared to the initial baseline. Only in the com-
parison with multilingual and German transformer
architectures the disadvantage becomes clear. Pro-
vided that annotations are available, a general ad-
vantage of English biomedical models over non-
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Table 6: Hyperparameters used for fine-tuning
transformer-based models on external data and
BRONCO 150.

Hyperparameter Value
Batch size 64 (16 for large models)
Epochs 4
Manual seed 42
Learning rate 4e-5
Max sequence length 512
Optimizer AdamW (Loshchilov and Hutter, 2019)
Adam epsilon 1e-8

domain language models on German clinical texts
can therefore not be confirmed.

6 Conclusion and Future Work

The results of this work show that English lan-
guage models can in principle be applied to other
languages in clinical contexts. Translated training
data can serve as a good basis and approach for
languages where there are otherwise no resources.
In a zero-resource scenario, the approach is lim-
ited to the extent that it works for data where the
documents and annotation guidelines match across
languages. Cross-linguistic differences in the avail-
able standards that annotators work with also play
a limiting role here. BRONCO corpus is based
on German ICD-10 and German OPS standards,
which is also reflected in the annotation guidelines,
making it difficult to apply external data.

Transfer in the clinical setting was evaluated
with only one language pair (en ↔ de). Success
with other language pairs depends not only on the
annotation standard, but also on the similarity of
the languages (grammar and morphology). Trans-
fer can only succeed if the quality of translation
and word alignment is sufficient, which can be ex-
pected between Indo-European languages, but can
be much more difficult when transferring between
language families.

Practical applications on other low-resource lan-
guages is left for future work. It would be inter-
esting to see the effect of adding a few annotated
samples to the external data. In this context, zero-
shot and few-shot approaches would be a useful
addition as a comparator. For comparison, it would
also be helpful to have a non-alignment baseline
that is fine-tuned to English data and directly infers
German test data.
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