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Abstract

In this paper, we investigate ensemble methods
for fine-tuning transformer-based pretrained
models for clinical natural language processing
tasks, specifically temporal relation extraction
from the clinical narrative. Our experimental
results on the THYME data show that ensem-
bling as a fine-tuning strategy can further boost
model performance over single learners opti-
mized for hyperparameters. Dynamic snapshot
ensembling is particularly beneficial as it fine-
tunes a wide array of parameters and results in
a 2.8% absolute improvement in F1 over the
base single learner.

1 Introduction

The clinical narrative in electronic medical records
(EMRs) can provide critical information for im-
proving quality of care, patient outcomes, and
safety. Extracting information from EMRs has
been an active area of research in recent years
due to the advances in natural language processing
(NLP) techniques. As transformer-based neural
language models, such as Bidirectional Encodings
Representations from Transformers (BERT) (De-
vlin et al., 2019), have achieved state-of-the-art
performance for a variety of NLP tasks they have
gained increased prominence in clinical NLP.

However, in the clinical domain, data is often
sparsely labeled and not shareable as it is guarded
by patient confidentiality provisions. Building
large transformer-based models from scratch using
such data is thus often infeasible. A common ap-
proach has been to take models pretrained on large
general domain corpora, and continue pretraining
them on clinical corpora to derive domain-specific
language models (Lee et al., 2020; Alsentzer et al.,
2019; Beltagy et al., 2019; Lin et al., 2021).

The weights of pretrained models are adjusted
for a specific clinical NLP task through the process
of fine-tuning. This process often involves search-
ing for optimal hyperparameters while continuing

to train the pretrained model on a domain-specific
dataset. The search is challenging due to the high
dimensionality of the search space, which includes
random seed, initial learning rate, batch size, etc.
Given the limited computing resources available in
practice, only a small number of values for each
hyperparameter can be explored, and often only a
subset of hyperparameters can be fine-tuned. Are
we able to retain the benefits from the existing
search efforts and to further improve model perfor-
mance for the same task or new tasks without too
much extra effort? Ensemble methods have been
successful in boosting predictive performance of
single learners (Wang et al., 2003; CireşAn et al.,
2012; Xie et al., 2013) and thus are promising. In
this paper, we will investigate ensemble-based fine-
tuning methods to answer this question.

Another downside of the limited search capabil-
ity is that some hyperparameters are unexplored in
past efforts. For example, learning rate schedules
have rarely been explored in previous efforts of
fine-tuning. One promising approach is training
with cyclical learning rates (e.g., cosine annealing
learning rate and slanted triangular learning rate),
which have been shown to achieve improved clas-
sification accuracy in fewer iterations (Loshchilov
and Hutter, 2016; Smith, 2017). We will explore
the impact of cyclical learning rates in fine-tuning
methods in the context of an ensemble algorithm.
Major contributions: In this work, (1) we use en-
sembles to investigate the impact of various hyper-
parameters for fine-tuning pretrained transformer-
based models for the clinical domain by focusing
on one critical task – temporal relation extraction;
(2) we conduct comprehensive experiments and the
empirical findings show that training epoch, ran-
dom initialization, and data order have potentially
significant influence; (3) we explore multiple hy-
perparameters in a single framework with the aim
of building computationally efficient fine-tuning
strategies to boost model performance on top of
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any given base setting.

2 Temporal Relation Extraction in
Clinical Narratives

We explore the ensemble-based fine-tuning meth-
ods within the context of temporal relation extrac-
tion from the EMR clinical narrative. Temporal
relation extraction and reasoning in the clinical do-
main continues to be a primary area of interest due
to the potential impact on disease understanding
and, ultimately, patient care. A significant body
of text available for this purpose is the THYME
(Temporal Histories of Your Medical Events) cor-
pus (Styler IV et al., 2014), consisting of 594 de-
identified clinical and pathology notes on colon
cancer patients and 600 radiology, oncology and
clinical notes on brain cancer patients, all from the
EMR of a leading US medical center. This dataset
has previously undergone a variety of annotation ef-
forts, most notably temporal annotation (Styler IV
et al., 2014). It has been part of several SemEval
shared tasks such as Clinical TempEval (Bethard
et al., 2017) where state-of-the-art results have been
established. We use the THYME++ version of the
corpus and the train/dev/test splits as described by
Wright-Bettner et al. (2020).

3 Ensemble-based Fine-Tuning and
Experimental Setup

Our intuition behind using ensembles for fine-
tuning is to leverage models from local optima
to obtain greater coverage of the feature space, and
get consensus for the predictions so that the ensem-
ble learner can reduce the overall risk of making a
poor selection. In this section, we first describe our
setting and implementation of a base model based
on the state-of-the-art setting described by Lin et al.
(2021). Then we discuss fine-tuning several hy-
perparameters during training and their potential
impact on model performance. Based on these dis-
cussions, we then introduce the bagging ensemble
method (Breiman, 1996) and the dynamic snapshot
ensemble method (Wang et al., 2020) and apply
them to the fine-tuning process.

3.1 Base setting and implementation

To set up an ensemble learning method, we
first need to set up a base setting as a start-
ing point. Based on the results and dis-
cussions of Lin et al. (2021), we choose

PubmedBERTbase-MimicBig-EntityBERT1 as our
pretrained model. The fine-tuning setting in that
work includes random seed 42, batch size 32, epoch
number 3, learning rate 4e-5, learning rate sched-
uler linear, max sequence length 100, and gradient
accumulation steps 2. We adopt the same setting in
our base implementation. We use an NVIDIA Titan
RTX GPU cluster of 7 nodes for fine-tuning exper-
iments through HuggingFace’s Transformer API
(Wolf et al., 2020) version 4.13.0. We leverage the
run_glue.py pytorch version as our fine-tuning
script. Unless specified, default settings are used
in our experiments. Due to differences in the fine-
tuning script and some missing settings, we were
unable to reproduce the exact scores reported in
Lin et al. (2021). Results with our implementation
are reported as BASE. We use our implementation
as the starting point to conduct the ensemble exper-
iment and compare ensemble results with BASE.

3.2 Hyperparameters in fine-tuning
There are more than a hundred hyperparameters in
the fine-tuning process. Among those hyperparam-
eters, not every one has a major impact on model
performance. Some of them are preset with default
values that have been shown to be robust in empir-
ical experiments, such as the default values of β1,
β2, and ϵ for AdamW optimizer. In our work, we
investigate several hyperparameters which poten-
tially have high impact on model performance. We
apply ensemble learning on the following hyperpa-
rameters to reduce the variance of predictions and
reduce generalization error:

Random seed is set at the beginning of training.
It impacts the initialization of models and trainers,
as well as the convergence of scholastic learning
algorithms. We run base fine-tuning 5 times but
with 5 random seed values (42, 52, 62, 72, 82).

Learning rate scheduler is the scheduling algo-
rithm for changing the learning rate during training.
In the previous fine-tuning works, the linear sched-
uler is used by default. We run base fine-tuning
with 3 different learning rate schedulers: linear,
cosine with restarts, and polynomial.

Epoch number is the number of passes over
the data that the training process takes. A small
epoch number may lead to underfitting while a
large epoch number tends to cause overfitting to

1https://physionet.org/content/
entity-bert/1.0.0/
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the domain-specific training data. We run the base
fine-tuning with 5 epoch numbers (3, 6, 9, 12, 15).

Pretrained model is the model checkpoint from
which fine-tuning begins. The PubMedBERT
model (Gu et al., 2021) has been shown to
outperform other BERT-based models for temporal
relation extraction in clinical narratives (Lin et al.,
2021). In our experiments, we leverage the three
PubMedBERT models released by Lin et al. (2021):
PubmedBERTbase-MimicBig-EntityBERT,
PubmedBERTbase-MimicSmall-EntityBERT,
and PubmedBERTbase-MimicBig-RandMask.

Random shuffling of training and validation data
can avoid selecting models that overfit to a single
validation set during fine-tuning. In contrast to
traditional random shuffling of training instances
during training, the random shuffling in this work
refers to mixing training and validation datasets and
then resampling train/validation datasets with the
same size and class distribution from the mix pool.
We generate 5 different samplings of splits using
random seeds (42, 52, 62, 72, 82). We then run
base fine-tuning 5 times with different samplings.

3.3 Bagging ensemble
Bagging ensemble is the simple and straightfor-
ward thus is commonly used in various tasks. Com-
ponent learners are trained independently in paral-
lel and are combined following some kind of com-
bination method. We leverage bagging ensemble
and use majority voting for generating ensemble
predictions on each hyperparameter variable. For
example, for the random seed variable, we com-
bine predictions from 5 fine-tuned models trained
with different random seeds using majority voting,
denoted as Seed-ENS. We report the ensemble per-
formance regarding each hyperparameter variable
in Table 1 together with BASE.

3.4 Dynamic snapshot ensemble
We also explore dynamic snapshot ensembles first
proposed in (Wang et al., 2020), which we call
DynSnap-ENS in this paper. The DynSnap-ENS
framework allows a pretrained model to be fine-
tuned multiple times (i.e., multiple training runs)
sequentially with different random seeds and data
samplings of train/validation splits. It uses a cyclic
annealing schedule and cyclic snapshot strategy to
periodically save the best model during each train-
ing run. After each training run, a dynamic pruning
algorithm is applied to select a few single learners

Figure 1: Training history of DynSnap-ENS on learning
rate, training loss, and validation accuracy along epochs.
Ensemble size is 5. The sequential training runs are
run1-run2-run3. The selected single learners are high-
lighted with yellow squares.

from the saved ones which can lead to better per-
formance of the ensemble learner with theoretical
guarantees. The sequential training runs stop when
the accumulated number of selected single learners
reaches a preset ensemble size. The total amount
of training runs is a dynamic value rather than a
preset value, which is determined by the snapshot
strategy and pruning factor during the sequential
training. Take Figure 1 as an example. The preset
ensemble size is 5, and training epoch is 15. Train-
ing run1 is set with random seed 42 and a data split.
After the training, top 4 models are saved based
on validation accuracy, and among those 2 models
are selected as ensemble components after pruning.
Since 2 is smaller than 5, training run2 is triggered
with random seed 52 and another data split. This
process will repeat until the accumulated number
of ensemble components reaches the ensemble size.
More details of the learning algorithm can be found
in the original paper.

We are the first to apply DynSnap-ENS to
solve challenges in clinical text classifications. It
enables diversity in data and model parameters
through a cyclic learning rate, multiple random
seeds, epoch numbers, and training and validation
datasets. These hyperparameters are explored in
one learning framework, which is computationally
efficient compared to independent searches for each
hyperparameter in Lin et al. (2021).

In our experiments, we implemented DynSnap-
ENS on the top of the base fine-tuning script. The
ensemble size is set as 5 (equal to the ensemble
size of bagging ensemble learners) and majority
voting is used to generate ensemble predictions. We
reuse base fine-tuning settings except that we set
cosine with restarts as the learning rate scheduler
and set the learning rate to restart every 3 epochs

105



OVERLAP CONTAINS-1 CONTAINS BEFORE-1 BEFORE

Method P R F1 P R F1 P R F1 P R F1 P R F1
BASE 0.611 0.482 0.539 0.749 0.758 0.754 0.775 0.777 0.776 0.51 0.428 0.465 0.537 0.416 0.469
Seed-ENS 0.672 0.46 0.546 0.753 0.757 0.755 0.785 0.79 0.788 0.562 0.404 0.47 0.57 0.411 0.477
LRScheduler-ENS 0.652 0.48 0.553 0.741 0.758 0.749 0.789 0.781 0.785 0.535 0.406 0.462 0.568 0.396 0.467
Epoch-ENS 0.681 0.471 0.556 0.774 0.765 0.769 0.807 0.779 0.793 0.599 0.376 0.462 0.627 0.379 0.472
PretrainedModel-ENS 0.676 0.458 0.546 0.735 0.769 0.752 0.786 0.788 0.787 0.536 0.42 0.471 0.564 0.408 0.473
DataShuffle-ENS 0.711 0.458 0.557 0.737 0.771 0.754 0.806 0.788 0.797 0.586 0.384 0.464 0.617 0.429 0.506
DynSnap-ENS 0.695 0.464 0.557 0.769 0.762 0.766 0.816 0.778 0.796 0.579 0.381 0.459 0.636 0.404 0.494

NOTED-ON-1 BEGINS-ON NOTED-ON ENDS-ON OVERALL

Method P R F1 P R F1 P R F1 P R F1 P R F1
BASE 0.739 0.824 0.779 0.637 0.581 0.608 0.706 0.55 0.618 0.773 0.574 0.659 0.671 0.599 0.633
Seed-ENS 0.766 0.809 0.787 0.705 0.537 0.61 0.794 0.55 0.65 0.799 0.602 0.687 0.712 0.591 0.646
LRScheduler-ENS 0.765 0.81 0.787 0.669 0.569 0.615 0.792 0.543 0.644 0.763 0.582 0.66 0.697 0.592 0.640
Epoch-ENS 0.771 0.816 0.793 0.771 0.569 0.655 0.782 0.564 0.656 0.807 0.635 0.711 0.732 0.596 0.657
PretrainedModel-ENS 0.769 0.801 0.784 0.664 0.531 0.59 0.777 0.521 0.624 0.812 0.602 0.692 0.702 0.589 0.640
DataShuffle-ENS 0.758 0.832 0.793 0.682 0.562 0.616 0.758 0.536 0.628 0.854 0.553 0.672 0.723 0.590 0.650
DynSnap-ENS 0.768 0.822 0.794 0.726 0.613 0.664 0.777 0.571 0.658 0.831 0.623 0.712 0.733 0.602 0.661

Table 1: Ensemble model performance on THYME test colon data. NONE - no relation, CONTAINS-1 - arg 2
contains arg 1, CONTAINS - arg 1 contains arg2, BEFORE-1 - arg 2 before arg 1, BEFORE - arg 1 before arg 2,
NOTED-ON-1 - arg 2 noted on arg 1, BEGINS-ON - arg 1 begins on arg 2, NOTED-ON - arg 1 noted on arg 2,
ENDS-ON - arg 1 ends on arg 2. NONE scores are omitted from the table and the OVERALL is the macro average
score excluding NONE.

which, based on the base setting, allows the model
to converge to a reasonable state before each restart.
The total number of epochs for each training run
is 15 and we save the top 4 models for pruning
based on validation accuracy. The random seeds
and shuffling datasets for the sequential training
runs are the same with the 5 options described in
Section 3.2. The logic behind the above settings
is to retain the benefits from the base fine-tuning
settings as much as possible. Codes and settings to
reproduce the results are available here2.

4 Results and Discussion

We show model performance in Table 1. Compared
with BASE, all ensemble methods boost the overall
F1 score, with DynSnap-ENS achieving the highest
improvement, 2.8% absolute. The improvement is
mainly due to the increase in precision, 6.2% abso-
lute. This complies with the theoretical findings in
Wang et al. (2020) that ensemble can improve pre-
diction accuracy (i.e. precision). However, there is
no proof that ensembling can improve recall.

Among the bagging ensembles, diversity in
epoch number (Epoch-ENS) leads to the largest
improvement, 2.4% absolute. Diversity in data
order (DataShuffle-ENS) and random seeds (Seed-
ENS) achieve the next best improvement, 1.7%

2https://github.com/christa60/
transformer-dynamic-snapshot-ensemble

and 1.3% absolute, while diversity in learning rate
schedulers (LRScheduler-ENS) and PubMedBERT
variants (PretrainedModel-ENS) obtain the least
improvement, 0.7% absolute. In general, we see
that selecting a single model is a riskier choice than
ensembling several models when trying to avoid
overfitting or underfitting the training data.

However, all sources of diversity are not equal,
with the diversity from different epochs of a train-
ing run being most helpful, and diversity of learn-
ing rate schedulers and diversity of PubMedBERT
variants helping little. A possible reason is that
both LRScheduler-ENS and PretrainedModel-ENS
have only 3 components while the other ensemble
learners have 5 components, as Wang et al. (2020)
proved that a better precision can be achieved if
more component learners are combined. However,
that would not explain the superiority of Epoch-
ENS to DataShuffle-ENS and Seed-ENS, and an
improvement of the ensemble’s performance is not
guaranteed if many poor learners are combined.
DynSnap-ENS outperforms all the other ensemble
learners, likely because it takes advantage of all the
individual types of diversity: data, model parame-
ters, epochs, and learning rate. Figure 1 presents
the training history on learning rate, training loss,
and validation accuracy along epochs. We can ob-
serve that learning behavior changes a lot with re-
spect to each source of diversity. DynSnap-ENS
combines those sources in a computationally effi-
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cient way and selects top single learners (marked
in yellow squares) from a more diversified pool to
guarantee an improvement in the final ensemble
learner.

5 Conclusion

We investigated ensemble methods in fine-tuning
transformer-based pretrained models for clinical
NLP tasks, specifically temporal relation extrac-
tion from the clinical narrative. Our experimental
results on the THYME++ data showed that ensem-
bling can further boost performance, and that dy-
namic snapshot ensembling is especially effective.
Future works include: 1) investigating the impact
of ensemble size in model performance; 2) explor-
ing hyperparameters regarding the snapshot strat-
egy and pruning algorithm; 3) testing the trained
ensemble learners on an expanded set of clinical
domain tasks.
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