
Image Models for large-scale Object Detection and Classification

Jordan Kralev
Technical University, Sofia
jkralev@tu-sofia.bg

Svetla Koeva
Institute for Bulgarian Language, BAS

svetla@ddcl.bas.bg

Abstract

Recent developments in computer vision ap-
plications that are based on machine learning
models allow real-time object detection, seg-
mentation and captioning in image or video
streams. The paper presents the development
of an extension of the 80 COCO categories into
a novel ontology with more than 700 classes
covering 130 thematic subdomains related to
Sport, Transport, Arts and Security. The de-
velopment of an image dataset of object seg-
mentation was accelerated by machine learning
for automatic generation of objects’ boundaries
and classes. The Multilingual image dataset
contains over 20,000 images and 200,000 anno-
tations. It was used to pre-train 130 models for
object detection and classification. We show
the established approach for the development
of the new models and their integration into an
application and evaluation framework.

Keywords: image dataset, image models, ob-
ject detection, object classification

1 Introduction

The shift of traditional data fusion methods chal-
lenged by multimodal big data motivates the cre-
ation of a new image corpus, the Multilingual Im-
age Corpus, which is characterised by carefully
selected images that illustrate thematically related
domains and precise manual annotation for the seg-
mentation and classification of objects in the im-
ages.

Recent developments in computer vision appli-
cations that are based on machine learning models
allow real-time object detection, segmentation and
captioning in image or video streams (Kasapbaşi
et al., 2022; Cameron et al., 2019). We developed
an image processing pipeline for object detection
and object segmentation using pre-trained models.
We also delivered a reliable service for automatic
annotation of objects in images using advanced

deep learning techniques (Michelucci, 2019) and
some existing tools and machine learning frame-
works.

The paper presents the development of an ex-
tension of the 80 COCO categories into a novel
ontology with more than 700 classes covering 130
thematic subdomains related to Sport, Transport,
Arts and Security (presented in Section 2). The de-
velopment of an image dataset for object segmen-
tation and classification (The Multilingual image
Corpus, MIC21) was accelerated by machine learn-
ing for automatic generation of objects’ boundaries
and classes (presented in Section 3). The MIC21
image dataset containing more than 20,000 images
and 200,000 annotations was used to pre-train 130
models for object detection and classification. We
show the accepted approach for the development
of machine learning models and their integration
into a framework for the evaluation and running of
models (in Section 4).

In other words, we will demonstrate the applica-
tion of models for the prediction of object outlines
and classes in images as part of the development of
the Multilingual Image Corpus, and then we will
show how the new dataset, in turn, can be used to
pre-train existing models so that they predict large
number of object classes.

2 Multilingual Image Corpus in brief

The Multilingual Image Corpus offers data to train
models specialized in object identification, seg-
mentation and classification by providing fully an-
notated objects within images with segmentation
masks categorised according to an Ontology of
Visual Objects. The Multilingual Image Corpus
is distinguished by the following key features: a)
large image collection containing thousands of im-
ages and annotations; b) an Ontology of visual ob-
jects specifically created for object classification;

190

c) preparatory automatic object segmentation and
classification evaluated by experts; d) translation of
object classes and attaching definitions of concepts
in 25 languages.

The dataset contains images from 4 thematic do-
mains (Sport, Transport, Arts and Security), which
represent highly related objects such as Tennis
player and Soccer player, Limousine and Taxi,
Singer and Violinist, Fire engine and Police boat
grouped in 130 subsets of images. The images in
the dataset are collected from a range of repos-
itories offering API: Wikimedia, Pexels, Flickr,
Pixabay, Creative Commons Search. Each image
is equipped with a metadata description in JSON
format. The metadata include fields such as: the
name of the sub-dataset, sub-dataset id, image au-
thor, author’s web address, image original size, file
name, image license, image source, last access to
the source, source’s web address, MIC21 project
url, etc. (Koeva et al., 2022)

The selected classes for annotation are organized
into an Ontology of visual objects (Koeva, 2021).
The Ontology consist of 706 classes that describe
visual objects, 147 classes that represent their hy-
pernyms, 14 relations between concepts and ax-
ioms that make explicit claims about the relations
between concept classes. The Ontology classes
correspond (but are not limited) to WordNet con-
cepts (Fellbaum, 1999; Miller et al., 1990) which
can be represented by visual objects (almost half
of the Ontology classes are not contained in the
WordNet). Two of the relations and their properties
are also inherited from WordNet.

For example, the dominant class Accordionist is
represented in WordNet, while the dominant class
Handball player – not. For new dominant classes
the appropriate hypernym in the WordNet struc-
ture is determined, in this case – Athlete. The
attribute classes for Handball player are: Handball
referee, Handball court, Handball, Handball goal,
Handball jersey, Handball pants, Handball shorts,
Handball shoe, Handball sock, Race number, Knee
pad, from which only Handball and Knee pad are
part of the WordNet. Ontology relations between
the dominant class and its attribute classes link
depicted relations between visual objects, for ex-
ample: Handball player is next to Handball referee,
Handball player plays at Handball court, Handball
player plays with Handball and so on.

The use of the Ontology of visual objects en-
sures the selection of mutually exclusive classes,

the interconnectivity of classes by means of formal
relations and an easy extension of the Ontology
with more concepts corresponding to visual ob-
jects.

All Ontology classes have been translated into
25 languages using publicly available wordnets and
BabelNet: English, Albanian, Bulgarian, Basque,
Catalan, Croatian, Danish, Dutch, Galician, Ger-
man, Greek, Finnish, French, Icelandic, Italian,
Lithuanian, Polish, Portuguese, Romanian, Rus-
sian, Serbian, Slovak, Slovenian, Spanish, and
Swedish (Koeva et al., 2022).

An image processing pipeline for object detec-
tion and object segmentation was developed. Two
software packages – Yolact (Bolya et al., 2019) and
Detectron2 (Wu et al., 2019), and Fast R-CNN (Gir-
shick, 2015) models trained on the COCO dataset
were used for the generation of annotation propos-
als. The COCO format is a commonly used format
for the instance segmentation representation (Sun
et al., 2022; Amo-Boateng et al., 2022; Conrady
et al., 2022; Cui et al., 2022).

The task for the annotators was to correct, reject
or create new polygons for individual objects in the
image and to classify the objects against the classes
from the predefined Ontology. Table 1 displays the
Multilingual Image Corpus’s current status.

Domain Images Annotations
Sport 6,915 65,482
Transport 7,710 78,172
Arts 3,854 24,217
Security 2,837 35,916
MIC21 21,316 203,797

Table 1: The Multilingual Image Corpus in Numbers

The metadata of images, Ontology, object an-
notations and multilingual descriptions of Ontol-
ogy classes are available to be downloaded, copied,
modified, distributed, displayed and used in ac-
cordance with the Creative Commons Attribution-
ShareAlike 4.0 International License.123

The Multilingual image dataset can be imple-
mented in: automatic identification and annotation
of objects in images (a prerequisite for effective
search of images and (within) video content), auto-
matic annotation of images with short descriptions
in European languages.

1https://doi.org/10.57771/be1g-vm57
2https://doi.org/10.57771/hxe0-4826
3https://doi.org/10.57771/v36v-yb33

Proceedings of CLIB 2022

191

We developed a framework based on FiftyOne,
Yolact and Detectron2, and implemented it over
Mask R-CNN on Python3, Keras and TensorFlow.
We pre-trained Fast R-CNN models using the De-
tectron2 framework with ground truth annotations,
which resulted in 130 models that generate bound-
ing boxes and segmentation masks for each in-
stance of a particular object within an image. The
framework maintains an API functionality for pro-
cessing new images with any of the three models:
Yolact, Detectron2 and MIC21. The MIC21 frame-
work allows for evaluation and comparison of the
grand truth and MIC21 models annotations as well
as for running the models on new image datasets.4

We will present in more detail the integration of
existing models in our Image Processing Pipeline in
order to automatically predict the objects’ bound-
aries in images and their classes, as well as the
development of 130 models based on the Multilin-
gual Image Corpus, which can be used for object
recognition and classification and for future experi-
ments.

3 Image Processing Pipeline

The Image Processing Pipeline contains a number
of modules that support the work of annotators in
several ways: by predicting object outlines and by
managing images and annotations.

The Multilingual Image Corpus is organized into
manageable in size datasets containing at least 100
images (in rare cases) and in the most common case
– about 150 images. The initial datasets roughly cor-
respond to the final thematic subdomains that will
be formed. However, in the preliminary stage of
the work, it was acceptable to have several datasets
representing a single thematic subdomain, images
classified in inappropriate datasets, etc. Therefore,
the initial organization of the images into datasets
is mostly with respect to the collection methodol-
ogy and the decision on the size of the data. After
the initial processing of the images and the manual
annotation, some images are reorganized, if neces-
sary, which reflects the final content of the thematic
subdomains.

All input images are represented in raster im-
age compression formats such as: Portable Net-
work Graphic (PNG), Joint Photographic Experts
Group (JPEG) or Tag Image File Format (TIFF).
The size of images varies considerably between
2 to 11 megapixels. The small image dimensions

4https://mic21.dcl.bas.bg

may affect the quality of the annotated regions. On
the other hand, when the image dimensions are too
large, the amount of allocated memory, as well as
the processing time, increases exponentially. An-
other requirement for the input image is its colour
space format to be in red, green and blue (RGB)
channels without additional or missing channels.

For an effective processing of images with a
convolution model they have to be in proper di-
mensions and in the RGB color space. Hence, the
first module of the pipeline examines each image
and performs the necessary transformations (re-
sizing and/or color space mapping); in case the
transformations are not possible, the image is ex-
cluded from the dataset. As a result, the images
are described by their attributes as JSON objects.
The pre-processing step is automated by a Python
script, which calls some of the OpenCV5 routines
for performing the operations over the images.

The open source Yolact (Bolya et al., 2019) pro-
vides several convolution neural network models
for object detection and segmentation within the
COCO domain (Lin et al., 2014). The model we
have employed for the automatic annotation is
Resnet50-FPN. The notation indicates that each
convolution layer from the backbone component
of the model includes a feed-through connection
from the input to the output of the layer. Such
structure is appropriate for training highly stacked
models (as those used for computer vision tasks) in
order to improve the numerical stability of the opti-
mization procedure and to prevent over-fitting. The
intuition behind this is that each convolution layer
from the stack is approximating only the residual
error between the target and the output of the pre-
vious layer. First the data is processed through a
stack of input convolutional layers with decreasing
resolution. Consequently, a stack of output convo-
lutional layers with increasing resolution is applied.
The dimension of each layer from an input stack is
matched by a layer from the output stack. In addi-
tion, 1x1 convolutional connections are established
between the corresponding layers from the input
and the output stacks.

The result from dataset processing through
Yolact software is the instance segmentation and
classification within the COCO domain. The re-
sults are stored in MS COCO JSON format. The
format provides two options for recording the
bounding contour of each detected object – run-

5https://github.com/opencv/opencv

Proceedings of CLIB 2022

192

length encoding (RLE) and point coordinates. The
RLE is a compression format over the point coordi-
nates and allows for more compact representation;
however, not all systems are able to work with it
directly. A useful tool for converting between for-
mats is the Python library pycocotools. In some
cases, more processing is required because the raw
segmentation mask resulting from the convolution
model is a binary mask. For the conversion of a
binary mask to an object contour a useful routine
from OpenCV library, findContours, is used.

As noted, the object detection model produces
annotation data in the domain of the 80 COCO
categories. The automatically obtained annotation
data are imported in an open-source annotation soft-
ware, the COCO-annotator (Brooks, 2019). The
process is automated through a bash script, which
connects to the database docker of the annotator,
creates a new dataset, copies the images and im-
ports the annotation data. The COCO-annotator
features multi-user environment composed of a
mongoDB database, Flask backend and Vue fron-
tend employing a worker processing model. In
the COCO-annotator, software images are orga-
nized into datasets and the front-end provides a
tool for performing manual editing of annotation
contours creating/deleting annotations or chang-
ing/assigning object labels.

To further accelerate manual annotation an auto-
matic relabelling of the imported annotations in the
coco-annotator database is implemented. It takes
as an input a dictionary that states the relabelling
rules specific for a sub-dataset. For example, the
category ’Person’ in the sub-dataset ’Basketball’
is replaced with the class ’Basketball player’ and
the identifier of the new class replaces the identifier
of all annotations ’Person’ within the sub-dataset
’Basketball’.

Certain manipulations during the manual anno-
tation were performed to provide functionalities
that are not implemented in the COCO-annotator
software. We have developed a dedicated Python
script performing such operations by connecting
to the mongoDB engine of the annotation software
using PyMongo Python library:

• Import images and annotations when creating
a new dataset;

• List annotated images by class label and store
them into a file on the disk;

• List hyperlinks to images in the database ac-

cording to their thematic subdomain;

• List annotated images by thematic subdomain;

• Generate statistical reports for the annotated
images;

• Merge two thematic sub-datasets into a single
one;

• Move one or several images from one the-
matic sub-dataset to another, together with
their associated annotations;

• Remove images, annotations or categories
from a dataset based on various criteria;

• Export all dataset images and annotations into
JSON COCO format;

• Remove images from the dataset marked as
deleted in the COCO-annotator software;

• Replace labels in a thematic sub-dataset ac-
cording to specific rules;

• Scan image paths in the database for inconsis-
tency and fix them if necessary;

• Change classes of particular images or differ-
entiate labels between two distinct thematic
sub-datasets.

Python scripts6 execute each of the described oper-
ations.

After manual annotation and database post-
processing, the images from the resulting 130 the-
matic subdomains are exported together with their
ground truth annotations represented in MS COCO
format. The structure of the MIC21 dataset is as
follows:

-thematic_field_name
- data
- image_1.jpg
- image_2.png
...

thematic_field_name_gt.json

The data sub-directory for the respective thematic
subdomain contains the images in jpg, jpeg or png
format. The *gt.json field is a COCO format
JSON file describing the polygonal segmentation
of objects in images.

6https://github.com/link_will_be_
provided

Proceedings of CLIB 2022

193

image

feature maps

CNN backbone

region proposals objectivenes logits

RPN

ROI head

binary mask ontology label

Figure 1: Structure of the model

4 MIC21 Models

We trained domain specific models, which are able
to detect and label objects in an image with classes
from the MIC21 ontology. The benefits of such
models are twofold – first, they allow further accel-
eration of the manual annotation reflecting the MIC
ontology of visual objects; second, they represent
an extension of the standard COCO classes to 130
thematic domains. For the training of the domain
specific models we use Detectron2 framework of
the Facebook research group7, which is an open-
source Python software based on PyTorch library.
The general structure of the object detection model
is presented in Figure 1.

It is composed of a convolution neural network
(CNN) backbone component, a proposal generator
and a region of interest (ROI) head (Redmon et al.,
2015). Detectron2 supports 3 backend structures
- Resnet, Regnet and FPN. The backbone is repre-
sented as stacked convolution layers with different
interconnections depending on the structure type.

In the Resnet structure, the residual building
block has an option for a direct shortcut connection
from the input of the layer to its output, i.e. pro-
jecting the input features into the output, and the
actual network is keeping the difference between
the input and the target. The output of the backend
component comprises selected feature maps from
the stack of layers depending on the network de-
sign. Usually, in addition to the output of the last
layer, 3 to 4 of the output feature maps from the

7https://github.com/facebookresearch/
detectron2

deeper layers are selected.

Region proposals in the modern object detection
networks are generated through a region proposal
convolution network (RPN), composed of a 3x3
convolution layer followed by 1x1 convolution lay-
ers for the generation of object box deltas and an
objectiveness score for a box. As a basis for region
proposals, a set of anchors is generated within the
image, for example, by dividing the image into a
grid of large boxes and putting an anchor point
at the centre of each box. Then the anchor boxes
are refined during the training of the network by
fitting them to the ground truth. The result of the
proposal generator layer is a list of box coordinates
and an objectiveness score indicating whether the
respective box contains an object or not.

The third stage in the object detection framework
is a ROI head network, which iterates over each
of the generated proposal boxes and performs per
region classification and binary mask extraction.
The prediction is based on the features from the
backbone layer constrained to the current examined
box.

Each of the trained models is characterised
by input data, output data and parameters. The
parameters represent the internal weights of the
model obtained during training, which are spe-
cific for each thematic subdomain and have to be
loaded through a DetectionCheckpointer
class. The input for the model is a Python list
structure list[dict], where each element of
the list is a dictionary field image, representing
a 3-dimensional array with colours for each pixel
from the image in RGB colour space, and also
width and height attributes for the image in pixels.
If the model weight is updated during the training,
the input dictionary for each image has to include
a field instances describing the coordinates of
the bounding boxes for the ground truth objects in
the image, as well as a class label for each object in
the range [0,num_categories] and a ground
truth binary mask for each object.

The training of the models is performed with
the Detectron2 framework by inheriting the
DefaultTrainer class. The training loop and
each of the network layers are aligned with the
PyTorch requirements for building neural network
models. Each layer has to provide a loss function,
which calculates the residual error given the train-
ing targets and network outputs, and additionally to
provide a forward function, which calculates the

Proceedings of CLIB 2022

194

layer outputs from inputs. To compute the gradi-
ents during the backward network pass the PyTorch
features an autograd engine, which (when en-
abled) is able to track each arithmetic operation
during the forward pass and to obtain the gradient
of the residual error of the layer with respect to the
parameters.

During the training, the model is evaluated peri-
odically when a certain iteration count is passed by
tracking the intersection over union (IoU) metric
by category. The library pycocotools contains
useful routines for comparing results from com-
puter vision models either by using bounding boxes
or binary masks. The IoU metric is defined as:

SIoU (Z, T) =
A(Z ∩ T)

A(Z ∪ T)
, (1)

where Z is the model bounding box or mask detec-
tion, T is the corresponding ground truth instance
from the same ontology class and A is the area cal-
culating operator, which usually is expressed by the
number of pixels in a region. In order to calculate
this metric for multivariate models (with several
ontology classes), first a correspondence between
model outputs and ground truth targets has to be es-
tablished by comparing the region overlap. When
a model output region is matched to a ground truth
region for a given IoU threshold, 4 metrics can be
calculated:

• TP – true positive – when Z and T are from
the same class;

• FP – false positive – when Z and T are
matched, but the model is wrong for the class
of Z;

• FN – false negative – no region Z is matched
to a ground truth T ;

• TN – true negative – an object that is not part
of the ground truth is also left undetected by
the model.

With respect to the classification outcome for a
given IoU threshold, three additional metrics for the
model are commonly examined, which are model
precision

P =
NTP

NTP +NFP
, (2)

reflecting how good the model is in producing cor-
rect labelling for the detected regions, model recall,

R =
NTP

NTP +NFN
, (3)

which is about how good the model is in detecting
the correct objects from a category and general
model detection accuracy expressed by

A =
NTP +NTN

NTP +NFP +NFN +NTN
, (4)

where N• denotes the number of detections over
the whole dataset from TP, FP, FN or TN category.
Note that each of the metrics P, R and A are func-
tions of the IoU threshold level SIoU (Z, T) used to
perform the matching between the model detection
and ground truth regions. By selecting different
IoU thresholds we will get different model perfor-
mance, hence to obtain a more complete picture
of the model detection capabilities P and R are
evaluated for the whole range of IoU values from 0
to 1, producing the so-called precision recall curve
for a model.

5 Framework for running and evaluation
the MIC21 models

For the purposes of presentation, comparison and
evaluation the dataset is organized into a system
of components, called ’MIC21 framework’ (Fig-
ure 2). The framework is composed of a backend
(processing service) and frontend (visualization ser-
vice) component. The processing service is imple-
mented as a Flask server implemented in Python,
which is able to run the Yolact, Detectron2 and
MIC21 pre-trained domain specific models (Figure
2). The processing service offers a set of Web APIs
implemented over an HTTP, with the following
functions:

• Prediction of annotations using the Yolact soft-
ware;

• Prediction of annotations using the Detectron2
software;

• Prediction of annotations using the MIC21
trained models;

• Import of new images, their ground truth and
predictions into FiftyOne framework (into a
new or already existing dataset);

• Initial loading of datasets into FiftyOne;

• A simple interface to upload a new image to a
dataset;

• Evaluation of predictions against the ground
truth and storing the results into the FiftyOne
framework. Print the evaluation statistics.

Proceedings of CLIB 2022

195

 MIC21

models

Visualization

Processing

 Yolact

models
Detectron2

 models

uploaddiscovery comparison

Web API

Figure 2: MIC21 framework components

The framework frontend service is based on the
FiftyOne software (Moore and Corso, 2020), which
is an open-source tool for building high-quality
datasets and computer vision models. In the Fifty-
One frontend service the Yolact, Detectron2 and
MIC21 pre-trained models can be compared with
the ground truth annotations for 130 subdomains
in the Sport, Transport, Arts and Security thematic
domains.

The repository for the framework is freely ac-
cessible at GitHub and includes: source code of
Mask R-CNN built on FPN and ResNet101, train-
ing code for MS COCO, pre-trained weights for
MS COCO and MIC21 classes, Jupyter notebooks
for visualization the detection pipeline and evalua-
tion routines for MS COCO metrics integrated in
the FiftyOne.

The original FiftyOne code is extended with a
function, which allows a user to upload a new im-
age into a selected MIC21 sub-dataset. When up-
loaded, the image is automatically processed by
the backend service and it is annotated indepen-
dently by 3 different models (Yolact, Detectron2
and MIC21). The results can be compared in the
FiftyOne.

6 Results and Evaluation

The MC21 object detection models produce the
output in four components:

• Bounding box, described with its coordinates
and its width and height;

• Polygon of points outlining the object con-
tours;

• Class label of the detected object;

• Confidence score between 0 and 1 – how cer-
tain the model is about the predicted class.

The FiftyOne framework integrates functionali-
ties to compare different object detection models
(in our case MIC21 model outcomes and the ground
trough annotations). As each image can represent
many objects from different classes, the compar-
ison shows the correct classification for a given
object within an image. Overall, the results can be
summaries as follows:

• If a model could find the object location, the
object is assigned a class;

• The classes that have strong correlation with
the COCO classes (i.e. baseball player vs.
human; soldier vs. human, etc.) are recog-
nized with a better precision, over 90 %, such
classes represent 27 % from the MIC21 On-
tology classes;

• Classes representing objects that are not cate-
gorised in the COCO dataset are recognized
and classified with accuracy over 50 %. Fig-
ure 3 represents details for four randomly se-
lected sub-datasets.

Category Accur. Precis. Recall Support
Sport 0.60 0.83 0.63 1663
Transport 0.59 0.84 0.63 1421
Arts 0.59 0.89 0.63 855
Security 0.20 0.39 0.24 1973
Total 0.5 0.76 0.53 1478

Table 2: Average metrics for the 130 MIC21 models

The results depend on the selected model param-
eters, number of training epochs, batch size and
also on the structure of the train and the validation
datasets. In our experiment, an initial training is
performed with a fixed number of 1500 epochs.
The resulting models can be re-trained further by
the code templates provided within the framework.
After the initial training, we have calculated aver-
age accuracy, precision and recall metrics for each
Ontology class represented in the MIC21 dataset.
The low accuracy and recall for some classes from
the domains Security and Arts is due to the small
number of the ground truth instances. Methods
for training models with small datasets have al-
ready being developed (Chen et al., 2021; Hu et al.,
2020).

Proceedings of CLIB 2022

196

Figure 3: Precision-recall relationship for 4 randomly selected sub-datasets. From left to right: Climbing, Airplane,
Violonist and Soldier

During the training we have used a fixed number
of 1 500 epochs to generate results for the 130 mod-
els in reasonable time frame. However, training for
a fixed number of iterations leads to a different per-
formance of the model over the dataset. We sum-
marize the results from the evaluation of the trained
models over the target domains in figures 4 to 7.
For this purpose we calculate average precision and
recall metrics using the official COCO API library
(Dollar and Lin, 2014). The library provides the
class COCOEval, which takes ground truth and
model detection arrays as inputs and evaluates each
image and category in the dataset over specified
surface area ranges. The matching between ground
truth and detection masks is determined by a range
of intersection-of-unions thresholds (IoT). In our
evaluation scenario, we evaluate all area ranges,
and the IoT range from 0.5 to 0.95 for both pre-
cision and recall. The per image metrics are then
accumulated for the whole dataset.

To highlight the capabilities of the trained mod-
els, we have performed evaluation over a single
class per dataset, which was selected as a dom-
inant class for the particular subdomain. These
classes are usually with high number of instances
in the subdomain. For some of the subdomains
the selection of a dominant class can be ambigu-
ous. However, the main rule during that decision
process was that the dominant class must uniquely
identify the respective subdomain. Another rule we
have observed was to use different sets of classes
for different subdomains (to the possible extend).
The resultant sets of classes can be tracked in the
Figures 4 to 7.

In the Figure 4 we compare the subdomains from
the domain Sport. We can see that for the most of
the dominant classes we have reached average pre-
cision and recall of about 0.4. The highest average
precision is reached for the category Golf player

in the subdomain Golf, and the lowest precision
and recall are for the class Race driver in the sub-
domain Car racing (not a dominant class), which
is due to uncommon for COCO models pose of
the object Person within the images and provided
limited training epochs. Hence, if we deviate more
from what is typical of the initial training of the
model, we have to perform deeper changes in the
layers with the additional training in order to pre-
serve the level of fit to ground truth. It is noticeable
that we have big difference between average preci-
sion and recall for some classes such as Volleyball
player, Soccer player, Hockey player, Cricketer,
etc. In all cases, the recall is about 30% lower
than the precision, meaning that when the model
detects the respective instance it is correctly clas-
sified. However, not all objects from a particular
class have been detected. This can be related to
how the ground truth objects are selected, in terms
of a sufficient number of images depicting the ob-
ject in a particular situation, or can be attributed
to overlapping between two objects in some situ-
ations. Such events can lead to lower confidence
score from the model. We evaluate all MIC21 mod-
els for a confidence score of 0.9, which is quite
high, to highlight the differences between the mod-
els.

Figure 5 contains the results of evaluation over
the domain Transport. The pre-trained models have
reached a performance between 0.4 and 0.8 for av-
erage precision and recall for that domain. The
highest result on precision is for the subdomain
Tram of about 0.85 and the highest recall is for the
subdomain Convertible of about 0.84. It is inter-
esting to note that, while for the Sport subdomains
we always have higher precision than recall, for the
Transport subdomains we have many cases when
recall is higher than the precision. This indicates
that, while selected models are better at recogniz-

Proceedings of CLIB 2022

197

ing automobiles, it is more difficult to identify them
than people. The lowest metrics for Transport are
for the subdomain Car transporter, which can
also be attributed to the untypical objects we try to
identify using a model that was first trained for the
80 COCO classes.

Results from the evaluation of the models in the
domain Arts are presented in the Figure 6. With
some models targeting higher and some models
aiming lower, the average precision and recall are
about 0.4-0.5. We cannot see a precision over re-
call dominance as in Sport because the dominant
class in those subdomains is once again Person.
With recall and precision close to 0.85 and 0.83,
the subdomain Photographer achieves the higher
metrics.

Interesting finding is that as with Cellists, Ballet
dancers, and Percussionists, lower recall levels un-
necessarily reduce precision levels. In other words,
if the model is good in detecting a particular object,
it has good chances to properly classify it. This
can be related to the fact that we modify only the
ROI head sub-component of the model, without
targeting the lower detection layers. In our dataset
we have a few classes from the domain Security
visualized in the Figure 7. Classes from the domain
Security show similar metrics with other examined
domains with both precision and recall ranging
around 0.5.

7 Conclusion and Future Work

The Multilingual Image Corpus offers data to train
models specialized in object detection, segmenta-
tion, and classification by providing fully annotated
objects within images with segmentation masks,
categorised according to an Ontology of Visual Ob-
jects. The Ontology of visual objects allows easy
integration of annotated images in different datasets
as well as learning the associations between objects
in images.

Models trained on the COCO dataset were used
for the generation of annotation proposals. We
developed a framework based on FiftyOne, Yolact
and Detectron2, and implemented it over Mask
R-CNN on Python3, Keras and TensorFlow. We
pre-trained Fast R-CNN models with the MIC 21
dataset, which resulted in 130 models that generate
bounding boxes, segmentation masks and object
classes.

The MIC 21 framework supports web-based vi-
sualization, evaluation and comparison of different

models together with the ground truth annotations.
We can provide a number of alternatives for

completing multimodal tasks using the created
datasets, including automatic image caption gen-
eration aligning sentences with images in various
multimodal documents and visual question answer-
ing. Interpreting an image and the brief text that
goes with it, such as a caption, a question or a
description of the objects in the image, can be a
supporting task.

Prospective developments also include: auto-
matic extension of the dataset using the pre-trained
models, which will considerably accelerate manual
annotation in the target thematic domains; training
models for automatic image captioning (Li et al.,
2020) or question answering (Wu et al., 2021; Liu
et al., 2021); adaptation of the pre-trained models
for video processing (Zhao et al., 2021); identifica-
tion (automatic generation) of images representing
particular objects or particular textual descriptions;
application in motion analysis systems.

Acknowledgments

The Multilingual Image Corpus (MIC21) project
was supported by the European Language Grid
project through its open call for pilot projects. The
European Language Grid project has received fund-
ing from the European Union’s Horizon 2020 Re-
search and Innovation programme under Grant
Agreement no. 825627 (ELG).

References
Mark Amo-Boateng, Nana Ekow Nkwa Sey, Amprofi

Ampah Amproche, and Martin Kyereh Domfeh. 2022.
Instance segmentation scheme for roofs in rural areas
based on Mask R-CNN. The Egyptian Journal of
Remote Sensing and Space Science.

Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae
Lee. 2019. Yolact: Real-time instance segmentation.
In ICCV.

Justin Brooks. 2019. COCO Annotator.

James A.D. Cameron, Patrick Savoie, Mary E. Kaye,
and Erik J. Scheme. 2019. Design considerations for
the processing system of a CNN-based automated
surveillance system. Expert Systems with Applica-
tions, 136:105–114.

Tingkai Chen, Ning Wang, Rongfeng Wang, Hong Zhao,
and Guichen Zhang. 2021. One-stage CNN detector-
based benthonic organisms detection with limited
training dataset. Neural Networks, 144:247–259.

Proceedings of CLIB 2022

198

Christopher R. Conrady, Şebnem Er, Colin G. Attwood,
Leslie A. Roberson, and Lauren de Vos. 2022. Au-
tomated detection and classification of southern
African Roman seabream using mask R-CNN. Eco-
logical Informatics, 69:101593.

Fan Cui, Muwei Ning, Jiawei Shen, and Xincheng Shu.
2022. Automatic recognition and tracking of high-
way layer-interface using faster R-CNN. Journal of
Applied Geophysics, 196:104477.

Piotr Dollar and Tsung-Yi Lin. 2014. Microsoft COCO
Toolbox. Version 2.0.

Christiane Fellbaum, editor. 1999. WordNet: an Elec-
tronic Lexical Database. MIT Press, Cambridge,
MA.

Ross Girshick. 2015. Fast R-CNN.

Xiaodong Hu, Xinqing Wang, Fan-jie Meng, Xia Hua,
Yu-ji Yan, Yu-yang Li, Jing Huang, and Xue-mei
Jiang. 2020. Gabor-CNN for object detection based
on small samples. Defence Technology, 16:1116–
1129.

Ahmed Kasapbaşi, Ahmed Eltayeb Ahmed Slbushra,
Omar Al-Hardanee, and Arif Yilmaz. 2022. Deep-
ASLR: A CNN based human computer interface for
American Sign Language recognition for hearing-
impaired individuals. Computer Methods and Pro-
grams in Biomedicine Update, 2:100048.

Svetla Koeva. 2021. Multilingual Image Corpus: Anno-
tation Protocol. In Proceedings of the International
Conference on Recent Advances in Natural Language
Processing (RANLP 2021), pages 701–707, Held On-
line. INCOMA Ltd.

Svetla Koeva, Ivelina Stoyanova, and Jordan Kralev.
2022. Multilingual Image Corpus – Towards a Mul-
timodal and Multilingual Dataset. In Proceedings
of the Language Resources and Evaluation Confer-
ence, pages 1509–1518, Marseille, France. European
Language Resources Association.

Ruifan Li, Haoyu Liang, Yihui Shi, Fangxiang Feng,
and Xiaojie Wang. 2020. Dual-CNN: A Convolu-
tional language decoder for paragraph image caption-
ing. Neurocomputing, 396:92–101.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Per-
ona, Deva Ramanan, C. Lawrence Zitnick, and Piotr
Dollár. 2014. Microsoft COCO: Common Objects
in Context. In European Conference on Computer
Vision (ECCV), pages 740–755, Zürich.

Yun Liu, Xiaoming Zhang, Qianyun Zhang, Chaozhuo
Li, Feiran Huang, Xianghong Tang, and Zhoujun Li.
2021. Dual self-attention with co-attention networks
for visual question answering. Pattern Recognition,
117:107956.

Umberto Michelucci. 2019. Advanced Applied Deep
Learning: Convolutional Neural Networks and Ob-
ject Detection. Apress.

George A. Miller, Richard Beckwith, Christiane. Fell-
baum, Derek Gross, and Katherine Miller. 1990. In-
troduction to Wordnet: an on-line lexical database.
International journal of lexicography, 3(4):235–244.

Brian Moore and Jason Corso. 2020. Fiftyone. GitHub.

Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. 2015. You Only Look Once: Unified,
Real-time Object Detection.

Yuxin Sun, Li Su, Yongkang Luo, Hao Meng, Wanyi
Li, Zhi Zhang, Peng Wang, and Wen Zhang. 2022.
Global Mask R-CNN for marine ship instance seg-
mentation. Neurocomputing, 480:257–270.

Yirui Wu, Yuntao Ma, and Shaohua Wan. 2021. Multi-
scale relation reasoning for multi-modal Visual Ques-
tion Answering. Signal Processing: Image Commu-
nication, 96:116319.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-
Yen Lo, and Ross Girshick. 2019. Detectron2.

Guoping Zhao, Mingyu Zhang, Yaxian Li, Jiajun Liu,
Bingqing Zhang, and Ji-Rong Wen. 2021. Pyramid
regional graph representation learning for content-
based video retrieval. Information Processing &
Management, 58(3):102488.

Appendix A Evaluation over the classes
in the four main domains:
Sport, Transport, Arts,
Security

.

Proceedings of CLIB 2022

199

Figure 4: Evaluation over Sport categories

Figure 5: Evaluation over Transport categories

Proceedings of CLIB 2022

200

Figure 6: Evaluation over Arts categories

Figure 7: Evaluation over Security categories

Proceedings of CLIB 2022

201

