
Survey

Position Information in Transformers:
An Overview

Philipp Dufter∗†
Center for Information and Language
Processing, LMU Munich
philipp@cis.lmu.de

Martin Schmitt∗‡
Center for Information and Language
Processing, LMU Munich
martin@cis.lmu.de

Hinrich Schütze
Center for Information and Language
Processing, LMU Munich
inquiries@cislmu.org

Transformers are arguably the main workhorse in recent natural language processing research.
By definition, a Transformer is invariant with respect to reordering of the input. However,
language is inherently sequential and word order is essential to the semantics and syntax of an
utterance. In this article, we provide an overview and theoretical comparison of existing methods
to incorporate position information into Transformer models. The objectives of this survey are
to (1) showcase that position information in Transformer is a vibrant and extensive research
area; (2) enable the reader to compare existing methods by providing a unified notation and
systematization of different approaches along important model dimensions; (3) indicate what
characteristics of an application should be taken into account when selecting a position encoding;
and (4) provide stimuli for future research.

1. Introduction

The Transformer model as introduced by Vaswani et al. (2017) has been found to per-
form well for many tasks, such as machine translation or language modeling. With the

∗First two authors contributed equally. †Now at Apple. ‡Now at celebrate company.

Action Editor: Rico Sennrich. Submission received: 27 August 2021; revised version received: 9 March
2022; accepted for publication: 30 March 2022.

https://doi.org/10.1162/COLI a 00445

© 2022 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:philipp@cis.lmu.de
mailto:martin@cis.lmu.de
mailto:inquiries@cislmu.org
https://doi.org/10.1162/COLI_a_00445

Computational Linguistics Volume 48, Number 3

rise of pretrained language models (Peters et al. 2018; Howard and Ruder 2018; Devlin
et al. 2019; Brown et al. 2020), Transformer models have become even more popular. As
a result they are at the core of many state-of-the-art natural language processing models.
A Transformer model consists of several layers, or blocks. Each layer is a self-attention
(Vaswani et al. 2017) module followed by a feed-forward layer. Layer normalization and
residual connections are additional components of a layer.

A plain Transformer model is invariant with respect to reordering of the input.
However, text data is inherently sequential. Without position information the meaning
of a sentence is not well-defined—for example, compare the sequence “the cat chases
the dog” to the multi-set { the, the, dog, chases, cat }. Clearly it should be beneficial to
incorporate this essential inductive bias into any model that processes text data.

Therefore, there is a range of different methods to incorporate position information
into Transformer models. Adding position information can be done by using position
embeddings, manipulating attention matrices, or alternative methods such as prepro-
cessing the input with a recurrent neural network. Overall, there is a large variety of
methods that add absolute and relative position information to Transformer models.
Similarly, many papers analyze and compare a subset of position embedding variants.
But, to the best of our knowledge, there is no broad overview of relevant work on
position information in Transformers that systematically aggregates and categorizes
existing approaches and analyzes the differences between them.

This survey gives an overview of existing work on incorporating and analyzing
position information in Transformer models. Concretely, we provide a theoretical com-
parison of over 30 Transformer position models and a systematization of different
approaches along important model dimensions, such as the number of learnable pa-
rameters, and elucidate their differences by means of a unified notation. The goal of this
work is not to identify the best way to model position information in Transformer but
rather to analyze existing works, and identify common components and blind spots of
current research efforts. In summary, we aim to

(1) showcase that position information in Transformer is a vibrant and
extensive research area;

(2) enable the reader to compare existing methods by providing a unified
notation and systematization of different approaches along important
model dimensions;

(3) provide stimuli for future research.

2. Background

2.1 Notation

Throughout this article we denote scalars with lowercase letters x ∈ R, vectors with
boldface x ∈ Rd, and matrices with boldface uppercase letters X ∈ Rt×d. We index vec-
tors and matrices as follows: (xi)i = 1,2...,d = x, (Xij)i = 1,2...,t,j = 1,2,...d = X. Further, the i-th
row of X is the vector Xi ∈ Rd. The transpose is denoted as XT. When we are referring to
positions we use r, s, t, . . . whereas we use i, j, . . . to denote components of a vector. The
maximum sequence length is called tmax.

734

Dufter, Schmitt, and Schütze Position Information in Transformers

2.2 Transformer Model

Attention mechanisms were first used in the context of machine translation by
Bahdanau, Cho, and Bengio (2015). While they still relied on a recurrent neural network
in its core, Vaswani et al. (2017) proposed a model that relies on attention only. They
found that it outperforms recurrent neural network approaches by large margins on
the machine translation task. In their paper they introduced a new neural network
architecture, the Transformer model, which is an encoder–decoder architecture. We
now briefly describe the essential building block, the Transformer encoder block, as
shown in Figure 1. Our description and notation follows (Dufter 2021). One block, also
called layer, is a function fθ : Rtmax×d → Rtmax×d with fθ(X) =: Z that is defined by

A =

√
1
dXW(q)(XW(k))T

M = SoftMax(A)XW(v)

O = LayerNorm1(M + X) (1)

F = ReLU(OW(f1) + b(f1))W(f2) + b(f2)

Z = LayerNorm2(O + F)

Here, SoftMax(A)ts = eAts/
∑tmax

k = 1 eAtk is the row-wise softmax function;
LayerNorm(X)t = g� (Xt − µ(Xt)/σ(Xt) + b is layer normalization (Ba, Kiros, and
Hinton 2016) where µ(x),σ(x) returns the mean and standard deviation of a vector;
and ReLU(X) = max(0, X) is the maximum operator applied component-wise. Note that
for addition of a vector to a matrix, we assume broadcasting as implemented in NumPy
(Harris et al. 2020). Overall the parameters of a single layer are

θ = (W(q), W(k), W(v) ∈ Rd×d, g(1), g(2), b(1), b(2) ∈ Rd, (2)

W(f1) ∈ Rd×df , W(f2) ∈ Rdf×d, b(f1) ∈ Rdf , b(f2) ∈ Rd)

Output

LayerNorm

Addition

Feed Forward

LayerNorm

Addition

Attention

Input

Input X

XW(q) XW(k) XW(v)

Attention Matrix A

Output Z

Figure 1
A rough overview of a plain Transformer Encoder Block (gray block) without any position
information. The Transformer Encoder Block is usually repeated for l layers. An overview of the
attention computation is shown on the right.

735

Computational Linguistics Volume 48, Number 3

with d the hidden dimension, df the intermediate dimension, and tmax the maximum
sequence length. It is common to consider multiple, say h, attention heads. More specif-
ically, W(q), W(k), W(v) ∈ Rd×dh where d = hdh. Subsequently, the matrices M(h) ∈ Rtmax×dh

from each attention head are concatenated along their second dimension to obtain M.
A full Transformer model is then the function T : Rtmax×d → Rtmax×d that consists of the
composition of multiple, say l layers, that is, T(X) = fθl ◦ fθl−1 ◦ · · · ◦ fθ1 (X).

When considering an input U = (u1, u2, . . . , ut) that consists of t units, such as
characters, subwords, or words, the embeddings U ∈ Rtmax×d are created by a lookup
in the embedding matrix E ∈ Rn×d with n being the vocabulary size. More specifically,
Ui = Eui is the embedding vector that corresponds to the unit ui. Finally, the matrix U
is then (among others) used as input to the Transformer model. In the case that t is
smaller or larger than tmax, the input sequence is padded, that is, filled with special PAD
symbols, or truncated.

2.3 Order Invariance

If we take a close look at the Transformer model, we see that it is invariant to reordering
of the input. More specifically, consider any permutation matrix Pπ ∈ Rtmax×tmax . When
passing PπX to a Transformer layer, one obtains PπSoftMax(A)PπᵀPπXW(v) = PπM,
as PπᵀPπ is the identity matrix. All remaining operations are position-wise and thus
PπT(X) = T(PπX) for any input X. As language is inherently sequential it is desirable to
have PπT(X) 6= T(PπX), which can be achieved by incorporating position information.

2.4 Encoder–Decoder

There are different set-ups for using a Transformer model. One common possibility is
to have an encoder only. For example, BERT (Devlin et al. 2019) uses a Transformer
model T(X) as encoder to perform masked language modeling. In contrast, a traditional
sequence-to-sequence approach can be materialized by adding a decoder. The decoder
works almost identically to the encoder with two exceptions: (1) The upper triangle
of the attention matrix A is usually masked in order to block information flow from
future positions during the decoding process. (2) The output of the encoder is integrated
through a cross-attention layer inserted before the feed-forward layer. See Vaswani et al.
(2017) for more details. The differences between an encoder and encoder–decoder
architecture are mostly irrelevant for the injection of position information and many
architectures rely just on encoder layers. Thus for the sake of simplicity we will talk
about Transformer encoder blocks in general for the majority of the article. See §4.4 for
position encodings that are tailored for encoder–decoder architectures.

3. Recurring Concepts in Position Information Models

Although there are a variety of approaches to integrate position information into Trans-
formers, there are some recurring ideas, which we outline in this section. Based on these
concepts we also provide a clustering of the considered position information models
(see Table 1).

3.1 Reference Point: Absolute vs. Relative Position Encoding

Absolute positions encode the absolute position of a unit within a sentence. Another
approach is to encode the position of a unit relative to other units. This makes sense
intuitively, as in sentences like “The cat chased the dog.” and “Suddenly, the cat chased

736

Dufter, Schmitt, and Schütze Position Information in Transformers

Table 1
Comparison according to several criteria: = (Absolute, Relative, or Both); = Injection
method (APE or MAM); = Are the position representations learned during training?; = Is
position information recurring at each layer vs. only before first layer?; = Can the position
model generalize to longer inputs than a fixed value?; #Param = Number of parameters
introduced by the position model (notation follows the text paper, d hidden dimension, h #
attention heads, n vocabulary size, tmax longest sequence length, l # layers). The - symbol means
that an entry does not fit into our categories. Note that a model as a whole can combine different
position models while this comparison focuses on the respective novel part(s).

Re
f.

Po
in

t

In
je

ct
. M

et
.

Le
ar

na
bl

e

Re
cu

rr
in

g

U
nb

ou
nd

Model #Param

D
at

a
St

ru
ct

ur
e Se

qu
en

ce

Transformer w/ emb. (Vaswani et al. 2017)
A APE " $ $

tmaxdBERT (Devlin et al. 2019)
Reformer (Kitaev, Kaiser, and Levskaya 2020) (d− d1) tmax

t1
+ d1t1

FLOATER (Liu et al. 2020) A APE " " " 0 or more
Shortformer (Press, Smith, and Lewis 2021) A APE $ " " 0
Wang et al. (2020) A – " $ " 2nd
Shaw, Uszkoreit, and Vaswani (2018) (abs) A MAM " " $ 2t2

maxdl

Shaw, Uszkoreit, and Vaswani (2018) (rel)
R MAM " " $

2(2tmax − 1)dl
T5 (Raffel et al. 2020) (2tmax − 1)h
Huang et al. (2020) dlh(2tmax − 1)

DeBERTa (He et al. 2021) B Both " " $ 3tmaxd

Transformer XL (Dai et al. 2019)
R MAM " " "

2d + d2lh
TENER (Yan et al. 2019) 2dlh
DA-Transformer (Wu, Wu, and Huang 2021) 2h

TUPE (Ke, He, and Liu 2021) B MAM " $ $ 2d2 + tmax(d + 2)

RNN-Transf. (Neishi and Yoshinaga 2019) R – " $ " 6d2 + 3d

SPE (Liutkus et al. 2021) R MAM " " $ 3Kdh + ld

Transformer w/ sin. (Vaswani et al. 2017)

A APE $ $ " 0Li et al. (2019)
Takase and Okazaki (2019)
Oka et al. (2020)

Universal Transf. (Dehghani et al. 2019) A APE $ " " 0

DiSAN (Shen et al. 2018) R MAM $ " " 0Rotary (Su et al. 2021)

Tr
ee

SPR-abs (Wang et al. 2019) A APE $ $ " 0
SPR-rel (Wang et al. 2019) R MAM " $ $ 2(2tmax + 1)d
TPE (Shiv and Quirk 2019) A APE " $ $ d

Dmax

G
ra

ph

Struct. Transformer (Zhu et al. 2019) R MAM " " "
5d2 + (d + 1)dr

Graph Transformer (Cai and Lam 2020) 7d2 + 3d

Graformer (Schmitt et al. 2021) R MAM " " $ 2(Dmax + 1)h

Graph Transformer (Dwivedi and Bresson 2020) A
APE $ $ " 0

GRAPH-BERT (Zhang et al. 2020) B

the dog.” The change in absolute positions due to the added word “Suddenly” causes
only a small semantic change, whereas the relative position of “cat” and “dog” is
decisive for the meaning of the sentences. The advantage of relative position encoding
is that it is invariant with respect to such shifts.

737

Computational Linguistics Volume 48, Number 3

Despite this advantage, it has never been shown conclusively that relative position
encoding outperforms an absolute one and thus both systems continue to co-exist—
even in the most recent works (see Table 1). Learnable relative position embeddings do
have the undeniable disadvantage that they have to consider twice as many different
positions (for relative positions to the right and to the left of a word). Hence, in general,
they need to train and store more parameters. Table 1 refers to this distinction as
reference point .

3.2 Injection Method

Adding Position Embeddings (APE). One common approach is to add position embed-
dings to the input before it is fed to the actual Transformer model: If U ∈ Rtmax×d is the
matrix of unit embeddings, a matrix P ∈ Rtmax×d representing the position information
is added and their sum is fed to the Transformer model: T(U + P). For the first Trans-
former layer, this has the following effect:

Ã =

√
1
d (U + P)W(q)W(k)ᵀ(U + P)ᵀ

M̃ = SoftMax(Ã)(U + P)W(v)

Õ = LayerNorm2(M̃ + U + P) (3)

F̃ = ReLU(ÕW(f1) + b(f1))W(f2) + b(f2)

Z̃ = LayerNorm1(Õ + F̃)

Modifying Attention Matrix (MAM). Instead of adding position embeddings, other
approaches directly modify the attention matrix. For example, by adding absolute or
relative position biases to the matrix (see Figure 2). In fact, one effect of adding position
embeddings is that it modifies the attention matrix as follows

Â ∼ UW(q)W(k)ᵀUᵀ︸ ︷︷ ︸
unit-unit ∼A

+ PW(q)W(k)ᵀUᵀ + UW(q)W(k)ᵀPᵀ︸ ︷︷ ︸
unit-position

+ PW(q)W(k)ᵀPᵀ︸ ︷︷ ︸
position-position

(4)

Figure 2
Example of absolute and relative position biases that can be added to the attention matrix. Left:
attention matrix for an example sentence. Middle: learnable absolute position biases. Right:
position biases with a relative reference point. They are different from absolute encodings as
they exhibit an intuitive weight sharing pattern.

738

Dufter, Schmitt, and Schütze Position Information in Transformers

As indicated, the matrix A can then be decomposed into unit–unit interactions as well
as unit–position and position–position interactions. We write ∼ as we omit the scaling
factor for the attention matrix for simplicity.

As APE results in a modification of the attention matrix, APE and MAM are highly
interlinked. Still, we make a distinction between these two approaches for multiple rea-
sons: (1) While adding position embedding results, among other effects, in a modified
attention matrix, MAM only modifies the attention matrix. (2) APE involves learning
embeddings for position information whereas MAM is often interpreted as adding or
multiplying scalar biases to the attention matrix A (see Figure 2). (3) APE is often tied
to individual positions and interactions between two positions are computed based on
parameters by the model. In contrast, MAM often directly models the interaction of two
positions.

Note that methods using relative position encodings exclusively rely on MAM rather
than APE. Intuitively, this makes sense because relative position encodings consider
pairs of positions and their relation to each other and an attention matrix already models
pairs of positions and their interaction. Thus, incorporating positional information into
the attention matrix is a straightforward approach. Furthermore, APE relies on the fact
that every input unit can be assigned a unique position embedding. As each unit has
a different relative position to each other’s unit, APE is inherently incompatible with
relative position information. Although absolute position information is, in principle,
compatible with MAM (see Shaw, Uszkoreit, and Vaswani 2018), there is also a strong
correlation between absolute position encodings and APE. Probably, this is because
absolute position encodings consider only a single time step at a time, which makes
it more intuitive to model position information at the unit level and directly assign
position embeddings one unit at a time.

Table 1 distinguishes APE and MAM position information models in its column
injection method .

3.3 Recurring Integration

In theory, there are many possibilities for integrating position information into a Trans-
former model, but in practice the information is either integrated in the input, at each
attention matrix, or directly before the output. When adding position information at
the beginning, it only affects the first layer and thus has to be propagated to upper
layers indirectly. Therefore, the more direct approach of reminding the model of position
information in each layer seems more desirable. Then again, this approach also denies
the model the flexibility of choosing how strong position information should influence
word representations in higher layers.

Often, APE is only added at the beginning, and MAM approaches are used for
each layer and attention head. There is, however, no theoretical reason to pair these
approaches in that manner. The recurring column in Table 1 marks those approaches
where position information is added in each layer anew.

3.4 Fundamental Model Properties

Besides the aforementioned distinctions, we include three other properties per model
in Table 1: (1) Learnable distinguishes whether or not the position information
model is learned from data or not. (2) #Param provides the number of (trainable)
parameters the position information model uses. And (3) Unbound concerns the

739

Computational Linguistics Volume 48, Number 3

(theoretical) ability of a position information model to generalize beyond the longest
input it has seen during training.

On the one hand, learnable position embeddings give the model more flexibility to
adapt the position representations to the task. On the other hand, it also adds param-
eters, which can lead to overfitting. For trainable position information models, there
is a notable trend toward cutting the number of parameters while maintaining good
performance; see for example Raffel et al. (2020). Whereas the number of parameters is a
fundamental property of any machine learning model, notably the unbound property
is specific to models handling position information. Although it is highly desirable for
a model to be able to handle input of any length, often bounded values can suffice in
practice. Schemes where high length values are clipped, which means that high position
values are not distinguished anymore, are also considered bounded even though inputs
of any length can be processed by such a model.

4. Current Position Information Models

In this section we provide an overview of current position information models. Note
that we use the term position information model to refer to a method that integrates
position information; the term position encoding refers to a position ID associated with
units, for example numbered from 0 to t, or assigning relative distances. A position
embedding then refers to a numerical vector associated with a position encoding.

For the sake of clarity and for easier reading we structure this overview into subsec-
tions. To this end, we systematize position information models along two dimensions:
reference point and topic. We chose reference point as it reflects a foundational design
choice for each position information model. This dimension can have the values abso-
lute, relative, or both. Further, we choose the prevalent topic of each paper as second
dimension, that is, generic, sinusoidal, graphs, decoder, crosslingual, and analysis. The
objective of these categories is not to create a mutually exclusive or exhaustive classifica-
tion. Given that each paper usually deals with multiple aspects of position information
models and sometimes proposes multiple models, this would be challenging if not
impossible. Rather, we want to guide the reader to find relevant papers quickly and
thus decided on categorizing along topic, similar to keywords. For instance, a reader
interested in encoder–decoder models or decoder-only models will find relevant papers
in the topic “Decoder.” Conversely, papers listed in other topics might be applicable or
relevant for decoders as well.

Table 2 shows which papers were assigned to which categories. The following
sections deal with each topic and within each topic we discuss approaches with different
reference points.

4.1 Generic

In this section we present the first topical cluster, called Generic. The papers discussed
here exhibit a great variety ranging from learned absolute position embeddings in the
original Transformer paper (Vaswani et al. 2017) over complex-valued embeddings
(Wang et al. 2020) to adding a recurrent neural network layer before the Transformer
(Neishi and Yoshinaga 2019). All these works do not stand out by a particular mathe-
matical characteristic, such as using sinusoidal functions, or a specific theme, such as
focusing on encoding graph structures, and therefore do not fit into one of the other
categories. Thus, this section contains the most fundamental and original position infor-
mation models as well as later ones that are equally general for processing sequential

740

Dufter, Schmitt, and Schütze Position Information in Transformers

Table 2
Overview and categorization of papers dealing with position information. We categorize along
two dimensions: a keyword and topic, which describes the main topic of a paper, and whose
reference point is used for the position encodings.

Reference Point
Absolute Absolute & Relative Relative

To
pi

c

G
en

er
ic

Devlin et al. (2019) Shaw, Uszkoreit, and
Vaswani (2018)

Dai et al. (2019)

Kitaev, Kaiser, and Levskaya (2020) Ke, He, and Liu (2021) Raffel et al. (2020)
Liu et al. (2020) Dufter, Schmitt, and

Schútze (2020)
Chang et al. (2021)

Press, Smith, and Lewis (2021) He et al. (2021) Wu, Wu, and Huang (2021)
Wang et al. (2020) Huang et al. (2020)

Shen et al. (2018)
Neishi and Yoshinaga (2019)
Liutkus et al. (2021)

Si
nu

so
id

al Vaswani et al. (2017) Yan et al. (2019)
Dehghani et al. (2019) Su et al. (2021)
Li et al. (2019)
Likhomanenko et al. (2021)

G
ra

ph
s Shiv and Quirk (2019) Wang et al. (2019) Zhu et al. (2019)

Dwivedi and Bresson (2020) Zhang et al. (2020) Cai and Lam (2020)
Schmitt et al. (2021)

D
ec

od
er Takase and Okazaki (2019)

Oka et al. (2020)
Bao et al. (2019)

C
ro

ss
lin

g. Artetxe, Ruder, and Yogatama (2020)
Ding, Wang, and Tao (2020)
Liu et al. (2021a)
Liu et al. (2021b)

A
na

ly
si

s Yang et al. (2019) Rosendahl et al. (2019)
Wang and Chen (2020) Wang et al. (2021)

Chen et al. (2021)

data structures. We first describe papers dealing with absolute position encodings
followed by methods that deal with relative ones.

4.1.1 Absolute Position Encodings. The original Transformer paper considered absolute
position encodings. One of the two approaches proposed by Vaswani et al. (2017)
follows Gehring et al. (2017) and learns a position embedding matrix P ∈ Rtmax×d

corresponding to the absolute positions 1, 2, . . . , tmax − 1, tmax in a sequence. This matrix
is simply added to the unit embeddings U before they are fed to the Transformer
model (APE).

In the simplest case, the position embeddings are randomly initialized and then
adapted during training of the network (Gehring et al. 2017; Vaswani et al. 2017;
Devlin et al. 2019). Gehring et al. (2017) find that adding position embeddings only
helps marginally in a convolutional neural network. A Transformer model without any
position information, however, performs much worse for some tasks—see for example
Wang et al. 2019, Wang et al. 2021.

For very long sequences, that is, large tmax, the number of parameters added with
P is significant. Thus, Kitaev, Kaiser, and Levskaya (2020) proposed a more parameter-

741

Computational Linguistics Volume 48, Number 3

Figure 3
Overview of the structure of P with axial position embeddings by Kitaev, Kaiser, and Levskaya
(2020). They use two position embeddings, which can be interpreted as encoding a segment
(bottom, P(2)) and the position within that segment (top, P(1)). This factorization is more
parameter-efficient, especially for long sequences.

efficient factorization called axial position embeddings. Although their method is not
described in the paper, a description can be found in their code. Intuitively, they have
one embedding that marks a larger segment and a second embedding that indicates the
position within each segment; see Figure 3 for an overview. More specifically, the matrix
P gets split into two embedding matrices P(1) ∈ Rt1×d1 , P(2) ∈ Rt2×d2 with d = d1 + d2
and tmax = t1t2. Then

Ptj =

{
P(1)

r, j if j ≤ d1, r = t mod t1

P(2)
s, j−d1

if j > d1, s = b t
t1
c

(5)

Liu et al. (2020) argue that position embeddings should be parameter-efficient, data-
driven, and should be able to handle sequences that are longer than any sequence
in the training data. They propose a new model called flow-based Transformer (or
FLOATER), where they model position information with a continuous dynamic model.
More specifically, consider P as a sequence of timesteps p1, p2, . . . , ptmax . They suggest
modeling position information as a continuous function p : R+ → Rd with

p(t) = p(s) +

∫ t

s
h
(
τ, p(τ),θh

)
dτ (6)

for 0 ≤ s < t with some initial value for p(0), where h is some function, for example, a
neural network with parameters θh. In the simplest case they then define pi := p(i∆t)
for some fixed offset ∆t. They experiment both with adding the information only in
the first layer and at each layer (layerwise APE). Even though they share parameters
across layers, they use different initial values p(0) and thus have different position
embeddings at each layer. Sinusoidal position embeddings (see §4.2) are a special case
of their dynamic model. Further, they provide a method to use the original position em-
beddings of a pretrained Transformer model while adding the dynamic model during
finetuning only. In their experiments they observe that FLOATER outperforms learned
and sinusoidal position embeddings, especially for long sequences. Further, adding
position information at each layer increases performance.

Another approach to increase the Transformer efficiency both during training and
inference is to keep tmax small. The Shortformer by Press, Smith, and Lewis (2021)
caches previously computed unit representations and therefore does not need to handle
a large number of units at the same time. This is made possible by what they call
position-infused attention, where the position embeddings are added to the keys and

742

Dufter, Schmitt, and Schütze Position Information in Transformers

queries, but not the values. Thus, the values are position independent and representa-
tions from previous subsequences can seamlessly be processed. More specifically, they
propose

Ã ∼ (U + P)W(q)W(k)ᵀ(U + P)ᵀ (7)

M̃ = SoftMax(Ã)UW(v)

The computation of the attention matrix Ā still depends on absolute position encod-
ings in Shortformer, but M̄ does not contain it, as it is only a weighted sum of unit
embeddings in the first layer. Consequently, Shortformer can attend to outputs of pre-
vious subsequences and the position information has to be added in each layer again.
Press, Smith, and Lewis (2021) report large improvements in training speed, as well as
language modeling perplexity.

While the former approaches all follow the APE methodology, Wang et al. (2020)
propose an alternative to simply summing position and unit embeddings. Instead of
having one embedding per unit, they model the representation as a function over
positions. That is, instead of feeding Ut + Pt to the model for position t, they suggest
modeling the embedding of unit u as a function g(u) : N→ Rd such that the unit has
a different embedding depending on the position at which it occurs. After having pro-
posed desired properties for such functions (position-free offset and boundedness), they
introduce complex-valued unit embeddings where their k-th component is defined
as follows:

g(u)(t)k = r(u)
k exp

(
i(ω(u)

k t + θ(u)
k)
)

(8)

Then, r(u),ω(u),θ(u) ∈ Rd are learnable parameters that define the unit embedding for
the unit u. Their approach can also be interpreted as having a word embedding, pa-
rameterized by r(u), that is, component-wise multiplied with a position embedding,
parameterized byω(u),θ(u). The number of parameters dedicated to the position model
therefore does not depend on the number tmax of considered positions but rather on
the vocabulary size n. In total, 3nd trainable parameters are used compared to nd
parameters of a traditional lookup table. We thus mark the number of parameters of the
position model alone as 3nd− nd = 2nd in Table 1 because this difference is responsible
for covering position information. Wang et al. (2020) test their position-sensitive unit
embeddings not only on Transformer models, but also on static embeddings, LSTMs,
and CNNs, and observe large performance improvements.

4.1.2 Relative Position Encodings. Among the first, Shaw, Uszkoreit, and Vaswani (2018)
introduced an alternative method for incorporating both absolute and relative position
encodings. In their absolute variant they propose changing the computation to

Ats ∼ Ut
ᵀW(q)

(
W(k)ᵀUs + a(k)

(t,s)

)
(9)

743

Computational Linguistics Volume 48, Number 3

where a(k)
(t,s) ∈ Rd models the interaction between positions t and s. Further, they modify

the computation of the values to

Mt =

tmax∑
s=1

SoftMax(A)ts

(
W(v)ᵀUs + a(v)

(t,s)

)
(10)

where a(v)
(t,s) ∈ Rd models again the interaction. Although it cannot directly be compared

with the effect of simple addition of position embeddings, they roughly omit the
position–position interaction and have only one unit–position term. In addition, they
do not share the projection matrices but directly model the pairwise position interaction
with the vectors a. In an ablation analysis they found that solely adding a(k)

(t,s) might be
sufficient.

To achieve relative positions they simply set

a(k)
(t,s) := w(k)

(clip(s−t,r)), (11)

where clip(x, r) = max (−r, min(r, x)) and w(k)
(t) ∈ Rd for −r ≤ t ≤ r for a maximum rel-

ative distance r. Analogously for a(v)
(t,s). To reduce space complexity, they share the

parameters across attention heads. While it is not explicitly mentioned in their paper
we understand that they add the position information in each layer but do not share
the parameters. The authors find that relative position embeddings perform better in
machine translation and the combination of absolute and relative embeddings does not
improve the performance.

Dai et al. (2019) propose the Transformer-XL model. The main objective is to cover
long sequences and to overcome the constraint of having a fixed-length context. To this
end they fuse Transformer models with recurrence. This requires special handling of
position information and thus a new position information model. At each attention head
they adjust the computation of the attention matrix to

Ats ∼ Ut
ᵀW(q)W(k)ᵀUs︸ ︷︷ ︸

content-based addressing

+ Ut
ᵀW(q)V(k)ᵀRt−s︸ ︷︷ ︸

content-dependent position bias

+ bᵀW(k)ᵀUs︸ ︷︷ ︸
global content bias

+ cᵀV(k)ᵀRt−s︸ ︷︷ ︸
global position bias

(12)

where R ∈ Rτ×d is a sinusoidal position embedding matrix as in Vaswani et al. (2017)
and b, c ∈ Rd are learnable parameters. They use different projection matrices for the
relative positions, namely, V(k) ∈ Rd×d. Note that Transformer-XL is unidirectional and
thus τ = tm + tmax − 1, where tm is the memory length in the model. Furthermore,
they add this mechanism to all attention heads and layers, while sharing the position
parameters across layers and heads.

There are more approaches that explore variants of Equation (4). Ke, He, and Liu
(2021) propose untied position embeddings. More specifically, they simply put U into
the Transformer and then modify the attention matrix A in the first layer by adding a
position bias

A ∼ UW(q)W(k)ᵀUᵀ + PV(q)V(k)ᵀPᵀ (13)

744

Dufter, Schmitt, and Schütze Position Information in Transformers

Figure 4
Figure by Ke, He, and Liu (2021). Their position bias is independent of the input and can thus be
easily visualized. The absolute position biases learn intuitive patterns as shown above. Patterns
(from left to right) include ignoring position information, attending locally, globally, to the left,
and to the right. One can clearly see the untied position bias for the first token, which
corresponds to the [CLS] token, on the left and top of each matrix.

Compared to Equation (4) they omit the unit–position interaction terms and use dif-
ferent projection matrices, V(q), V(k) ∈ Rd×d for units and positions. Similarly, they add
relative position embeddings by adding a scalar value. They add a matrix Ar ∈
Rtmax×tmax , where Ar

t,s = bt−s+tmax and b ∈ R2tmax are learnable parameters, which is why
we categorize this approach as MAM. A very similar idea with relative position encod-
ings has also been used by Raffel et al. (2020). Ke, He, and Liu (2021) further argue that
the [CLS] token has a special role and thus they replace the terms P1

ᵀV(q)V(k)ᵀPs with a
single parameter θ1 and analogously Pt

ᵀV(q)V(k)ᵀP1 with θ2, that is, they disentangle the
position of the [CLS] token from the other position interactions. They provide theoretical
arguments that their absolute and relative position embeddings are complementary.
Indeed, in their experiments the combination of relative and absolute embeddings
boosts performance on the GLUE benchmark. They provide an analysis of the position
biases learned by their network (see Figure 4). A similar idea has been explored in
Dufter, Schmitt, and Schütze (2020), where, in a more limited setting, more specifically
in the context of PoS-tagging, learnable absolute or relative position biases are learned
instead of full position embeddings.

Chang et al. (2021) provide a theoretical link between the position information
models proposed by Shaw, Uszkoreit, and Vaswani (2018) and Raffel et al. (2020) and
convolutions. They find that combining these two relative position information models
increases performance on natural language understanding tasks.

Complementary to that line of research is a method by He et al. (2021): In their
model DeBERTa, they omit the position–position interaction and focus on unit–position
interactions. However, their embeddings are still untied or disentangled as they use
different projection matrices for unit and position embeddings. They introduce relative
position embeddings Ar ∈ R2tmax×d and define

δ(t, s) =

 0 if t− s ≤ −tmax
2tmax − 1 if t− s ≥ tmax

t− s + tmax else.
(14)

They then compute

Ats ∼ Ut
ᵀW(q)W(k)ᵀUs + Ut

ᵀW(q)V(k)ᵀAr
δ(t,s) + Ar

δ(s,t)
ᵀV(q)W(k)ᵀUs (15)

745

Computational Linguistics Volume 48, Number 3

as the attention in each layer. While they share the weights of Ar ∈ R2tmax×d across
layers, the weight matrices are separate for each attention head and layer. In addition,
they change the scaling factor from

√
1/dh to

√
1/(3dh). In the last layer they inject a

traditional absolute position embedding matrix P ∈ Rtmax×d. Thus they use both MAM
and APE. They want relative encodings to be available in every layer but argue that the
model should be reminded of absolute encodings right before the masked language
model prediction. In their example sentence, a new store opened beside the new mall,
they argue that store and mall have similar relative positions to new and thus absolute
positions are required for predicting masked units.

The following two approaches do not work with embeddings, but instead propose
a direct multiplicative smoothing on the attention matrix and can thus be categorized
as MAM. Wu, Wu, and Huang (2021) propose a smoothing based on relative positions
in their model DA-Transformer. They consider the matrix of absolute values of rela-
tive distances R ∈ Ntmax×tmax where Rts = |t− s|. For each attention head m they obtain
R(m) = w(m)R with w(m) ∈ R being a learnable scalar parameter. They then compute

A ∼ ReLU
(

(XW(q)W(k)ᵀXᵀ) ◦ R̂(m)
)

(16)

where R̂(m) is a rescaled version of R(m) and ◦ is component-wise multiplication. For
rescaling they use a sigmoid function with learnable scalar weights v(m) ∈ R. More
specifically,

R̂(m) =
1 + exp(v(m))

1 + exp(v(m) − R(m))
(17)

Overall, they only add 2h parameters as each head has two learnable parameters.
Intuitively, they want to allow each attention head to choose whether to attend to long-
range or short-range dependencies. Note that their model is direction-agnostic. The
authors observe improvements for text classification both over vanilla Transformer and
more elaborate position information models, in particular, relative position encodings
by Shaw, Uszkoreit, and Vaswani (2018), Transformer-XL (Dai et al. 2019), and TENER
(Yan et al. 2019).

Related to the DA-Transformer, Huang et al. (2020) review absolute and relative po-
sition embedding methods and propose four position information models with relative
position encodings: (1) Similar to (Wu, Wu, and Huang 2021) they scale the attention
matrix by

A ∼ (XW(q)W(k)ᵀXᵀ) ◦ R (18)

where Rts = r|s−t| and r ∈ Rtmax is a learnable vector. (2) They consider Rts = rs−t as
well to distinguish different directions. (3) As a new variant they propose

Ats ∼ sum product(W(q)ᵀXt, W(k)ᵀXs, rs−t) (19)

where rs−t ∈ Rd are learnable parameters and sum product is the scalar product ex-
tended to three vectors. (4) Last, they extend the method by Shaw, Uszkoreit, and
Vaswani (2018) to not only add relative positions to the key, but also to the query

746

Dufter, Schmitt, and Schütze Position Information in Transformers

in Equation (9), and in addition remove the position–position interaction. More
specifically,

Ats ∼
(

W(q)ᵀUt + rs−t

)ᵀ (
W(k)ᵀUs + rs−t

)
− rs−t

ᵀrs−t (20)

On several GLUE tasks (Wang et al. 2018) they find that the last two methods
perform best.

The next approach is not directly related to relative position encodings, but it can be
interpreted as using relative position information. Shen et al. (2018) propose Directional
Self-Attention Networks (DiSAN). Besides other differences to plain self-attention,
such as multidimensional attention, they notably mask out the upper/lower triangular
matrix or the diagonal in A to achieve non-symmetric attention matrices. Allowing
attention only in a specific direction does not add position information directly, but still
makes the attention mechanism position-aware to some extent by enabling the model
to distinguish directions.

Neishi and Yoshinaga (2019) argue that recurrent neural networks (RNN) in the
form of gated recurrent units (GRU) (Cho et al. 2014) are able to encode relative posi-
tions. Thus they propose to replace position encodings by adding a single GRU layer on
the input before feeding it to the Transformer (see Figure 5). With their models called
RRN-Transformer they observe comparable performance compared to position embed-
dings; however, for longer sequences the GRU yields better performance. Combining
their approach with the method by Shaw, Uszkoreit, and Vaswani (2018) improves
performance further, a method they call RR-Transformer.

Relative position information models usually require the computation of the full
attention matrix A because each cell depends on a different kind of relative position
interaction. Liutkus et al. (2021) proposed an alternative called Stochastic Positional
Encoding (SPE). By approximating relative position interactions as cross-covariance
structures of correlated Gaussian processes, they make relative position encodings
available to linear-complexity Transformers, such as the Performer (Choromanski et al.
2021), that do not compute the full attention matrix, which would lead to a quadratic
complexity. Liutkus et al. (2021) describe two variants of SPE, sineSPE that combines K
learned sinusoidal components and convSPE that learns convolutional filters. Notably,
they also propose a gating mechanism that controls with a learnable parameter how
much the attention in each vector dimension depends on content vs. position infor-
mation. The description of SPE in Table 1 is based on gated sineSPE. The experiments

330

���
�������

�������������	�
��

���������������

xN

���
�����

��

Inputs

Outputs

(a) Transformer
(Vaswani et al., 2017)

�����	������

��	������
���

����	�������������
�

xN

������������

Inputs

Outputs

(b) Rel-Transformer
(Shaw et al., 2018)

�		��
������

���

�	
����	������

xN

�����	��	�����

Inputs

Outputs

(c) RNN-Transformer
Our proposed

�����	������

���

���	�������
�
��������
�����
�
��

xN

������������

Inputs

Outputs

(d) RR-Transformer
(b) + Our proposed

Figure 1: The architectures of all the Transformer-based models we compare in this study; for simplicity, we show
the encoder architectures here since the same modification is applied to their decoders.

stacked encoder/decoder layers. The encoder ar-
chitecture is shown in Figure 1a.

Word embedding layers encode input words
into continuous low-dimension vectors, followed
by positional encoding layers that add position in-
formation to them. Encoder/decoder layers con-
sist of a few sub-layers, self-attention layer, atten-
tion layer (decoder only) and feed-forward layer,
with layer normalization (Ba et al., 2016) for each.
Both self-attention layer and attention layer em-
ploy the same architecture, and we explain the de-
tails in § 3.3. Feed-forward layer consists of two
linear transformations with a ReLU activation in
between. As for the decoder, a linear transforma-
tion and a softmax function follow the stacked lay-
ers to calculate probabilities of words to output.

Figure 1 illustrates the architectures of all the
Transformer-based models we compare in this
study including our porposed model which will be
introduced in § 4. The model in Shaw et al. (2018)
modifies the self-attention layer (§ 3.3).

3.2 Word Position Information
Transformer has positional encoding layers which
follow the word embedding layers and capture ab-
solute position. The process of positional encod-
ing layer is to add positional encodings (position
vectors) to input word embeddings. The positional
encodings are generated using sinusoids of vary-
ing frequencies, which is designed to allow the
model to attend to relative positions from the pe-
riodicity of positional encodings (sinusoids). This
is in contrast to the position embeddings (Gehring
et al., 2017), a learned position vectors, which are
not meant to attend to relative positions. Vaswani

et al. (2017) report that both approaches produced
nearly identical results in their experiments, and
also mentioned that the model with positional en-
codings may handle longer inputs in testing than
those in training, which implies that absolute posi-
tion approach might have problems at this point.1

3.3 Self-attention with Relative Position

Some studies modify Transformer to consider rel-
ative position instead of absolute position. Shaw
et al. (2018) propose an extension of self-attention
mechanism which handles relative position inside
in order to incorporate relative position into Trans-
former. We hereafter refer to their model as Rel-
Transformer. In what follows, we explain the self-
attention mechanism and their extension.

Self-attention is a special case of general atten-
tion mechanism, which uses three elements called
query, key and value. The basic idea is to com-
pute weighted sum of values where the weights are
computed using the query and keys. Each weight
represents how much attention is paid to the cor-
responding value. In the case of self-attention, the
input set of vectors behaves as all of the three ele-
ments (query, key and value) using three different
transformations. When taking a sentence as input,
it is processed as a set in the self-attention.

Self-attention operation is to compute output
sequence z = (z1, ..., zn) out of input sequence
x = (x1, ..., xn), where both sequences have the
same langth n and xi 2 Rdx , zi 2 Rdz . The output

1Our preliminary experiment confirmed that positional
encodings perform better for longer sentences than those in
the training data, while position embeddings perform slightly
better for the other length.

Figure 5
Figure by Neishi and Yoshinaga (2019). Overview of the architecture when using an RNN for
learning position information. They combine their RNN-Transformer with relative position
embeddings by Shaw, Uszkoreit, and Vaswani (2018) in a model called RR-Transformer (far
right).

747

Computational Linguistics Volume 48, Number 3

in Liutkus et al. (2021) show that SPE leads to performance improvements compared
to absolute position encodings for tasks involving long-range dependencies (Tay et al.
2021b).

4.2 Sinusoidal

Another line of work experiments with sinusoidal values that are kept fixed during
training to encode position information in a sequence. The approach proposed by
Vaswani et al. (2017) is an instance of the absolute position APE pattern, called sinu-
soidal position embeddings, defined as

Ptj =

{
sin(10000−

j
d t) if j even

cos(10000−
(j−1)

d t) if j odd
(21)

They observe comparable performance between learned absolute position embeddings
and their sinusoidal variant. However, they hypothesize that the sinusoidal structure
helps for long-range dependencies. This is, for example, verified by Liu et al. (2020).
An obvious advantage is also that they can handle sequences of arbitrary length, which
most position models cannot. They are usually kept fixed and are not changed during
training and are thus very parameter-efficient.

Indeed, sinusoidal position embeddings exhibit useful properties in theory. Yan
et al. (2019) investigate the dot product of sinusoidal position embeddings and prove
important properties: (1) The dot product of two sinusoidal position embeddings de-
pends only on their relative distance. That is, Pt

ᵀPt+r is independent of t. (2) Pt
ᵀPt−r =

Pt
ᵀPt+r, which means that sinusoidal position embeddings are unaware of direction.

However, in practice the sinusoidal embeddings are projected with two different pro-
jection matrices, which destroys these properties (see Figure 6). Thus, Yan et al. (2019)
propose a Direction- and Distance-aware Attention in their model TENER that

Figure 6
Figure by Yan et al. (2019). Shown is the value of dot product on the y-axis between sinusoidal
position embeddings with different relative distance (k) shown on the x-axis. The blue line
shows the dot product without projection matrices and the other two lines with random
projections. Relative position without directionality can be encoded without projection matrices,
but with the projections this information is destroyed.

748

Dufter, Schmitt, and Schütze Position Information in Transformers

maintains these properties and can, in addition, distinguish between directions. They
compute

Ats ∼ Ut
ᵀW(q)W(k)ᵀUs︸ ︷︷ ︸

unit-unit

+ Ut
ᵀW(q)Rt−s︸ ︷︷ ︸

unit-relative position

+ uᵀW(k)ᵀUs︸ ︷︷ ︸
unit-bias

+ vᵀRt−s︸ ︷︷ ︸
relative position bias

(22)

where Rt−s ∈ Rd is a sinusoidal relative position vector defined as

Rt−s,j =

{
sin((t− s)10000−

j
d) if j even

cos((t− s)10000−
(j−1)

d) if j odd
(23)

and u, v ∈ Rd are learnable parameters for each head and layer. In addition, they set
W(k) to the identity matrix and omit the scaling factor 1/

√
d as they find that it per-

forms better. Overall, the authors find massive performance increases for named entity
recognition compared to standard Transformer models.

Dehghani et al. (2019) use a variant of sinusoidal position embeddings in their
Universal Transformer. In their model they combine Transformers with the recurrent
inductive bias of recurrent neural networks. The basic idea is to replace the layers of a
Transformer model with a single layer that is recurrently applied to the input—that is,
they share the weights across layers. In addition they propose conditional computation
where they can halt or continue computation for each position individually. When l
denotes their l-th application of the Transformer layer to the input, they add the position
embeddings as follows

Pl
t,j =

{
sin(10000−

j
d t) + sin(10000−

j
d l) if j even

cos(10000−
j−1

d t) + cos(10000−
j−1

d l) if j odd
(24)

Their approach can be interpreted as adding sinusoidal position embeddings at each
layer.

Li et al. (2019) argue that the variance of sinusoidal position embeddings per
position across dimensions varies greatly: For small positions it is rather small and
for large positions it is rather high. The authors consider this a harmful property and
propose maximum variances position embeddings (mvPE) as a remedy. They change
the computation to

Ptj =

{
sin(10000−

j
d kt) if j even

cos(10000−
j−1

d kt) if j odd
(25)

They claim that suitable values for the hyperparameter k are k > 1000.
Likhomanenko et al. (2021) introduce continuous augmented positional embed-

dings and focus on making sinusoidal position embeddings work for other modalities
such as vision or speech. More specifically, they propose converting discrete positions
to a continuous range and suggest noise augmentations to avoid the model taking up
spurious correlations. Instead of using the position t in sinusoidal position embeddings
they create t′ using mean normalization followed by a series of three random augmen-
tations: (1) global shift t′ = t + ∆, (2) local shift t′ = t + ε, and (3) global scaling t′ = λt.

749

Computational Linguistics Volume 48, Number 3

Bush held a talk with Sharon

Bush

held

a

talk

with

Sharon

0 1 2 3 4 5 1 0 2 1 2 1

-3 -2 -1 0 +1 +2 -2 -1 -1 0 +3 +2

Absolute Position

Relative Position

(a) Sequential Position Encoding (b) Structural Position Encoding

Figure 7
Figure by Wang et al. (2019). They compute absolute and relative encodings not based on the
sequential order of a sentence (left), but based on a dependency tree (right). Both absolute and
relative encodings can be created.

∆ ∼ U (−∆max, ∆max), ε ∼ U (−εmax,εmax), and λ ∼ U (− log(λmax), log(λmax)) are sam-
pled from a uniform distribution. Note that during inference only mean normalization
is performed. As expected, they find their model to work well on vision and speech
data. On natural language it performed on par with minor improvements compared
with sinusoidal position embeddings as measured on machine translation.

Su et al. (2021) propose multiplying sinusoidal position embeddings rather than
adding them in their model rotary position embeddings. Intuitively, they rotate unit
representations according to their position in a sequence. More specifically, they modify
the attention computation to

Ats ∼ Ut
ᵀW(q)RΘ,t−sW(k)ᵀUs (26)

where RΘ,t−s = RΘ,s
ᵀRΘ,t with RΘ,s ∈ Rd×d is a block-diagonal matrix with rotation

matrices on its diagonal. More specifically, given the parameters Θ = (θi)i=1,2,...,d/2

where θi = 10000−2(i−1)/d, the matrix RΘ,s has the following rotation matrices on its
diagonal: (

cos sθi − sin sθi
sin sθi cos sθi

)
(27)

They find that their method matches the performance of learned absolute position
embeddings. Further they find that their approach is beneficial for long sequences.

4.3 Graphs

In the following section, we will take a look at position information models for graphs—
more specifically, cases where Transformers have been used for genuine graph input as
well as cases where the graph is used as a sentence representation (e.g., a dependency
graph). We distinguish two types of graph position models according to the assump-
tions they make about the graph structure: positions in hierarchies (trees) and arbitrary
graphs.

4.3.1 Hierarchies (Trees). Wang et al. (2019) propose structural position representations
(SPR) (see Figure 7). This means that instead of treating a sentence as a sequence of
information, they perform dependency parsing and compute distances on the parse

750

Dufter, Schmitt, and Schütze Position Information in Transformers

tree (dependency graph).1 We can distinguish two settings: (1) Analogously to absolute
position encodings in sequences, where unit ut is assigned position t, absolute SPR
assigns ut the position abs(ut) := dtree(ut, ROOT) where ROOT is the root of the depen-
dency tree, that is, the main verb of the sentence, and dtree(x, y) is the path length
between x and y in the tree. (2) For the relative SPR between the units ut, us, they
define rel(ut, us) = abs(ut)− abs(us) if ut is on the path from us to the root or vice versa.
Otherwise, they use rel(ut, us) = sgn(t− s)(abs(ut) + abs(us)). So we see that SPR does
not only assume the presence of a graph hierarchy but also needs a strict order to be
defined on the graph nodes, because rel equally encodes sequential relative position.
This makes SPR a suitable choice for working with dependency graphs but renders SPR
incompatible with other tree structures.

Having defined the position of a node in a tree, Wang et al. (2019) inject their SPR via
sinusoidal APE for absolute and via learned embeddings in combination with MAM for
relative positions. It is noteworthy that Wang et al. (2019) achieve their best performance
by combining both variants of SPR with sequential position information and that SPR
as sole sentence representation, that is, without additional sequential information, leads
to a large drop in performance.

Shiv and Quirk (2019) propose alternative absolute tree position encodings (TPE).
They draw inspiration from the mathematical properties of sinusoidals but do not
use them directly like Wang et al. (2019). Also unlike SPR, their position encodings
consider the full path from a node to the root of the tree and not only its length, thus
assigning every node a unique position. This is more in line with the spirit of absolute
sequential position models (§4.1.1). The first version of TPE is parameter-free: The path
from the root of an k-ary tree to some node is defined as the individual decisions that
lead to the destination, that is, which of the k children is the next to be visited at each
intermediate step. These decisions are encoded as one-hot vectors of size k. The whole
path is simply the concatenation of these vectors (padded with 0s for shorter paths). In
a second version, multiple instances of parameter-free TPE are concatenated and each
one is weighted with a different learned parameter. After scaling and normalizing these
vectors, they are added to the unit embeddings before the first Transformer layer (APE).

4.3.2 Arbitrary Graphs. Zhu et al. (2019) were the first to propose a Transformer model
capable of processing arbitrary graphs. Their position information model solely defines
the relative position between nodes and incorporates this information by manipulating
the attention matrix (MAM):

Ats ∼ Ut
ᵀW(q)

(
W(k)ᵀUs + W(r)ᵀr(t,s)

)
(28)

Mt =

tmax∑
s=1

SoftMax(A)ts

(
W(v)ᵀUs + W(f)ᵀr(t,s)

)

where W(r), W(f) ∈ Rd×d are additional learnable parameters, and r(t,s) ∈ Rd is a rep-
resentation of the sequence of edge labels and special edge direction symbols (↑ and
↓) on the shortest path between the nodes ut and us. Zhu et al. (2019) experiment
with 5 different ways of computing r, where the best performance is achieved by two

1 Dependency parsers usually do not operate on subwords. So subwords are assigned the position of their
main word.

751

Computational Linguistics Volume 48, Number 3

approaches: (1) A CNN with d kernels of size 4 that convolutes the embedded label
sequence U(r) into r (see Kalchbrenner, Grefenstette, and Blunsom 2014) and (2) a one-
layer self-attention module with sinusoidal position embeddings P (see § 4.2):

A(r) ∼ (U(r) + P)W(qr)W(kr)ᵀ(U(r) + P)
ᵀ

M(r) = SoftMax(A(r))(U(r) + P)W(vr) (29)

a(r) = SoftMax(W(r2)tanh(W(r1)M(r)ᵀ))

r =

t(r)
max∑

k=1

a(r)
k M(r)

k

with W(r1) ∈ Rdr×d, W(r2) ∈ R1×dr additional model parameters. While there is a special
symbol for the empty path from one node to itself, this method implicitly assumes that
there is always at least one path between any two nodes. Although it is easily possible
to extend this work to disconnected graphs by introducing another special symbol, the
effect on performance is unclear.

Cai and Lam (2020) also define relative position in a graph based on shortest paths.
They differ from the former approach in omitting the edge direction symbols and
using a bidirectional GRU (Cho et al. 2014), to aggregate the label information on the
paths, similar to the RNN-Transformer described by Neishi and Yoshinaga (2019). After
linearly transforming the GRU output, it is split into a forward and a backward part:
[rt→s; rs→t] = W(r)GRU(. . .). These vectors are injected into the model in a variant of
APE

Ast ∼ (Us + rs→t)
ᵀW(q)W(k)ᵀ(Ut + rt→s)

= Us
ᵀW(q)W(k)ᵀUt︸ ︷︷ ︸

content-based addressing

+ Us
ᵀW(q)W(k)ᵀrt→s︸ ︷︷ ︸

source relation bias

(30)

+ rs→t
ᵀW(q)W(k)ᵀUt︸ ︷︷ ︸

target relation bias

+ rs→t
ᵀW(q)W(k)ᵀrt→s︸ ︷︷ ︸

universal relation bias

It is noteworthy that Cai and Lam (2020) additionally include absolute SPR (see §4.3.1)
in their model to exploit the hierarchical structure of the abstract meaning representa-
tion graphs they evaluate on. It is unclear which position model has more impact on
performance.

Schmitt et al. (2021) avoid computational overhead in their Graformer model by
defining relative position encodings in a graph as the length of shortest paths instead of
the sequence of edge labels (see Figure 8 for an example):

r(t,s) =

∞,
sequential relative position of ut, us if there is no path between t, s
shifted by a constant to avoid clashes, if subwords ut, us from same word
dgraph(t, s), if dgraph(t, s) ≤ dgraph(s, t)
−dgraph(s, t), if dgraph(t, s) > dgraph(s, t)

(31)

752

Dufter, Schmitt, and Schütze Position Information in Transformers

Figure 8
Figure from (Schmitt et al. 2021), showing their definition of relative position encodings in a
graph based on the lengths of shortest paths.∞means that there is no path between two nodes.
Numbers higher than 3 and lower than −3 represent sequential relative position in multi-token
node labels (dashed green arrows).

where 0 ≤ dgraph(x, y) ≤ Dmax is the length of the shortest path between x and y. This
definition also avoids the otherwise problematic case where there is more than one
shortest path between two nodes because the length is always the same even if the label
sequences are not. The so-defined position information is injected via learnable scalar
embeddings as MAM similar to Raffel et al. (2020).

In contrast to the other approaches, Graformer explicitly models disconnected
graphs (∞) and does not add any sequential position information. Unfortunately,
Schmitt et al. (2021) do not evaluate Graformer on the same tasks as the other discussed
approaches, which makes a performance comparison difficult.

All the approaches discussed so far have in common that they allow any node to
compute attention over the complete set of nodes in the graph—similar to the global
self-attention over tokens in the original Transformer—and that they inject the graph
structure solely over a relative position encoding. Dwivedi and Bresson (2020) restrict
attention in their graph Transformer to the local node neighborhood and therefore do
not need to capture the graph structure by defining the relative position between nodes.
Instead they use an absolute APE model by adding Laplacian eigenvectors to the node
embeddings before feeding them to the Transformer encoder. Like sinusoidal position
embeddings only depend on the (unchanging) order of words, Laplacian eigenvectors
only depend on the (unchanging) graph structure. Thus, these position embeddings are
parameter-free and can be precomputed for efficient processing. Again, however, an
empirical comparison is impossible because Dwivedi and Bresson (2020) evaluate their
model on node classification and graph regression whereas the approaches discussed
above are tested on graph-to-text generation.

A parameter-free approach is described by Zhang et al. (2020). In their pretraining
based on linkless subgraph batching, they combine different features of each node,
both predefined (such as node labels) and structural information (such as shortest path

753

Computational Linguistics Volume 48, Number 3

lengths), translate them to integers (the position encoding) and, finally, map them to real
numbers via sinusoidal position embeddings (see §4.2). The final GRAPH-BERT model
takes the overall sum as its input (APE).

4.4 Decoding

Takase and Okazaki (2019) propose a simple extension to sinusoidal embeddings by in-
corporating sentence lengths in the position encodings of the decoder. Their motivation
is to be able to control the output length during decoding and to enable the decoder to
generate any sequence length independent of what lengths have been observed during
training. The proposed length-difference position embeddings are

Ptj =

{
sin(10000−

j
d (l− t)) if j even

cos(10000−
(j−1)

d (l− t)) if j odd
(32)

where l is a given length constraint. Similarly, they propose a length-ratio position
embedding given by

Ptj =

{
sin(l−

j
d t) if j even

cos(l−
(j−1)

d t) if j odd
(33)

The length constraint l is the output length of the gold standard. They observe that they
can control the output length effectively during decoding. Oka et al. (2020) extended this
approach by adding noise to the length constraint (adding a randomly sampled integer
to the length) and by predicting the target sentence length using the Transformer model.
Although in theory these approaches could also be used in the encoder, the above work
focuses on the decoder.

Bao et al. (2019) propose to predict positions word units in the decoder in order
to allow for effective non-autoregressive decoding (see Figure 9). More specifically,
they predict the target sentence length and a permutation from decoder inputs and
subsequently reorder the position embeddings in the decoder according to the pre-
dicted permutation. Their model, called PNAT, achieves performance improvements
in machine translation.

4.5 Crosslingual

Unit order across different languages is quite different. English uses a subject–verb–
object ordering (SVO), but all possible orderings of S, V, and O have been argued to
occur in the world’s languages. Also, whereas unit ordering is rather fixed in English, it
varies considerably in other languages, for example, in German. This raises the question
whether it is useful to share position information across languages.

Per default, position embeddings are shared in multilingual models (Devlin et al.
2019; Conneau et al. 2020). Artetxe, Ruder, and Yogatama (2020) observe mixed results
with language-specific position embeddings in the context of transferring monolingual
models to multiple languages: for most languages it helps, but for some it seems

754

Dufter, Schmitt, and Schütze Position Information in Transformers

Decoder
Inputs

Length Predictor

Soft-copy

Multi-Head
Attention

Add & Norm

x M

Positions

Multi-Head 
Attention

Add & Norm

Input
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Inputs

N x

Feed Forward

Add & Norm

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Feed Forward

Add & Norm

Multi-Head 
Attention

Add & Norm

Add & Norm

Self-Masked 
Multi-Head 
Attention

Linear

Softmax

Output 
Probabilities

x N

c

Bridge Position Predictor

Pointer Predictor

Figure 9
Figure by Bao et al. (2019). Overview of their PNAT architecture with the position prediction
module. They use the encoder output to predict the output length and use a modified version as
input to the decoder. The position predictor then predicts a permutation of position encodings
for the output sequence.

harmful. They experimented with learned absolute position embeddings as proposed
in Devlin et al. (2019).

Ding, Wang, and Tao (2020) use crosslingual position embeddings (XL PE): In the
context of machine translation, they obtain reorderings of the source sentence and
subsequently integrate both the original and reordered position encodings into the
model and observe improvements on the machine translation task.

Liu et al. (2021a) find that position information hinders zero-shot crosslingual
transfer in the context of machine translation. They remove a residual connection in
a middle layer to break the propagation of position information, and thereby achieve
large improvements in zero-shot translation.

Similarly, Liu et al. (2021b) find that unit order information harms crosslingual
transfer, for example in a zero-shot transfer setting. They reduce position information
by (1) removing the position embeddings, and replacing them with one-dimensional
convolutions, that is, leveraging only local position information, (2) randomly shuffling
the unit order in the source language, and (3) using position embeddings from a mul-
tilingual model and freezing them. Indeed they find that reducing order information
with these three methods increases performance for crosslingual transfer.

4.6 Analysis

There is a range of work comparing and analyzing position information models.
Rosendahl et al. (2019) analyze them in the context of machine translation. They find
similar performance for absolute and relative encodings, but relative encodings are

755

Computational Linguistics Volume 48, Number 3

Figure 10
Figure by Wang and Chen (2020). Shown is the position-wise cosine similarity of position
embeddings (APE) after pretraining. They compare three pretrained language models that use
learned absolute position embeddings as in Devlin et al. (2019), and sinusoidal positions as in
Vaswani et al. (2017). BERT shows a cut-off at 128 as it is first trained on sequences with 128
tokens and subsequently extended to longer sequences. GPT-2 exhibits the most homogenous
similarity patterns.

superior for long sentences. In addition, they find that the number of learnable param-
eters can often be reduced without performance loss.

Yang et al. (2019) evaluate the ability of recovering the original word positions after
shuffling some input words. In a comparison of recurrent neural networks, Transformer
models, and DiSAN (both with learned position embeddings), they find that RNN and
DiSAN achieve similar performance on the word reordering task, whereas Transformer
is worse. However, when trained on machine translation, Transformer performs best in
the word reordering task.

Wang and Chen (2020) provide an in-depth analysis of what position embeddings
in large pretrained language models learn. They compare the embeddings from BERT
(Devlin et al. 2019), RoBERTa (Liu et al. 2019), GPT-2 (Radford et al. 2019), and sinusoidal
embeddings. See Figure 10 for their analysis.

More recently, Wang et al. (2021) present an extensive analysis of position embed-
dings. They empirically compare 13 variants of position embeddings. Among other
findings, they conclude that absolute position embeddings are favorable for classifi-
cation tasks and relative embeddings perform better for span prediction tasks.

Chen et al. (2021) compare absolute and relative position embeddings as introduced
by Ke, He, and Liu (2021). They slightly modify the formulation, add segment embed-
dings as used in the original BERT formulation (Devlin et al. 2019), and investigate
sharing parameters across heads and layers. They find that an argued superiority of
relative position embeddings might have been due to the fact that they are added to each
attention head. When applying the same procedure with absolute position embeddings
they find the best performance across a range of natural language understanding tasks.

We provide a high-level comparison of the discussed methods in Table 1. In this
table we group similar approaches from a methodological point of view. The objective
is to make comparisons easier and spot commonalities faster.

5. Conclusion

This article presented an overview of methods to inject position information into Trans-
former models. We hope our unified notation and systematic comparison will foster

756

Dufter, Schmitt, and Schütze Position Information in Transformers

understanding and spark new ideas in this important research area. In this section, we
outline limitations of our survey and possible directions for future research.

5.1 Limitations

While this article aims at providing an exhaustive and systematic overview of position
information models that assists researchers in finding relevant work, we would like to
point out the following limitations.

(1) There is a range of work proposing modifications to the core Transformer
architecture that have an indirect effect on handling position
information. In the following, we briefly describe three of these
approaches. We decided not to include them in the main discussion
because their focus is to modify core components of the Transformer
architecture such as the dot-product attention mechanism rather than
focusing specifically on how position information is modeled. Note that
this survey focuses on position information in Transformers. Including
all model architectures that are derived from Transformers that change
how position information is handled would quickly go beyond the scope
of this survey. You, Sun, and Iyyer (2020) propose hard-coded Gaussian
attention. More specifically, they replace the dot-product attention with
fixed values based on a Gaussian distribution that is centered around the
position t of the query. This can be interpreted as a locality bias where
tokens around position t should have most influence. Related to this,
Beltagy, Peters, and Cohan (2020) introduce a sliding-window attention
that only attends to local context. Within the sliding window, they use
the standard dot-product attention. This allows the model to process
longer sequences efficiently. As a last example, we describe the
Synthesizer (Tay et al. 2021a), which replaces the dot-product attention
with random matrices in the extreme case. Here, positional information
does not impact the attention matrix at all anymore.

(2) This article does not provide a quantitative comparison of different
position information models for two reasons. First, the described models
are used in a large number of different tasks and datasets. Picking a
single experimental setting as comparison benchmark would bias the
reader into thinking that some position information models are
universally better than others while this might not be the case. Second,
evaluating all models mentioned in this article on a fair and exhaustive
set of tasks and datasets is computationally too expensive and
constitutes a research effort on its own.

(3) This article presents position information models in a certain structure as
outlined in Table 2 and compares them along selected dimensions in
Table 1. We do not claim that these categories are exhaustive or mutually
exclusive. Similarly, there exist countless alternative categorizations. We
outlined the reasons why we decided on this particular presentation at
the beginning of §3 and §4.

757

Computational Linguistics Volume 48, Number 3

5.2 Future Work

There are many open questions and starting points for future work. We believe that
the following areas are important topics for future work related to position information
models.

(1) Can we use position information models to include more information
about the structure of text? While there are many models for processing
sequential and graph-based structures, there is a wide range of structural
information in text that is not considered currently. Some examples
include tables, document layout such as headlines, list enumerations,
sentence order, and link structures. Can this structure be integrated with
current position information models or are new methods required for
representing document structure? Is including the document structure
useful for downstream tasks such as document-level machine
translation?

(2) The majority of the presented position information models are designed
with word or subword tokenization in mind. From the beginnings of
neural language models (Sutskever, Martens, and Hinton 2011) up to
recent research (e.g., Lee, Cho, and Hofmann 2017; Xue et al. 2021),
character- and byte-level processing has been a vibrant research area.
Designing position information models specifically for character- or
byte-level processing thus seems a logical next step. Future directions
could make byte-level positions aware of the encoding structure or
character-level positions aware of word structures.

(3) Some analysis papers such as Wang et al. (2021) are extensive and
provide many insights. Still, many aspects and differences of the position
information models are not fully understood. A promising future
direction is to continue an empirical comparison of different position
information models on more tasks, languages, and datasets.

(4) For many tasks, treating sentences as bag-of-words could be sufficient.
Indeed, Wang et al. (2021) show that without position embeddings the
performance drops for some tasks are marginal. Thus we consider it
interesting to investigate which tasks require explicit position
information.

Acknowledgments
This work was supported by the European
Research Council (# 740516) and by the
BMBF as part of the project MLWin
(01IS18050). The first author was supported
by the Bavarian Research Institute for Digital
Transformation (bidt) through their
fellowship program. We also gratefully
acknowledge a Ph.D. scholarship awarded to
the second author by the German Academic
Scholarship Foundation (Studienstiftung
des deutschen Volkes). We thank Nikita

Datcenko for helpful discussions and
valuable insights.

References
Artetxe, Mikel, Sebastian Ruder, and Dani

Yogatama. 2020. On the cross-lingual
transferability of monolingual
representations. In Proceedings of the 58th
Annual Meeting of the Association for
Computational Linguistics, ACL 2020,
pages 4623–4637. https://doi.org/10
.18653/v1/2020.acl-main.421

758

https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421

Dufter, Schmitt, and Schütze Position Information in Transformers

Ba, Lei Jimmy, Jamie Ryan Kiros, and
Geoffrey E. Hinton. 2016. Layer
normalization. CoRR, abs/1607.06450.

Bahdanau, Dzmitry, Kyunghyun Cho, and
Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and
translate. In 3rd International Conference on
Learning Representations, ICLR 2015,
Conference Track Proceedings.

Bao, Yu, Hao Zhou, Jiangtao Feng, Mingxuan
Wang, Shujian Huang, Jiajun Chen, and
Lei Li. 2019. Non-autoregressive
transformer by position learning. CoRR,
abs/1911.10677.

Beltagy, Iz, Matthew E. Peters, and Arman
Cohan. 2020. Longformer: The
long-document transformer. CoRR,
abs/2004.05150.

Brown, Tom, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared D. Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are
few-shot learners. In Advances in Neural
Information Processing Systems, volume 33,
pages 1877–1901, Curran Associates, Inc.

Cai, Deng and Wai Lam. 2020. Graph
transformer for graph-to-sequence
learning. In Proceedings of the AAAI
Conference on Artificial Intelligence,
34(5):7464–7471. https://doi.org/10
.1609/aaai.v34i05.6243

Chang, Tyler, Yifan Xu, Weijian Xu, and
Zhuowen Tu. 2021. Convolutions and
self-attention: Re-interpreting relative
positions in pre-trained language models.
In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics
and the 11th International Joint Conference
on Natural Language Processing (Volume 1:
Long Papers), pages 4322–4333.
https://doi.org/10.18653/v1/2021.acl
-long.333

Chen, Pu-Chin, Henry Tsai, Srinadh
Bhojanapalli, Hyung Won Chung, Yin-Wen
Chang, and Chun-Sung Ferng. 2021.
Demystifying the better performance of
position encoding variants for
Transformer. CoRR, abs/2104.08698.

Cho, Kyunghyun, Bart van Merrienboer,
Çaglar Gülçehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase
representations using RNN
encoder-decoder for statistical machine
translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, A
meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1724–1734.
https://doi.org/10.3115/v1/D14-1179

Choromanski, Krzysztof Marcin, Valerii
Likhosherstov, David Dohan, Xingyou
Song, Andreea Gane, Tamás Sarlós, Peter
Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David
Benjamin Belanger, Lucy J. Colwell, and
Adrian Weller. 2021. Rethinking attention
with performers. In 9th International
Conference on Learning Representations,
ICLR 2021, OpenReview.net.

Conneau, Alexis, Kartikay Khandelwal,
Naman Goyal, Vishrav Chaudhary,
Guillaume Wenzek, Francisco Guzmán,
Edouard Grave, Myle Ott, Luke
Zettlemoyer, and Veselin Stoyanov. 2020.
Unsupervised cross-lingual representation
learning at scale. In Proceedings of the 58th
Annual Meeting of the Association for
Computational Linguistics, ACL 2020,
pages 8440–8451. https://doi.org/10
.18653/v1/2020.acl-main.747

Dai, Zihang, Zhilin Yang, Yiming Yang,
Jaime Carbonell, Quoc Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL:
Attentive language models beyond a
fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for
Computational Linguistics, pages 2978–2988.
https://doi.org/10.18653/v1/P19
-1285

Dehghani, Mostafa, Stephan Gouws, Oriol
Vinyals, Jakob Uszkoreit, and Lukasz
Kaiser. 2019. Universal transformers. In
7th International Conference on Learning
Representations, ICLR 2019,
OpenReview.net.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional
transformers for language understanding.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186.

Ding, Liang, Longyue Wang, and Dacheng
Tao. 2020. Self-attention with cross-lingual
position representation. In Proceedings of
the 58th Annual Meeting of the Association for

759

https://doi.org/10.1609/aaai.v34i05.6243
https://doi.org/10.1609/aaai.v34i05.6243
https://doi.org/10.18653/v1/2021.acl-long.333
https://doi.org/10.18653/v1/2021.acl-long.333
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285

Computational Linguistics Volume 48, Number 3

Computational Linguistics, ACL 2020,
pages 1679–1685. https://doi.org/10
.18653/v1/2020.acl-main.153

Dufter, Philipp. 2021. Distributed
Representations for Multilingual Language
Processing. Ph.D. thesis,
Ludwig-Maximilians-Universität
München.

Dufter, Philipp, Martin Schmitt, and Hinrich
Schütze. 2020. Increasing learning
efficiency of self-attention networks
through direct position interactions,
learnable temperature, and convoluted
attention. In Proceedings of the 28th
International Conference on Computational
Linguistics, pages 3630–3636.
https://doi.org/10.18653/v1/2020
.coling-main.324

Dwivedi, Vijay Prakash and Xavier Bresson.
2020. A generalization of transformer
networks to graphs. CoRR,
abs/2012.09699.

Gehring, Jonas, Michael Auli, David
Grangier, Denis Yarats, and Yann N.
Dauphin. 2017. Convolutional sequence to
sequence learning. In Proceedings of the
34th International Conference on Machine
Learning, ICML 2017, pages 1243–1252.

Harris, Charles R., K. Jarrod Millman, Stéfan
J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser,
Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del
Rı́o, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant.
2020. Array programming with NumPy.
Nature, 585(7825):357–362. https://doi
.org/10.1038/s41586-020-2649-2

He, Pengcheng, Xiaodong Liu, Jianfeng Gao,
and Weizhu Chen. 2021. DeBERTa:
Decoding-enhanced BERT with
disentangled attention. In 9th International
Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021,
OpenReview.net.

Howard, Jeremy and Sebastian Ruder. 2018.
Universal language model fine-tuning for
text classification. In Proceedings of the 56th
Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 328–339. https://doi.org
/10.18653/v1/P18-1031

Huang, Zhiheng, Davis Liang, Peng Xu, and
Bing Xiang. 2020. Improve transformer
models with better relative position

embeddings. In Proceedings of the 2020
Conference on Empirical Methods in Natural
Language Processing: Findings, EMNLP
2020, pages 3327–3335. https://doi.org
/10.18653/v1/2020.findings-emnlp.298

Kalchbrenner, Nal, Edward Grefenstette, and
Phil Blunsom. 2014. A convolutional
neural network for modelling sentences. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 655–665.
https://doi.org/10.3115/v1/P14-1062

Ke, Guolin, Di He, and Tie-Yan Liu. 2021.
Rethinking positional encoding in
language pre-training. In 9th International
Conference on Learning Representations,
ICLR 2021, OpenReview.net.

Kitaev, Nikita, Lukasz Kaiser, and Anselm
Levskaya. 2020. Reformer: The efficient
transformer. In 8th International Conference
on Learning Representations, ICLR 2020,
OpenReview.net.

Lee, Jason, Kyunghyun Cho, and Thomas
Hofmann. 2017. Fully character-level
neural machine translation without
explicit segmentation. Transactions of the
Association for Computational Linguistics.,
5:365–378. https://doi.org/10.1162
/tacl a 00067

Li, Hailiang, Adele Y. C. Wang, Yang Liu,
Du Tang, Zhibin Lei, and Wenye Li. 2019.
An augmented transformer architecture
for natural language generation tasks. In
2019 International Conference on Data
Mining Workshops, ICDM Workshops 2019,
pages 1–7. https://doi.org/10.1109
/ICDMW48858.2019.9024754

Likhomanenko, Tatiana, Qiantong Xu, Ronan
Collobert, Gabriel Synnaeve, and Alex
Rogozhnikov. 2021. CAPE: Encoding
relative positions with continuous
augmented positional embeddings. CoRR,
abs/2106.03143.

Liu, Danni, Jan Niehues, James Cross,
Francisco Guzmán, and Xian Li. 2021a.
Improving zero-shot translation by
disentangling positional information. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and
the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers),
pages 1259–1273. https://doi.org/10
.18653/v1/2021.acl-long.101

Liu, Xuanqing, Hsiang-Fu Yu, Inderjit S.
Dhillon, and Cho-Jui Hsieh. 2020. Learning
to encode position for Transformer with
continuous dynamical model. In
Proceedings of the 37th International

760

https://doi.org/10.18653/v1/2020.acl-main.153
https://doi.org/10.18653/v1/2020.acl-main.153
https://doi.org/10.18653/v1/2020.coling-main.324
https://doi.org/10.18653/v1/2020.coling-main.324
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/2020.findings-emnlp.298
https://doi.org/10.18653/v1/2020.findings-emnlp.298
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.1109/ICDMW48858.2019.9024754
https://doi.org/10.1109/ICDMW48858.2019.9024754
https://doi.org/10.18653/v1/2021.acl-long.101
https://doi.org/10.18653/v1/2021.acl-long.101

Dufter, Schmitt, and Schütze Position Information in Transformers

Conference on Machine Learning, ICML 2020,
pages 6327–6335.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and
Veselin Stoyanov. 2019. RoBERTa: A
robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Liu, Zihan, Genta Indra Winata, Samuel
Cahyawijaya, Andrea Madotto, Zhaojiang
Lin, and Pascale Fung. 2021b. On the
importance of word order information in
cross-lingual sequence labeling. In
Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI
2021, pages 13461–13469.

Liutkus, Antoine, Ondřej Cı́fka, Shih-Lun
Wu, Umut Şimşekli, Yi-Hsuan Yang, and
Gaël Richard. 2021. Relative positional
encoding for Transformers with linear
complexity. In Proceedings of the 38th
International Conference on Machine
Learning, volume 139 of Proceedings of
Machine Learning Research, pages 7067–7079.

Neishi, Masato and Naoki Yoshinaga. 2019.
On the relation between position
information and sentence length in neural
machine translation. In Proceedings of the
23rd Conference on Computational Natural
Language Learning, CoNLL 2019,
pages 328–338. https://doi.org/10
.18653/v1/K19-1031

Oka, Yui, Katsuki Chousa, Katsuhito Sudoh,
and Satoshi Nakamura. 2020.
Incorporating noisy length constraints into
Transformer with length-aware positional
encodings. In Proceedings of the 28th
International Conference on Computational
Linguistics, pages 3580–3585.
https://doi.org/10.18653/v1/2020
.coling-main.319

Peters, Matthew, Mark Neumann, Mohit
Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018.
Deep contextualized word representations.
In Proceedings of the 2018 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers),
pages 2227–2237. https://doi.org/10
.18653/v1/N18-1202

Press, Ofir, Noah A. Smith, and Mike Lewis.
2021. Shortformer: Better language
modeling using shorter inputs. In
Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and
the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), 5493–5505.
https://doi.org/10.18653/v1/2021
.acl-long.427

Radford, Alec, Jeffrey Wu, Rewon Child,
David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are
unsupervised multitask learners. OpenAI
blog, 1(8):9.

Raffel, Colin, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J.
Liu. 2020. Exploring the limits of transfer
learning with a unified text-to-text
transformer. Journal of Machine Learning
Research, 21:140:1–140:67.

Rosendahl, Jan, Viet Anh Khoa Tran, Weiyue
Wang, and Hermann Ney. 2019. Analysis
of positional encodings for neural machine
translation. In Proceedings of the 16th
International Conference on Spoken Language
Translation, IWSLT 2019, 6 pages.

Schmitt, Martin, Leonardo F. R. Ribeiro,
Philipp Dufter, Iryna Gurevych, and
Hinrich Schütze. 2021. Modeling graph
structure via relative position for text
generation from knowledge graphs. In
Proceedings of the Fifteenth Workshop on
Graph-Based Methods for Natural Language
Processing (TextGraphs-15), pages 10–21.
https://doi.org/10.18653/v1/2021
.textgraphs-1.2

Shaw, Peter, Jakob Uszkoreit, and Ashish
Vaswani. 2018. Self-attention with relative
position representations. In Proceedings of
the 2018 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
NAACL-HLT, Volume 2 (Short Papers),
pages 464–468. https://doi.org/10
.18653/v1/N18-2074

Shen, Tao, Tianyi Zhou, Guodong Long, Jing
Jiang, Shirui Pan, and Chengqi Zhang.
2018. DiSAN: Directional self-attention
network for RNN/CNN-free language
understanding. In Proceedings of the
Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th Innovative
Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence
(EAAI-18), pages 5446–5455.

Shiv, Vighnesh Leonardo and Chris Quirk.
2019. Novel positional encodings to enable
tree-based transformers. In Advances in
Neural Information Processing Systems 32:
Annual Conference on Neural Information

761

https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.18653/v1/2020.coling-main.319
https://doi.org/10.18653/v1/2020.coling-main.319
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2021.acl-long.427
https://doi.org/10.18653/v1/2021.acl-long.427
https://doi.org/10.18653/v1/2021.textgraphs-1.2
https://doi.org/10.18653/v1/2021.textgraphs-1.2
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074

Computational Linguistics Volume 48, Number 3

Processing Systems 2019, NeurIPS 2019,
pages 12058–12068.

Su, Jianlin, Yu Lu, Shengfeng Pan, Bo Wen,
and Yunfeng Liu. 2021. RoFormer:
Enhanced transformer with rotary position
embedding. CoRR, abs/2104.09864.

Sutskever, Ilya, James Martens, and Geoffrey
E. Hinton. 2011. Generating text with
recurrent neural networks. In Proceedings of
the 28th International Conference on Machine
Learning, ICML 2011, pages 1017–1024.

Takase, Sho and Naoaki Okazaki. 2019.
Positional encoding to control output
sequence length. In Proceedings of the 2019
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long and Short Papers), pages 3999–4004.
https://doi.org/10.18653/v1
/N19-1401

Tay, Yi, Dara Bahri, Donald Metzler,
Da-Cheng Juan, Zhe Zhao, and Che
Zheng. 2021a. Synthesizer: Rethinking
self-attention for transformer models. In
Proceedings of the 38th International
Conference on Machine Learning, ICML 2021,
pages 10183–10192.

Tay, Yi, Mostafa Dehghani, Samira Abnar,
Yikang Shen, Dara Bahri, Philip Pham,
Jinfeng Rao, Liu Yang, Sebastian Ruder,
and Donald Metzler. 2021b. Long range
arena: A benchmark for efficient
transformers. In 9th International Conference
on Learning Representations, ICLR 2021,
OpenReview.net.

Vaswani, Ashish, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you
need. In I. Guyon, U. V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing
Systems 30. Curran Associates, Inc.,
pages 5998–6008.

Wang, Alex, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and
Samuel Bowman. 2018. GLUE: A
multi-task benchmark and analysis
platform for natural language
understanding. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP,
pages 353–355. https://doi.org/10
.18653/v1/W18-5446

Wang, Benyou, Lifeng Shang, Christina
Lioma, Xin Jiang, Hao Yang, Qun Liu, and
Jakob Grue Simonsen. 2021. On position
embeddings in BERT. In 9th International

Conference on Learning Representations, ICLR
2021, OpenReview.net.

Wang, Benyou, Donghao Zhao, Christina
Lioma, Qiuchi Li, Peng Zhang, and Jakob
Grue Simonsen. 2020. Encoding word
order in complex embeddings. In 8th
International Conference on Learning
Representations, ICLR 2020,
OpenReview.net.

Wang, Xing, Zhaopeng Tu, Longyue Wang,
and Shuming Shi. 2019. Self-attention with
structural position representations. In
Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, pages 1403–1409.
https://doi.org/10.18653/v1/D19-1145

Wang, Yu-An and Yun-Nung Chen. 2020.
What do position embeddings learn? An
empirical study of pre-trained language
model positional encoding. In Proceedings
of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP
2020, pages 6840–6849. https://doi.org
/10.18653/v1/2020.emnlp-main.555

Wu, Chuhan, Fangzhao Wu, and Yongfeng
Huang. 2021. Da-Transformer:
Distance-aware Transformer. In Proceedings
of the 2021 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
NAACL-HLT 2021, pages 2059–2068.
https://doi.org/10.18653/v1/2021
.naacl-main.166

Xue, Linting, Aditya Barua, Noah Constant,
Rami Al-Rfou, Sharan Narang, Mihir Kale,
Adam Roberts, and Colin Raffel. 2021.
ByT5: Towards a token-free future with
pre-trained byte-to-byte models. CoRR,
abs/2105.13626. https://doi.org/10
.1162/tacl a 00461

Yan, Hang, Bocao Deng, Xiaonan Li, and
Xipeng Qiu. 2019. TENER: Adapting
Transformer Encoder for named entity
recognition. CoRR, abs/1911.04474.

Yang, Baosong, Longyue Wang, Derek F.
Wong, Lidia S. Chao, and Zhaopeng Tu.
2019. Assessing the ability of self-attention
networks to learn word order. In
Proceedings of the 57th Conference of the
Association for Computational Linguistics,
ACL 2019, Volume 1: Long Papers,
pages 3635–3644. https://doi
.org/10.18653/v1/P19-1354

You, Weiqiu, Simeng Sun, and Mohit Iyyer.
2020. Hard-coded Gaussian attention for
neural machine translation. In Proceedings
of the 58th Annual Meeting of the Association

762

https://doi.org/10.18653/v1/N19-1401
https://doi.org/10.18653/v1/N19-1401
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/D19-1145
https://doi.org/10.18653/v1/2020.emnlp-main.555
https://doi.org/10.18653/v1/2020.emnlp-main.555
https://doi.org/10.18653/v1/2021.naacl-main.166
https://doi.org/10.18653/v1/2021.naacl-main.166
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.18653/v1/P19-1354
https://doi.org/10.18653/v1/P19-1354

Dufter, Schmitt, and Schütze Position Information in Transformers

for Computational Linguistics,
pages 7689–7700. https://doi.org/10
.18653/v1/2020.acl-main.687

Zhang, Jiawei, Haopeng Zhang, Congying
Xia, and Li Sun. 2020. Graph-BERT: Only
attention is needed for learning graph
representations. CoRR, abs/2001.05140.

Zhu, Jie, Junhui Li, Muhua Zhu, Longhua
Qian, Min Zhang, and Guodong Zhou.

2019. Modeling graph structure in
Transformer for better AMR-to-text
generation. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language
Processing (EMNLP-IJCNLP),
pages 5459–5468. https://doi.org/10
.18653/v1/D19-1548

763

https://doi.org/10.18653/v1/2020.acl-main.687
https://doi.org/10.18653/v1/2020.acl-main.687
https://doi.org/10.18653/v1/D19-1548
https://doi.org/10.18653/v1/D19-1548

	Introduction
	Background
	Notation
	Transformer Model
	Order Invariance
	Encoder–Decoder

	Recurring Concepts in Position Information Models
	Reference Point: Absolute vs. Relative Position Encoding
	Injection Method
	Recurring Integration
	Fundamental Model Properties

	Current Position Information Models
	Generic
	Sinusoidal
	Graphs
	Decoding
	Crosslingual
	Analysis

	Conclusion
	Limitations
	Future Work

