
Dynamic Negative Example Construction for Grammatical Error
Correction using Contrastive Learning

Junyi He, Junbin Zhuang, and Xia Li*

Guangzhou Key Laboratory of Multilingual Intelligent Processing,
School of Information Science and Technology,

Guangdong University of Foreign Studies, Guangzhou, China
{junyihe,junbinzhuang,xiali}@gdufs.edu.cn

Abstract

Grammatical error correction (GEC) aims at correcting texts with different types of grammatical
errors into natural and correct forms. Due to the difference of error type distribution and er-
ror density, current grammatical error correction systems may over-correct writings and produce
a low precision. To address this issue, in this paper, we propose a dynamic negative example
construction method for grammatical error correction using contrastive learning. The proposed
method can construct sufficient negative examples with diverse grammatical errors, and can be
dynamically used during model training. The constructed negative examples are beneficial for
the GEC model to correct sentences precisely and suppress the model from over-correction. Ex-
perimental results show that our proposed method enhances model precision, proving the effec-
tiveness of our method.

1 Introduction

Grammatical error correction (GEC) (Chollampatt and Ng, 2018; Kaneko et al., 2020; Kiyono et al.,
2019) aims at correcting texts with different types of grammatical errors into natural and correct forms.
It is an important research topic for both natural language processing and language education.

Most of the current GEC systems are developed for correcting writings by learners of English as a
second language (Brockett et al., 2006; Chen et al., 2020a; Chollampatt and Ng, 2018; Kaneko et al.,
2020; Kiyono et al., 2019). However, GEC for native writings is also worth exploring, as texts written by
native speakers may also contain grammatical errors that should be corrected for enhancement of writing
quality. Currently, it is not feasible to train a GEC model specifically for correcting native writings
because GEC data containing native writings are not sufficient. Therefore, native writings are often
corrected by GEC models that are trained on GEC data consisting of writings by non-native speakers
such as the Lang-8 (Mizumoto et al., 2011) and NUCLE (Dahlmeier et al., 2013) datasets. However, the
error type distribution, error density and fluency are inconsistent between the writings by non-native and
native speakers. Therefore, those GEC models may over correct sentences and produce a low precision
of error correction (Flachs et al., 2020). In terms of this issue, contrastive learning (CL) (Chen et al.,
2020b; Chen et al., 2020c; Gao et al., 2021; Liu and Liu, 2021) can be incorporated to help alleviate the
over correction behaviour of the GEC models. The core idea is to take the over-corrected sentences as
negative examples, and to effectively avoid or alleviate the problem of over correction by increasing the
distance between the anchor sentence and the negative examples. So the focus is on how to construct
effective negative examples for training the GEC models effectively. Previous studies about GEC models
mainly focus on data augmentation for generating pseudo parallel training pairs as complement for the
current insufficient GEC training data (Zhao et al., 2019; Takahashi et al., 2020), or focus on improving
the correction performance with a variety of model architectures (Awasthi et al., 2019; Stahlberg and
Kumar, 2020; Sun and Wang, 2022), few of them focus on improving the performance of the GEC
models with contrastive learning. To the best of our knowledge, Cao et al. (2021) is the only recent work
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for that. In their work, they propose two approaches for constructing negative examples. First, they treat
the beam search candidates produced by an off-the-shelf GEC model as negative examples. They find that
many output candidates generated by beam search contain erroneous edits, and the constructed negative
examples help suppress the trained GEC model from producing erroneous edits. Second, the source
sentence is treated directly as a negative example if it contains grammatical errors. Their intuition is that
there should be differences between the corrected output sentence and the source sentence, otherwise
the GEC model fails to detect any grammatical errors in the source sentence. The negative examples
constructed in this way suppress the trained GEC model from outputting the erroneous source sentences
as they are without any modifications.

Although the aforementioned study produces good performance, we believe that there are still two
points that can be improved: (1) The negative examples constructed with beam search may not be suf-
ficient. Many beam search output candidates are the same as the target sentence and cannot be used as
negative examples. That leads to a small number of the generated negative examples. In addition, the
beam search candidates may contain unrealistic grammatical errors with a small number of error types,
limiting the diversity of grammatical errors in the generated negative examples. As a result, the low
diversity of the negative examples makes the GEC model less easier to learn to distinguish the negative
examples from the anchor, which limits the improvement of error correction performance brought by
contrastive learning. (2) They construct the negative examples with their negative example construction
methods before model training. As a result, the GEC model can only be able to see a fixed set of nega-
tive examples in each iteration during training, which may reduce the generalization ability of the GEC
model.

To this end, we propose a dynamic negative example construction method for grammatical error cor-
rection using contrastive learning. The proposed method contains a negative example construction strat-
egy that makes use of realistic grammatical error patterns produced by humans to generate sufficient
negative examples with more diverse grammatical errors. With the constructed negative examples, the
GEC model can learn to correct sentences precisely and be suppressed from over-correction. Moreover,
the proposed strategy is simple and lightweight, enabling it to be applied dynamically during the training
process. In this manner, our method enhances the generalization ability of the GEC model.

The main contributions of this work are as follows:
(1) We propose a dynamic negative example construction method for grammatical error correction

using contrastive learning. The proposed method can construct sufficient negative examples with diverse
grammatical errors, and can be dynamically applied during model training. The constructed negative
examples are beneficial for the model to correct sentences precisely and suppress it from over-correction.

(2) We conduct extensive experiments on the public CWEB dataset that contains native writings, and
compare our proposed method with existing GEC studies focusing on negative example construction.
Experimental results show that our proposed method indeed enhances model precision and suppresses
the GEC model from over-correction.

2 Related Work

In this section, we briefly review different GEC methods, including the early rule-based methods, the
widely used methods based on machine translation or BERT, and the recently proposed GEC methods
using contrastive learning.

GEC Methods based on Rules. Early GEC models are mostly rule-based pattern recognizers or
dictionary-based linguistic analysis engines (Macdonald, 1983; Richardson and Braden-Harder, 1988;
Sidorov et al., 2013; Sidorov, 2013). These rule-based methods require a set of pre-defined error recog-
nition rules to detect grammatical errors in the input sentences. Once a certain span in the input sentence
is matched by a certain rule, the error correction system provides a correction for the matched error.

GEC Methods based on Machine Translation. GEC models based on machine translation have
been proposed to “translate” wrong sentences into correct sentences. Brockett et al. (2006) use a noisy
channel model in conjunction with a statistical machine translation model for error correction. Felice
et al. (2014) propose a hybrid GEC model that integrates grammatical rules and a statistical machine
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translation model. They also adopt some techniques such as type filtering. Zheng and Ted (2016) apply a
neural machine translation model with the attention mechanism to GEC. In addition, they also introduce
a method that uses a combination of an unsupervised alignment model and a word-level translation
model to solve the problem of sparse and unrecognized words. Chollampatt et al. (2018) integrate four
convolutional neural translation models combined with a re-scoring mechanism. Kiyono et al. (2019)
construct the GEC model with Transformer and use many data augmentation techniques.

GEC Methods based on BERT. Many studies have introduced the Transformer-based deep bidirec-
tional language model BERT (Devlin et al., 2019) into GEC, hoping that the correction performance
can be improved with the help of its rich language knowledge and deep textual understanding ability.
Awasthi et al. (2019) modify the BERT structure to predict the edit operation of each word in the source
sentence by sequence tagging. Then they apply the edit operations to the source sentence to construct
its correct form. Chen et al. (2020a) use BERT to predict and annotate error spans in the input sentence,
and subsequently rewrite the annotated error spans with a sequence model. Kaneko et al. (2020) first
fine-tune BERT with GEC data, then feed the output representations of the fine-tuned BERT to the GEC
model as additional information for error correction.

GEC Methods based on Contrastive Learning. Contrastive learning (Chen et al., 2020b; Chen et al.,
2020c; Gao et al., 2021; Liu and Liu, 2021) is a discriminative self-supervised learning method used to
enhance the feature representation ability of deep learning models. For any training example, contrastive
learning requires automatic construction of examples that are similar (positive examples) and dissimilar
(negative examples) to an anchor. And during training, the model needs to reduce the distance between
the anchor and the positive examples in the representation space, while to increase the distance between
the anchor and the negative examples.

Cao et al. (2021) try to use contrastive learning to improve the error correction ability of the GEC
model. Since constructing positive examples is difficult for GEC, they propose a margin-based con-
trastive loss, which only requires to construct negative examples and does not requires to construct posi-
tive examples. Their work is the most similar to ours. In view of the limitations of their negative example
construction method, we propose a dynamic negative example construction method to better address the
over correction problem of the GEC model in low error density native writings.

3 Our Method

In this section, we first describe the overall architecture of our method in Section 3.1. Then, we will
detail the proposed negative example construction strategy in Section 3.2, and the proposed dynamic
mechanism in Section 3.3.

3.1 Overall Architecture

As mentioned above, the purpose of this work is to incorporate contrastive learning into the GEC model
to effectively alleviate the problem of over correction by increasing the distance between the anchor
sentence and the negative examples. We illustrate our method in Figure 1, which consists of two compo-
nents: the negative example construction component and the contrastive learning component.

Given a training pair (x,y), where x = (x1, x2, · · · , xm) indicates the source sentence that may
contain grammatical errors, xi is the ith word, m is the source sentence length, and y = (y1, y2, · · · , yn)
indicates the target sentence that is grammatically correct, yj is the jth word, n is the target sentence
length. The goal of the GEC task is to correct sentence x into sentence y.

For the negative example construction component, we use the proposed negative example construction
strategy to construct K negative examples Ỹ = {ỹ1, ỹ2, · · · , ỹK} for the training pair (x,y). Each
negative example ỹk is constructed as follows. First, several words in the target sentence y are randomly
selected by a noising probability p. For each selected word yj , a noised word y′j is generated by the
negative example construction strategy. The generated noised word y′j is used to replace the selected
word yj . After replacing all selected words, the modified target sentence is treated as a constructed
negative example ỹk.

For the contrastive learning component, we first input the source sentence x into the GEC model and
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Figure 1: Overall architecture of our proposed method. Our method consists of two components: the
negative example construction component and the contrastive learning component. For the negative ex-
ample construction component, we use the proposed negative example construction strategy to construct
K negative examples Ỹ = {ỹ1, ỹ2, · · · , ỹK} for the training pair (x,y). For the contrastive learning
component, we first input the source sentence x into the GEC model and obtain the decoder output ŷ.
Then, we treat the decoder output ŷ as an anchor, and maximize the distance between the anchor ŷ and
the negative examples ỹ1, ỹ2, · · · , ỹK constructed by our proposed negative example construction strat-
egy.

obtain the decoder output ŷ. Then, we treat the decoder output ŷ as an anchor, and maximize the distance
between the anchor ŷ and the negative examples ỹ1, ỹ2, · · · , ỹK constructed by our proposed negative
example construction strategy.

3.2 Negative Example Construction Strategy

In this section, we detail the proposed negative example construction strategy. It contains three schemes:
realistic scheme, random scheme and linguistic scheme. In most cases, we use the realistic scheme for
constructing negative examples. When the realistic scheme is not applicable, we use the random scheme
or the linguistic scheme instead. We demonstrate examples using our proposed strategy in Table 1.

The realistic scheme makes use of the realistic grammatical error patterns produced by human beings
for constructing negative examples. Realistic grammatical error patterns are effective for introducing
realistic grammatical errors into error-free text and have been used in previous GEC studies for data
augmentation (Li and He, 2021) and error-aware BERT fine-tuning (He et al., 2021). In this study, we
utilize them for generating sufficient negative examples with more diverse grammatical errors.

Specifically, we first extract all realistic grammatical error patterns {WRONG:CORRECT} from the
training data, where WRONG indicates an erroneous word in a sentence and CORRECT indicates its cor-
rection. Then, we reverse their key-value pairs into the form of {CORRECT:WRONG} for negative ex-
ample construction. When constructing a negative example, for each word yj selected from the target
sentence y, we randomly choose one of the {CORRECT:WRONG} patterns whose key CORRECT is yj ,
and use the value WRONG as the noised word of yj for replacement. The intuition is that we replace a
correct word with a wrong word.

In practice, however, a word yj randomly selected from the target sentence may not be one of the keys
in the available {CORRECT:WRONG} pairs, such as an out-of-vocabulary word. To handle this case, we
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Target sentence y We are exploring negative example construction strategies.
Realistic Scheme We is exploring negative example construction strategy.
Random Scheme We are exploring Title example fill strategies.
Linguistic Scheme

-synonym We are exploring passive example building strategies.
-inflection We are explored negative example constructed strategies.
-function word They are exploring negative example construction strategies.
-case we are exploring Negative example construction strategies.
-misspelling We air exploding negative example construction strategies.

Table 1: Demonstration of our proposed negative example construction strategy, which contains three
schemes. Note that each linguistic transformation in the linguistic scheme is demonstrated separately for
clarity. In practice, one of the linguistic transformations will be randomly selected.

propose two additional schemes as compromise:
1) Random Scheme. Such a particular word is replaced by another word sampled from the vocabulary

of the dataset in a uniform distribution.
2) Linguistic Scheme. Such a particular word is replaced by one of the five linguistic transformations

described below. These linguistic transformations are used by some GEC studies to mimic realistic
grammatical errors (Takahashi et al., 2020; Li and He, 2021; He et al., 2021).
◦ Synonym Transformation. Replacing yj with one of its synonyms. It is helpful for generating word

misuse errors (noun errors, verb errors, adjective errors, etc.) commonly appeared in writings, such as
misusing “situation” as “condition”.

◦ Inflection Transformation. Replacing yj with one of its inflections. It imitates inflection misuse in
the writings, such as misusing noun declension and verb conjugation. E.g., using the present tense of
“is” where the past tense “was” is required.
◦ Function Word Transformation. Replacing yj with another function word that belongs to the same

function word category of yj . It imitates the improper function word uses in writings, such as misusing
“at” as “in” and misusing “to” as “towards”.

◦ Case Transformation. Replacing yj with one of the three case patterns: lowercase, uppercase, and
capitalize. It mimics the case errors made frequently by native English speakers due to their carelessness,
such as lower-casing country names, city names and abbreviations.
◦ Misspelling Transformation. Replacing yj with one of its 10 most similar words. It mimics the

misspelling errors commonly appeared in writings by the native English speakers due to carelessness or
rapid typing with keyboards.

3.3 Dynamic Construction

Many contrastive learning studies (Chen et al., 2020b; Chen et al., 2020c; Gao et al., 2021) have proved
that the variety of negative examples is beneficial for improving the performance of the trained model.
In our method, the proposed negative example construction strategy is based on rules, and the operations
required for constructing negative examples are merely random sampling and replacement. Therefore,
they are lightweight and consume little time, enabling them to be dynamically applied during the training
process.

As shown in Figure 2, we depict the proposed dynamic negative example construction, and compare
it with the static negative example construction. In the figure, (x,y) denotes a training pair, where x
denotes the source sentence and y denotes the target sentence. Ỹ denotes the constructed negative exam-
ples. fstatic denotes the static negative example construction strategy and fdynamic denotes our proposed
dynamic negative example construction strategy.

With static construction (the higher part of the figure), the negative examples Ỹ (blue) for the training
pair (x,y) are constructed before the training process. And during training, the same set of negative
examples constructed (Ỹ ) is used in each iteration. On the contrary, with dynamic construction (the
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lower part of the figure), different sets of negative examples are constructed dynamically for the training
pair (x,y) in each iteration during training. Specifically, in iteration 1, a set of negative examples Ỹ1

(orange) are constructed with the negative example construction strategy fdynamic. Similarly, another set
of negative examples Ỹ2 (yellow) are constructed in iteration 2. In this manner, for the same training pair,
dynamic construction enables the model to see different sets of negative examples in different iterations
during training, and significantly increases the variety of the negative examples.

Figure 2: Demonstration of the proposed dynamic negative example construction and its comparison
with the static negative example construction.

3.4 Model Training
Following Cao et al. (2021), we use the weighted sum of the negative log likelihood loss LNLL and a
margin-based contrastive loss LCL as the training loss L for each training pair (x,y) to optimize model
parameters, as in Equation 1. α is a weighting parameter that controls the relative importance of the
two losses. During training, the negative log likelihood loss LNLL (Equation 2) increases the similarity
between the model output ŷ and the target sentence y. And the contrastive loss LCL (Equation 3)
discourages the model from generating each negative example ỹk that contains grammatical errors. K is
the number of constructed negative examples, and γ is the margin.

L = α · LNLL + (1− α) · LCL (1)

LNLL = −y log ŷ (2)

LCL =
1

K

K∑
k=1

max(−y log ŷ + ỹk log ŷ + γ, 0) (3)

4 Experiments

4.1 Datasets
We use the CWEB dataset (Flachs et al., 2020) for experiments. It contains low error density writings
from native English speakers and includes two domains. The G domain (CWEB-G) contains writings
with a higher number of grammatical errors, and the S domain (CWEB-S) contains more professional
writings with fewer grammatical errors.
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The CWEB dataset only contains development data and test data but no training data. Following
previous studies (Cao et al., 2021; Flachs et al., 2020), we extract the first 1,000 samples of CWEB-
G and the first 1,000 of CWEB-S from the original development data and combine them to form the
training data, which are used for training models and extracting realistic grammatical error patterns. The
remaining of the original development data are taken as new development data for obtaining the best
model during training. The original test data of CWEB are left unchanged, with which we evaluate the
trained GEC models. We use ERRANT (Bryant et al., 2017) to calculate precision, recall and F0.5 for
evaluating the correction performance of the GEC models. Statistics of the dataset are shown in Table 2.

The grammatical errors and their corresponding corrections are annotated by two annotators. When
training the model, we only use the corrections from annotator 1 as target sentences. When evaluating
the trained model on test data, we calculate the scoring performance against each annotator and take the
average for report.

Splits Original Derived
Train - - 2,867 1,862
Dev 3,867 2,862 1,000 1,000
Test 3,981 2,864 3,981 2,864

Table 2: Statistics of the CWEB dataset. Original is the statistics of the original dataset and Derived is
the statistics after splitting the development set into training and development data.

4.2 Experiment Settings

We use Transformer-big (Vaswani et al., 2017) as the model architecture. Following Cao et al. (2021),
we use the pre-trained weights of GEC-PD (Kiyono et al., 2019) to initialize the GEC model. We use
the Adam (Kingma and Ba, 2014) optimizer with the learning rate set to 3e-5. We train the model for 10
epochs and validate it after each epoch on the development set. Model weights of the smallest validation
loss is used as the best model for evaluation on the test set. We construct K = 4 negative examples for
each training pair and set the noising probability p to 0.15. We run 3 times with different seeds for each
experiment and take the average of the 3 runs for report to reduce randomness.

4.3 Compared Models

We compare our method with several strong baselines to prove the effectiveness of the proposed method:
Direct Inference. Making predictions on CWEB test data directly with an off-the-shelf GEC model

developed for correcting writings by learners of English as a second language, without further training
on CWEB training data. In experiments, we use GEC-PD (Kiyono et al., 2019) for this purpose.

NLL. The model is first initialized with the weights of the GEC-PD model. Then, it is trained on the
training data merely with negative log-likelihood (i.e., without contrastive learning) and evaluated on the
test data.
CL2021. The model propsoed by Cao et al. (2021). They first initialize the model with the weights

of GEC-PD. Then, they train the model on the training data with their contrastive learning method, and
evaluate the trained model on the test data.

4.4 Overall Results and Analysis

The overall experimental results are shown in Table 3. Direct Inference are the results by the GEC-
PD (Kiyono et al., 2019) model without further training on the training set. NLL are the results of the
GEC model initialized with the weights of GEC-PD and trained merely using the negative log-likelihood
loss without contrastive learning. CL2021 are the results reported in the paper of Cao et al. (2021). Ours
(Realistic+Rand) are the results of our proposed method with realistic scheme & random scheme, and
Ours (Realistic+Ling) are the results of our proposed method with realistic scheme & linguistic scheme.
Average are the average results of CWEB-G and CWEB-S. The best scores of each column are shown
in bold.
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Model CWEB-G CWEB-S Average
P R F0.5 P R F0.5 P R F0.5

Direct Inference 21.18 23.01 21.45 17.27 15.76 16.92 19.22 19.38 19.18
NLL 40.46 18.93 32.76 36.78 16.66 29.51 38.62 17.79 31.14
CL2021 37.21 23.15 33.03 36.30 20.40 31.34 36.76 21.78 32.19
Ours (Realistic+Rand) 41.37 19.80 33.80 38.06 17.08 30.48 39.71 18.44 32.14
Ours (Realistic+Ling) 42.42 19.06 33.89 39.10 16.80 30.82 40.76 17.93 32.36

Table 3: Overall experiment results. Direct Inference are the results by the GEC-PD (Kiyono et al.,
2019) model without further training on the training set. NLL are the results of the GEC model initialized
with the weights of GEC-PD and trained merely using the negative log-likelihood loss without contrastive
learning. CL2021 are the results reported in the paper of Cao et al. (2021). Ours (Realistic+Rand) are
the results of our proposed method with realistic scheme & random scheme, and Ours (Realistic+Ling)
are the results of our proposed method with realistic scheme & linguistic scheme. Average are the
average results of CWEB-G and CWEB-S. The best scores of each column are shown in bold.

First, it is shown that the results of Direct Inference with GEC-PD are low. It’s average F0.5 is
19.18. And its average precision is only 19.22, which is lower than other results by a large margin. That
supports the finding that the GEC model developed for correcting writings by learners of English as a
second language indeed produces low performance on the writings by native English speakers due to the
low error density (Flachs et al., 2020).

Second, we find that after training GEC-PD on the CWEB training data with our proposed method,
the results are improved. Specifically, the average F0.5 of our proposed Realistic+Ling (32.36) is higher
than NLL (31.14) by 1.22, and higher than CL2021 (32.19) by 0.17.

Third, we can also see that our method significantly boosts the precision of the GEC model. For exam-
ple, the precision of Realistic+Ling in CWEB-G and CWEB-S are 42.42 and 39.10, which are 1.96 and
2.32 higher than NLL, 5.21 and 2.80 higher than CL2021. At the same time, it also produces the high-
est average precision (40.76). The higher precision of our GEC model illustrates that the grammatical
errors detected by the model indeed are erroneous, rather than accurate. In the task of grammatical error
correction, a GEC model with an ability to accurately correct the detected grammatical errors (higher
precision) is more preferred than one with an ability to detect many grammatical errors but fail to cor-
rect them (higher recall). This is also reflected by the evaluation metric F0.5 of GEC, which values the
precision twice as the recall. Therefore, our proposed method is beneficial for enhancing the correction
performance of the GEC model, as it indeed makes the model correct the detected grammatical errors
precisely and suppresses the model from over-correction.

Finally, the results also show that Realistic+Ling produces higher average precision (40.76) and av-
erage F0.5 (32.36) than Realistic+Rand (39.71 and 32.14). It proves that the pseudo grammatical errors
generated by the linguistic transformations are beneficial and effective for the construction of negative
examples, which leads to a better GEC model.

5 Discussion and Analysis

5.1 Case Study

In order to demonstrate that our proposed negative example construction strategy can indeed generate
sufficient negative examples with realistic and diverse grammatical errors, we extracted one training pair
from the CWEB dataset accompanied by their corresponding negative examples constructed by Cao et
al. (2021)’s method and those constructed with our proposed method, as shown in Table 4. In the training
pair, there is a case error (“allow” → “Allow”), which is coloured red. In the negative examples, noises
introduced by the negative example construction methods are coloured blue.

We can see that the first, third and fourth negative examples constructed by Cao et al. (2021)’s method
are the same as the source sentence. The second example contains an insertion error (“pick” → “pick
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Source sentence allow them to pick some coloring sheets that you can print for them.
Target sentence Allow them to pick some coloring sheets that you can print for them.

allow them to pick some coloring sheets that you can print for them.
Negative examples Allow them to pick up some coloring sheets that you can print for them.
by Cao et al. (2021) allow them to pick some coloring sheets that you can print for them.

allow them to pick some coloring sheets that you can print for them.
Allow them to pick some coloring sheets that you can print with them.

Negative examples Allow them to pick some coloring piece that you can prunt for them.
by our method Allow them to pick sum coloring sheets that you can print for them.

allow them to pick some coloring sheets that you can print in them.

Table 4: Case study. We extracted one training pair from the CWEB dataset accompanied by their cor-
responding negative examples constructed by Cao et al. (2021)’s method and those constructed with our
proposed method. Grammatical errors in the training pair are coloured red. Noises in the negative exam-
ples introduced by the negative example construction methods are coloured blue. The negative examples
constructed with out proposed method are more sufficient with more diverse grammatical errors.

Method Static Dynamic
P R F0.5 P R F0.5

Realistic+Rand 39.90 17.74 31.78 39.71 18.44 32.14
Realistic+Ling 38.75 18.73 31.77 40.76 17.93 32.36

Table 5: Scoring performance comparison of the proposed Realistic+Rand and Realistic+Ling methods
with static and dynamic construction respectively.

up”). Obviously, these negative examples do not contain diverse and realistic grammatical errors, which
is not helpful for the model to learn to correct properly from contrastive learning. On the other hand, the
negative examples constructed using our proposed method contain a large number of diverse and realistic
grammatical errors. For instance, the first example contains a preposition error (“for” → “with”). The
second example contains a synonym error (“sheets” → “piece”) and a misspelling error (“print” →
“prunt”). From the negative examples with diverse and realistic errors, the GEC model can better learn
to correct sentences precisely through contrastive learning.

5.2 Effect of Dynamic Construction

As mentioned above, our proposed dynamic negative example construction can increase the variety of the
negative examples during model training. In this section, we investigate the effect of dynamic construc-
tion by comparing the scoring performance of the proposed Realistic+Rand and Realistic+Ling methods
with static and dynamic construction respectively.

The experimental results are shown in Table 5. The left half shows the results of static construction,
while the right half shows the results of dynamic construction. The results of each negative example
construction method are the average of CWEB-G and CWEB-S. The higher results between the static
and dynamic construction of each method are bolded.

As shown in the table, the dynamic results are generally higher than the static results. Specifically,
the F0.5 of static Realistic+Rand is 31.78, while that of the dynamic one is 32.14, with a performance
gap of 0.36. The F0.5 of static Realistic+Ling is 31.77, while the dynamic one is 32.36, with a large
performance gap of 0.59. It proves that by increasing the variety of the negative examples during training,
dynamic construction indeed increases the variety of the negative examples, thereby avoiding overfitting
and enhancing the generalization ability of the GEC model.
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Figure 3: Scoring performance of the GEC model at different values of p, from 0.05 to 0.95 at a 0.1
interval. The dynamic Realistic+Ling strategy is used for constructing negative examples in the experi-
ment. The experiment results are obtained from averaging the results of CWEB-G and CWEB-S. When
p is set to 0.15, the scores reaches the highest (precision=40.76, F0.5=32.36). As p gradually increases,
the precision and F0.5 drop gradually.

5.3 Effect of the Noising Probability
When constructing a negative example with our proposed negative example construction strategy, a nois-
ing probability p should be determined to randomly select words from the target sentence for replace-
ment. In this section, we analyze the impact of different values of p on the correction performance.
Specifically, we construct negative examples with the proposed dynamic Realistic+Ling strategy accord-
ing to different values of p, from 0.05 to 0.95 at a 0.1 interval. The precision and F0.5 at each probability
are shown in Figure 3, which are obtained from averaging the results of CWEB-G and CWEB-S.

The results show that when p is set to 0.15, the scores reaches the highest (precision=40.76,
F0.5=32.36). As p gradually increases, the precision and F0.5 drop gradually. The reason may be that as
p increases, more words are selected from the target sentence for replacement. Therefore, the negative
examples constructed are more different from the target sentence. The greater the difference between the
target sentence and the negative example, the easier it is for the GEC model to compare their differences,
and the smaller the improvement in the error correction ability of the model obtained from contrastive
learning.

6 Conclusion

In this paper, a dynamic negative example construction method for grammatical error correction using
contrastive learning is proposed. The proposed method constructs sufficient negative examples with
diverse grammatical errors dynamically during model training. The constructed negative examples are
beneficial for the GEC model to correct sentences precisely and suppress the model from over-correction.
Experimental results show that our proposed method enhances the correction precision significantly.
In this study, positive example construction strategy is not proposed for grammatical error correction
using contrastive learning, as it is hard to construct sentences that are morphologically different from
but semantically identical to the target sentence. One possible solution for that may be utilizing data
augmentation. In future work, we will investigate this topic in depth.
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