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Abstract

Stock movements are influenced not only by historical prices, but also by information outside
the market such as social media and news about the stock or related stock. In practice, news
or prices of a stock in one day are normally impacted by different days with different weights,
and they can influence each other. In terms of this issue, in this paper, we propose a fundamen-
tal analysis based neural network for stock movement prediction. First, we propose three new
technical indicators based on raw prices according to the finance theory as the basic encode of
the prices of each day. Then, we introduce a coattention mechanism to capture the sufficient
context information between text and prices across every day within a time window. Based on
the mutual promotion and influence of text and price at different times, we obtain more sufficient
stock representation. We perform extensive experiments on the real-world StockNet dataset and
the experimental results demonstrate the effectiveness of our method.

1 Introduction

Stock Movement Prediction aims to predict the future price trend of a stock based on its historical price
or related information. Stock price prediction can help investors, ordinary users and companies to predict
the stock trend in the future, which has good application value.

The high randomness and volatility of the market make the task of Stock Movement Prediction a big
challenge (Adam et al., 2016). However, with the development of neural network technology, stock
movement prediction has achieved good results in recent years (Nelson et al., 2017; Hu et al., 2018; Xu
and Cohen, 2018; Feng et al., 2019a; Sawhney et al., 2020; Tang et al., 2021; Zhao et al., 2022). Based
on fundamental and technical analysis, existing methods can be roughly grouped into two categories,
namely methods based on price factors only and methods based on price and other factors (e.g., news of
the stock.). Nelson et al. (2017) used the LSTM(Hochreiter and Schmidhuber, 1997) network to predict
future stock price trends based on historical price and technical analysis indicators. Feng et al. (2019a)
used the adversarial training as perturbations to simulate the randomness of price variables, and trained
the model to work well with small but intentional perturbations. They also extracted 11 related price
features to effectively help the model to predict future changes.

According to the Efficient Market Hypothesis (EMH) (Fama, 1970), price signals themselves cannot
capture the impact of market accidents and unexpected accidents, while social media texts such as tweets
could have a huge impact on the stock market. Based on this idea, different models have been proposed
to model relevant news texts to improve the overall performance of stock movement prediction. Hu et
al. (2018) proposed to use the hierarchical attention mechanism to predict the trend of stocks based on
the sequence of recent related news. Xu and Cohen (2018) integrated signals from social media which
reflected the opinions of general users and used Variational Autoencoder(VAE) to capture the randomness
of prices and the importance of different time steps by adding temporal attention. Sawhney et al. (2020)
introduced a novel architecture for efficient mixing of chaotic temporal signals from financial data, social
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media, and inter stock relationships in a hierarchical temporal manner through Graph Attention Neural
Network.

Although previous studies have achieved good results, whether it is a purely technical approach based
on historical prices or a fundamental approach based on multiple factors such as prices and news, they
can be improved in terms of the full integration of the two important factors of texts and prices. We found
that previous works usually encode news and prices separately according to time series, and then fuse
them through simple concatenation operation, similar to the work of Sawhney et al. (2020). In fact, in
practice, prices on a given day can be influenced by different news at different times (e.g., previous day
or after two days). Similarly, some news about a stock on a given day may be influenced by stock prices
at different times. As is shown in Figure 1, if we can capture the context information of each price and
text by different days, we can get more sufficient information for predicting the stock price accurately.

Figure 1: Contexts of prices and texts across the history captured by co-attention. Left shows each price
representation of one day captures context of all news about the stock from day1 to dayT by different
attention weights. Right shows each texts representation of one day captures context of all prices about
the stock from day1 to dayT by different attention weights.

To this end, in this paper, we propose a fundamental analysis based neural network for stock movement
prediction. More specifically, we first use Bi-GRU to encode the original texts of each day. Then, we
use text-level attention to get a text representation of each day. As for the prices of each day, we use the
existing 11 indicator features and 3 indicators we proposed in this paper as price representation of each
day. Then we use the coattention mechanism (Xiong et al., 2016) to capture more information between
texts and prices across every day within a time window. Finally, we incorporate a Bi-GRU to encode the
fully integrated texts and prices representation according to the time window, so that it can obtain various
prices and text-related information of the stock, and obtain the final effective representation of the stock.

The contributions of this work are as follows:

• We propose a fundamental analysis based neural network for stock movement prediction. The
model introduces the coattention mechanism into text and price features of a stock to learn the
effective context information of them. The method can obtain sufficient stock representation based
on the mutual promotion and influence of texts and prices at different times.

• We also introduce three technical indicators based on raw prices in the financial field as their input
features to better reflect the fluctuation information of the market. We perform multiple experiments
on the StockNet dataset and the results demonstrate the effectiveness of our model.

2 Related Work

In this section, we will review the related work about stock movement prediction from technical analysis
based approach and fundamental analysis based approach.

2.1 Technical Analysis based Approach

Technical analysis based approach is to predict the trend of a stock based on its historical price fea-
tures such as close price and movement percent of price, which follows the assumption that future price
changes are the result of historical behavior. Most recent stock movement prediction methods are based
on deep learning. Among them, recurrent neural networks such as LSTM and GRU have become a
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key part for capturing the temporal patterns of stock prices. This is beacuse they can further capture
long-term dependencies in time series. Nelson et al. (2017) used LSTM networks to study future trends,
predicting stock prices based on historical stock prices and technical analysis indicators. These indica-
tors are mathematical calculations designed to determine or predict the characteristics of a stock based
on its historical data. A total of 175 technical indicators are generated each period, and they are designed
to represent or predict a very different set of characteristics of a stock, like the future price, volume to
be traded and the strength of current movement trends. Feng et al. (2019a) proposed to use adversarial
training and add perturbations to simulate the randomness of price variables, and trains the model to
work well with small but intentional perturbations. In addition, they extracted 11 related price features
that effectively help the model predict future changes. Feng et al. (2019b) proposed the Temporal Graph
Convolution (TGC) model combining historical prices for predicting movement of stock, which dynam-
ically adjusts the predefined firm relations before feeding them into Graph Convolution Network (GCN)
(Kipf and Welling, 2017). As LSTM struggles to capture extremely long-term dependencies, such as
the dependencies across several months on financial time series. Transformer-based employs multi-head
self-attention mechanism to globally learn the relationships between different locations, thus enhanc-
ing the ability to learn long-term dependencies. Ding et al. (2020) proposed various enhancements for
Transformer-based models, such as enhancing locality of Transformer with Multi-Scale Gaussian Prior,
avoiding learning redundant heads in the multihead self-attention mechanism with Orthogonal Regular-
ization and enabling Transformer to learn intra-day features and intra-week features independently with
Trading Gap Splitter. However, in reality, it is often difficult to find clear pattern of change from the
market historical data. Furthermore, it fails to reveal the rules governing market volatility beyond stock
price data.

2.2 Fundamental Analysis based Approach

Efficient Market Hypothesis tells that textual information can be used to extract implicit information for
helping predict the future trend of stock prices, such as financial news and social media. Fundamental
analysis based approach is able to capture information that is not available in traditional price-based
stock prediction. A hybrid attention network (Hu et al., 2018) is proposed to predict stock trends by
imitating the human learning process. In order to follow three basic principles: sequential content de-
pendency, diverse influence, and effective and efficient learning, the model builds news-level attention
and temporal attention mechanisms to focus on key information in news, and applies self-paced learn-
ing mechanisms to automatically select suitable training samples for different training stage improves
the final performance of the framework. Different from the traditional text embedding methods, Ni et
al. (2021) proposed Tweet Node algorithm for describing potential connection in Twitter data through
constructing the tweet node network. They take into account the internal semantic features and external
structural features of twitter data, so that the generated Tweet vectors can contain more effective infor-
mation. Financial news that does not explicitly mention stocks may also be relevant, such as industry
news, and is a key part of real-world decision-making. To extract implicit information from the chaotic
daily news pool, Tang et al. (2021) proposed News Distilling Network (NDN) which takes advantage
of neural representation learning and collaborative filtering to capture the relationship between stocks
and news. Xie et al. (2022) conducted adversarial attacks on the original tweets to generate some new
semantically similar texts, which are merged with the original texts to confuse the previously proposed
models, proving that text-only stock prediction models are also vulnerable to adversarial attacks. This
also reflects that the model obtained only by text training is less robust, so it is still necessary to incor-
porate knowledge such as relevant historical price features and the relationship between stocks to better
improve the performance of the model.

Therefore, some studies fuse price and text data to build models, and even add the relationship between
stocks to improve the performance of the model. A novel deep generation model that combines tweets
and price signals is proposed by (Xu and Cohen, 2018). They introduced temporal attention to model
the importance of different time steps and used Variational Autoencoder(VAE) to capture randomness
of price. Recent studies have attempted to simulate stock momentum spillover through Graph Neural
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Networks(GNN). Sawhney et al. (2020) introduced an architecture for efficient mixing of chaotic tem-
poral signals from financial data, social media, and inter stock relationships in a hierarchical temporal
manner. Cheng and Li (2021) proposed a momentum spillover effect model for stock prediction through
attribute-driven Graph Attention Networks (GAT) (Veličković et al., 2017), and the implicit relations
between stocks can be inferred to some extent. Zhao et al. (2022) constructed a market knowledge graph
which contains dual-type entities and mixed relations. By introducing explicit and implicit relationships
between executive entities and stocks, dual attention network is proposed to learn stock momentum over-
flow features.

Since stock prices have temporal characteristics, that is, the price of a day will be affected by the price
and news text of previous days, in this paper, we propose to use coattention mechanism to obtain the
context information of stock prices and news text under different timestamp, so as to improve the final
representation of the stock and the prediction performance.

3 Our Method

3.1 Task Definition
Similar to the previous work Xu and Cohen (2018), we define the stock movement prediction task as a
binary classification problem. Given a stock s, we define the price movement of the stock from day T to
T + 1 as:

YT+1 =

{
−1, pcT+1 < pcT
1, pcT+1 ≥ pcT

(1)

where pcT represents adjusted closing price on day T , −1 represents stock price goes down and 1
represents the stock price goes up. The goal of the task is to predict the price movement YT+1 of a stock
s according to its historical prices collections P and news text collections L in a time sliding window of
T days, where P = {P1, P2, ..., Pi, ..., PT }, L = {L1, L2, ..., Lj , ..., LT }, where Pi is the price features
of the stock s on day i and Lj is the news text collection of the stock s on day j .

3.2 Overall Architecture
The whole architecture of our method is shown in Figure 2. As is shown in Figure 2, we first encode raw
text for each stock across every day over a fixed time window. As for the price, the existing price features
and the three new proposed indicators are concatenated together as the price representation. Then richer
information will be captured by our introduced coattention mechanism. In order to obtain the integrated
information of various prices and texts within the time window, we adopt a Bi-GRU for final encoding.

In the following sections, we will describe text and price features encoding in Section 3.3 and 3.4. And
we will introduce temporal fusion to handle prices and text in Section 3.5 and introduce global fusion by
sequential modeling in Section 3.6. Finally, model training will be introduced in Section 3.7.

3.3 Text Encoding
As each text contains rich semantic information, we use a Bi-GRU to encode the text and get the repre-
sentation of each text in one day. Besides, different texts within the same day about the same stock may
also be different (e.g., one text contains important information about the stock while other texts don’t
have valuable information about the stock.). For addressing that, we use a soft-attention operation to get
the weighted representation of the texts of one day.

Following the work of Xu and Cohen (2018), we incorporate the position information of stock symbols
in texts to handle the circumstance that multiple stocks are discussed in one single text. Given stock s
contains K number of related texts on day m, which is denoted as Lm = {lm1, lm2, ..., lmi, ...lmK},
where lmi denotes the i-th text of stock s on day m. For each text lmi = {w1, w2, ..., wn}, suppose that
the location where the stock symbol appears first is denoted as z, we use two GRUs to encode the words
sequence from w1 to wz to get the hidden representations

−→
hf and words sequence from wz to wn to get

the hidden representations
←−
hb, respectively. We use the average of the last hidden states of the two GURs−→

hz and
←−
hz as the hidden representation of the text hlmi

:
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Figure 2: Overview architecture of our method.

−→
hf =

−−−→
GRU

(
ef ,
−−→
hf−1

)
(2)

←−
hb =

←−−−
GRU

(
eb,
←−−
hb+1

)
(3)

hlmi
=

(−→
hz +

←−
hz

)
/2 (4)

Where ef ,eb is the word embedding using pre-trained Global Vectors for Word Representation(GloVe)
(Pennington et al., 2014) for words of the text, f ∈ [1, . . . , z] , b ∈ [z, . . . , n]. After that, we can get all
the text representations Mi=[hlm1 ,hlm2 ,...,hlmK

]. Since the text quality is different, we use a text-level
attention mechanism to identify texts that could have a more substantial impact on the market every day,
and finally obtain a final representation of all texts. The calculation formula is as follows:

uK = tanh(MiWm + bm) (5)

αK = softmax(uKWu) (6)

hTexts dm =
∑
K

αKhlmK
(7)

where αK is the attention weight, Wm and Wu are the parameters to be learned, bm is the bias
terms. hTexts dm is the representation of the news text of stock s on m-th day(daym). Accord-
ing to the time sliding window defined previously, the text data in the window is finally recorded as
Ht = [hTexts d1, hTexts d2, ..., hTexts dT ].

3.4 Price Features
As mentioned in Section 2.2, the models that predict stock trends only based on text are often fragile,
while price features have been shown to effectively reflect market volatility. In this paper, we introduce
three new relevant price features to be used in our method. The three new technical indicators are from
financial domain and are used to describe fluctuation of stock, namely Average True Range (ATR) (Bruni,
2017), Bias Ratio (BIAS) and Momentum (MTM) (Lin et al., 2017). The detailed calculation of the three
indicators is shown in Table 1. We describe the tree indicators as follows:
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• ATR: ATR is a volatility indicator that was developed by Wilder (1978) and is used to measure the
volatility or the degree of price movement of security. It was originally designed for commodity
trading, which is frequently subject to gaps and limit moves. As a result, ATR takes into account
gaps, limit moves, and small high-low ranges in determining the true range of a commodity, and it
also applies to the stock market.

• BIAS: BIAS is the deviation between the closing price and moving average. When the stock price
moves drastically to deviate from the trend, the possibilities for a pullback or rebound increase;
When the stock price movement does not deviate from the trend, it is likely that the trend will
continue.

• MTM: MTM is an indicator that shows the difference between today’s closing price and the closing
price n days ago. Momentum generally refers to the continued trend of prices. Momentum shows
a trend, staying positive for a sustained uptrend or negative for a sustained downtrend. An upward
crossing of zero can be used as a signal of buying, and a downward crossing of zero can be used as
a signal of selling. How high the indicator is (or how low when negative) indicates how strong the
trend is.

Features Calculation

ATR EMA(max(hight, closet−1)−min(lowt, closet−1), n)

BIAS closet∑4

i=0
closet−i/5

− 1

MTM closet − closet−1

Table 1: The three price features.

Following previous work, We adopt 11 temporal price features based on the raw price (Feng
et al., 2019a), denoted as F1 = {p1, p2, ..., p11} and our proposed three new price features, de-
noted as F2 = {patr, pbias, pmtm}, as our final price features. The two are concatenated together
to get the final price features of m-th day, recorded as hPrices dm = [F1, F2]. According to the
time sliding window defined above, the price features in the window are finally recorded as Hp =
[hPrices d1, hPrices d2, ..., hPrices dT ].

3.5 Temporal Fusion by Coattention Neural Network
After Section 3.3 and Section 3.4, the coding features of price and text were obtained as Hp and Ht

respectively. To effectively blend text and price, we use the coattention mechanism (Xiong et al., 2016)
to learn the fusion between text and price to obtain richer implicit information. First, we use a nonlinear
projection layer to convert the dimension of the price feature into the same dimension as the text with
the following formula:

H ′
p = tanh (HpWp + bp) (8)

Applying the coattention mechanism to focus on both text and price, and learn about fusion. We
first compute an affinity matrix that contains the corresponding affinity scores of all prices hidden states
and texts hidden state pairs. Then the affinity matrix is normalized by Softmax, attention weights are
generated for text features by row, and attention weights of price features are generated by columns. The
calculation formula is as follows:

L = Ht

(
H ′

p

)T
(9)

At = softmax(L) (10)

Ap = softmax
(
LT

)
(11)
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Next, we calculate the attention context of price features based on the attention weight of text features.
The calculation formula is as follows:

Ct = AtH
′
p (12)

Meanwhile, we compute the attention context of the text features as ApHt based on the attention
weights of the price features. Following Xiong et al. (2016), we also calculate ApCt which maps text
feature encoding into the space of price feature encoding. The calculation formula is as follows:

hd = Ap [Ht, Ct] (13)

Where hd is interdependent representation of the text and the price. The [ ] denotes for concatenation
operation.

3.6 Global Fusion by Sequential Encoding
We input hd obtained from Section 3.5 into the bidirectional GRU to obtain the hidden states for each
time t. To capture past and future information as its context, we connect the hidden states from the two
directions to construct a two-way encoding vector hi with the following formulas:

−→
hi =

−−−→
GRU (hd) (14)

←−
hi =

←−−−
GRU (hd) (15)

hi =
[−→
hi ,
←−
hi

]
(16)

In addition to its own information, hi also contains information about its adjacent contexts. In this
way, we encoded its time series. Since news releases on different dates contributed unequally to stock
trends, we employed soft attention mechanism which is calculated as follows:

oi = tanh (hiWh + bh) (17)

βi = softmax (oiWo) (18)

hfinal =
∑
i

βihi (19)

where βi is the attention weight, Wh and Wo are the parameters to be learned, bh is the bias terms.
Finally, hfinal is input into a classic three-layer preceptron (MLP) to predict the future trend of stocks.

3.7 Model Training
We use cross entropy for model training, which is calculated by equation (20), where N is the total num-
ber of stocks, yti and ŷti represent the ground truth and predict stock trend of stock i at t day, respectively.

l = −
N∑
i=1

∑
t

yti ln(ŷ
t
i) (20)

4 Experiments

4.1 Dataset
We use the SotckNet1 dataset (Xu and Cohen, 2018) to train and validate the model. The dataset contains
historical data on the high trading volumes of 88 stocks in the NASDAQ and NYSE stock markets. We
annotate the samples based on the movement percent of the adjusted closing price of stock, and label
the samples as up and down when movement percent ≥ 0.55% or ≤ −0.5%, respectively. We split the
dataset temporarily with 70/20/10, leaving us with date ranges from 2014-1-1 to 2015-8-1 for training,
2015-8-1 to 2015-10-1 for validation and 2015-10-1 to 2016-1-1 for testing. Similarly, we adjusted
trading days by removing samples with missing prices or texts and further aligned data for all trading
day windows to ensure that data is available for all trading days in all windows.

1https://github.com/yumoxu/stocknet-dataset
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4.2 Experiment Settings
We use a 5-day trading day sliding window to build the samples. Following the setting of Xu and Cohen
(2018), we set the maximum number of texts in a day to 30, and each text has a maximum of 40 words.
Glove word embedding was also used to initialize words into 50-dimensional vectors. We train the
model using the Adam optimizer, with an initial learning rate set to 5e-5. The bidirectional GRU hidden
dimensions for encoding tweets and sequential modeling were set to 100 and 64, respectively. Each
model is trained for 40 epochs with a batch size of 32. We report the best average test performance of
the model on the validation set at 5 different runs.

Following previous studies (Xu and Cohen, 2018; Sawhney et al., 2020), we use Accuracy (Acc), F1
score, and Matthews Correlation Coefficient (MCC) as evaluation metrics for this classification task.

4.3 Compared Models
To demonstrate the effectiveness of our proposed model, we compare the results with the following
comparative models.

• RAND. A simple predictor to make random guess about the rise and fall.

• ARIMA. Autoregressive Integrated Moving Average, an advanced technical analysis method using
only price signals. (Brown, 2004).

• Adversarial LSTM. Feng et al. (2019a) proposed a deep model using an adversarial attention
LSTM mechanism, which exploits adversarial training to simulate randomness during model train-
ing. They propose the use of adversarial training to improve the generalization of neural network
prediction models, since the input feature for stock prediction is usually based on stock price, which
is essentially a random variable that naturally changes over time. They added perturbations to their
stock data and trained the model to work well with small but intentional perturbations.

• RandForest. Pagolu et al. (2016) implemented a sentiment analysis model based on Twitter data.
The authors used Word2vec to analyse the polarity of sentiments behind the tweets and directly
assessed tweets related to stock and tried to predict the price of the stock for the next day.

• TSLDA. A new topic model, Topic Sentiment Latent Dirichlet Allocation (TSLDA), which can
obtain new feature that captures topics and sentiments on the documents simultaneously and use
them for prediction of the stock movement (Nguyen and Shirai, 2015).

• HAN. A hybrid attention network that predicts stock trends by imitating the human learning process.
Follows three basic principles: sequential content dependency, diverse influence, and effective and
efficient learning. The model includes news-level attention and temporal attention mechanisms to
focus on key information in news (Hu et al., 2018).

• StockNet. A Variational Autoencoder (VAE) to encode stock inputs to capture randomness and
use temporal attention to model the importance of different time steps (Xu and Cohen, 2018). We
compare with the best variants of StockNet.

• MAN-SF. Multipronged Attention Network (MAN-SF) jointly learns from historical prices, tweets
and inter stock relations. MAN-SF through hierarchical attention captures relevant signals across
diverse data to train a Graph Attention Network (GAT) for stock prediction. And the study considers
one pre-built graph from Wikidata (Sawhney et al., 2020).

4.4 Experimental Results
We conduct several experiments to evaluate the performance of our method. In this section, we analyze
the benchmark performance and the results of our model on the StockNet dataset. The experimental
results of the different models are shown in Table 2.

First, we compare the first three baseline models presented in this paper. All three baseline methods
use only historical price information, although Adversarial LSTM with more representative features and
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Model Acc F1 MCC
RAND 50.9 50.2 -0.002
ARIMA (Brown, 2004) 51.4 51.3 -0.021
Adversarial LSTM (Feng et al., 2019a) 57.2 57.0 0.148
RandForest (Pagolu et al., 2016) 53.1 52.7 0.013
TSLDA (Nguyen and Shirai, 2015) 54.1 53.9 0.065
HAN (Hu et al., 2018) 57.6 57.2 0.052
StockNet (Xu and Cohen, 2018) 58.2 57.5 0.081
MAN-SF (Sawhney et al., 2020) 60.8 60.5 0.195
ours 62.6 61.1 0.228

Table 2: The results of different models.

training with adversarial learning achieved better performance. Our model clearly exceeds these three
methods in each evaluation indicator.

Second, our model is compared to models that only use textual information, such as RandForest,
TSLDA, and HAN. Our model also significantly outperforms these three methods, outperforming the
best-performing HAN by 5, 3.9, and 0.176 in Acc, F1, and MCC, respectively. So far, we can find that
the performance of the model using only price or text is not satisfactory enough.

Finally, compared to StockNet, which also uses texts and prices, our model is 4.4, 3.6 and 0.147
higher on Acc, F1 values and MCC, respectively. Compared to another MAN-SF using the same data,
our model contains no additional knowledge of stock relations. But the result still demonstrates that our
model is 1.8, 0.6, and 0.033 higher than the MAN-SF on Acc, F1 values, and MCC, respectively. Overall
experimental results demonstrate the effectiveness of the proposed model.

4.5 Ablation Study

In order to better demonstrate the different effects of components of our method, we conduct ablation
studies to investigate the different contribution of coattention mechanism and the three proposed financial
indicators. The results are shown in Table 3. We mainly design two variants: ours w/o coattention and
ours w/o ATR-BIAS-MTM.

For w/o coattention, we change the method of learning effective implicit information between price
and text from the coattention mechanism to the direct concatenation of the two. This model drops 1.7,
0.7 and 0.014 compared to the full model on Acc, F1 value and MCC, respectively, proving that the coat-
tention mechanism can effectively improve the performance of the model and obtain richer information
between price and text.

For w/o ATR-BIAS-MTM, We remove the three features proposed earlier in this paper and only use
the 11 features proposed in previous studies(Feng et al., 2019a). The experimental results of the model
decreased by 0.3, 0.3 and 0.007 on Acc, F1 values and MCC, respectively, which also prove that these
three features help the performance of the model by reflecting the volatility of the market. Here we take
ATR as an example to analyze, it can simply be understood as the expectations and enthusiasm of traders.
Large or increasing volatility indicates that traders may be prepared to continue buying or selling stocks
during the day. A reduction in volatility indicates that traders are not showing much interest in the stock
market.

Model Acc F1 MCC
ours 62.6 61.1 0.228
w/o coattention 60.9 60.4 0.214
w/o ATR-BIAS-MTM 62.3 60.8 0.221

Table 3: The ablation study of our method.
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4.6 Case Study

As mentioned before, we use the coattention mechanism in the model to capture richer information,
which in turn help to learn more precise attention weights of intra-day tweets (Tweet-level attention) and
inter-day of time slide window (Temporal attention). In order to investigate how the coattention mecha-
nism guides the learning of attention weights, we conducted a case study on a sample of $FB(FaceBook)
between Nov 5th and Nov 9th, 2015, which is finally used to predict the rise or fall of Nov 10th, 2015.

Figure 3: Text-level and Temporal attention weights learned by Ours and Ours(∆) (as mentioned ours w/o
coattention) on a sample of $FB (FaceBook). Numbers represent weight values and darker colors indicate
greater weights. Text on green, red and grey backgrounds represent signals with positive, negative and
neutral respectively.

As shown in Figure 3, a row represents a day. For example, the first row represents texts of 5th. And
we use the trading day alignment, because the 7th and 8th are weekends, so the text data for the three days
from the 6th to the 8th were merged together. Each rectangle inside each row represents the content of
a text. All texts within a day are denoted as [Text1, T ext2, . . . , T extK]. And We present the attention
weights learned by our model (Ours) and without coattention mechanism (denoted as Ours(∆)).

First, we can see that the closer to the target day, the more weight Ours gives to that day. This is also
in line with the laws of the real world, and the newer news can have a greater impact. Specifically, Ours
pays more attention to the positive signals from the 6th to the 9th. On the 5th, it pays too much attention
to a neutral Text3 whose impact is uncertain. However, because of giving it a lower weight on the day,
it can help its correct prediction for the rise. On the contrary, Ours(∆) has a greater weight than Ours on
the 5th. At the same time, the tweet texts with negative signals in the 5th and 9th are more concerned by
Ours(∆), and finally make a wrong prediction.

Next we analyze the texts for each day in more detail. For a more intuitive understanding, we artifi-
cially add different background colors to each rectangle to represent different tendencies of the text, such
as green, red and grey backgrounds representing signals with positive, negative and neutral respectively.
On the 5th day, we can see that Ours(∆) has higher attention than Ours on the two negative texts Text1
and Text2. During the period from the 6th to the 9th, Ours gives a higher weight value to the texts with
positive signals than Ours(∆), such as the Text2 from the 6th to the 8th and the TextK of the 9th, which
all reflect the good development prospects of FaceBook. In particular, Ours has a smaller weight than
Ours(∆) on the Text1 with negative influence in 9th. Although this negative news appears on the day
closest to the target prediction, because the model combined with coattention can fuse the information
of the entire window, and analyzes that Facebook stock is still showing an upward trend in general.
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The observation shown in Figure 3 indicates that the coattention mechanism can guide the model to
pay more attention to texts with tendencies and can effectively model the temporal. With more accurate
attention weights, Ours can capture more effective representation, thus it can achieve better performance
than Ours(∆).

5 Conclusion

To effectively fuse texts and prices to predict future stock movements, in this paper, we propose a funda-
mental analysis based neural network for stock movement prediction. Our model introduces the coatten-
tion mechanism to capture richer implicit information between text and price as a better representation
of a stock. We also introduce three new technical indicators in the financial field as price features. We
perform the extensive experiments on the StockNet dataset and the experimental results show the effec-
tiveness of our proposed method. In the future, we plan to use more data other than stock prices, such as
financial reports, relationships between stock, to better capture market dynamics. In addition, extracting
features that can better reflect trend changes is still a direction worth exploring.
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