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Abstract

Multilingual pre-trained representations are not well-aligned by nature, which harms their per-
formance on cross-lingual tasks. Previous methods propose to post-align the multilingual pre-
trained representations by multi-view alignment or contrastive learning. However, we argue that
both methods are not suitable for the cross-lingual classification objective, and in this paper we
propose a simple yet effective method to better align the pre-trained representations. On the basis
of cross-lingual data augmentations, we make a minor modification to the canonical contrastive
loss, to remove false-negative examples which should not be contrasted. Augmentations with the
same class are brought close to the anchor sample, and augmentations with different class are
pushed apart. Experiment results on three cross-lingual tasks from XTREME benchmark show
our method could improve the transfer performance by a large margin with no additional resource
needed. We also provide in-detail analysis and comparison between different post-alignment
strategies.

1 Introduction

Cross-lingual transfer learning aims to transfer the learned knowledge from a resource-rich language to
a resource-lean language. The main idea of crosss-lingual transfer is to learn a shared language-invariant
feature space for both languages, so that a model trained on the source language could be applied to the
target language directly. Such generalization ability greatly reduces the required annotation efforts, and
has urgent demand in real-world applications.

Recent multilingual pre-trained models, such as XLM-RoBERTa(XLM-R) (Conneau et al., 2020),
have been demonstrated surprisingly effective in the cross-lingual scenario. By fine-tuning on labeled
data in a source language, such models can generalize to other target languages even without any addi-
tional training. This has become a de-facto paradigm for cross-lingual language understanding tasks.

Despite their success in cross-lingual transfer tasks, multilingual pre-training commonly lacks explicit
cross-lingual supervision, and the representations for different languages are not inherently aligned. To
further improve the transferability of multilingual pre-trained representations, previous works propose
different methods for cross-lingual alignment. Zheng et al. (2021) and Lai et al. (2021) propose to
augment the training set with different views, and align the pre-trained representations of different lan-
guages by dragging two views closer. However, simply bringing different views closer would easily lead
to representation collapse and performance degradation (Tao et al., 2021). Meanwhile, Pan et al. (2021)
and Wei et al. (2021) propose to incorporate additional parallel data, and align the pre-trained representa-
tions by contrasting positive and negative samples. However, monotonously treating all random samples
equally negative is inconsistent with the classification objective.

In this work, we propose a simple yet effective method to better post-align the multilingual repre-
sentations on downstream tasks, which can both avoid representation collapse and meanwhile induce
classification bias. With only training data for the source language available, our method performs cross-
lingual fine-tuning by two steps. 1) Firstly, the original training data is augmented with different views,

∗ Corresponding author.
©2022 China National Conference on Computational Linguistics
Published under Creative Commons Attribution 4.0 International License

CC
L 
20
22

Proceedings of the 21st China National Conference on Computational Linguistics, pages 884-895, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

884



Computational Linguistics

including code-switching, full-translation and partial-translation. All views could provide cross-lingual
supervision for post-alignment. 2) Given one training sentence as the anchor point, the corresponding
augmented view serves as the positive sample, and other augmented views with different labels serve as
the negative samples, contrastive learning is performed by pulling positive samples together and pushing
apart negative samples. This is called Supervised Contrastive Learning (SCL), and can be deemed as a
cross-lingual regularizer to be combined with conventional fine-tuning.

We perform experiments on two cross-lingual classification tasks, namely XNLI (cross-lingual infer-
ence) and PAWS-X (cross-lingual paraphrase identification) (Conneau et al., 2018; Yang et al., 2019a).
We compare different alignment methods, and our proposed method outperforms previous methods by a
large margin, proving its effectiveness. Besides, we also apply our method on the cross-lingual retrieval
task of BUCC0 and tatoeba (Artetxe and Schwenk, 2019). We use the data from PAWS-X as supervision,
and fine-tune the pretrained model by contrasting samples with their machine translation. Our proposed
method again outperforms other methods by a large margin.

Detailed analysis and discussion are provided to compare different post-alignment methods for pre-
trained representations, and to prove the necessity of label-supervision when performing cross-lingual
contrastive learning.

2 Background

2.1 Contrastive Learning

Contrastive learning aims at maximizing the similarity between the encoded query q and its matched
positive samples k+ while keeping randomly sampled keys {k0, k1, k2, ...} far away from it. With simi-
larity measured by a score function s(q, k), InfoNCE (van den Oord et al., 2018) loss is commonly used
to this end:

Lctl =
exp(s(q, k+))

exp(s(q, k+)) +
∑n

i=1 exp(s(q, k
−
i ))

Contrastive learning has led to significant improvements in various domains (He et al., 2020; Gao et
al., 2021). Recently, Khosla et al. (2020) propose to incorporate label-supervision to the fine-tuning of
pre-trained models, and obtain improvement on multiple datasets of the GLUE benchmark, and our work
is inspired by them. However, their method is only targeted at monolingual tasks.

2.2 Cross-lingual Transfer

Cross-lingual transfer learning aims to transfer the learned knowledge from a resource-rich language to
a resource-lean language. Despite recent success in large-scale language models, how to adapt models
trained in high-resource languages (e.g., English) to low-resource ones still remains challenging. Several
benchmarks are proposed to facilitate the progress of cross-lingual transfer learning (Hu et al., 2020;
Liang et al., 2020), where models are fine-tuned on English training set and directly evaluated on other
languages.

Recently, several pre-trained multilingual language models are proposed for cross-lingual transfer,
including multilingual BERT (Devlin et al., 2019), XLM (Lample and Conneau, 2019), and XLM-R
(Conneau et al., 2020). The models work by pre-training multilingual representations using some form of
language modeling, and have made outstanding progress in cross-lingual tasks. However, most existing
models use only single-language input for language model finetuning, without leveraging the intrinsic
cross-lingual alignment. Therefore, several methods have been proposed to post-align the pre-trained
representations, by introducing some form of cross-lingual supervision. Cao et al. (2020) and Dou et al.
(2021) propose to generate word alignment information from parallel data, and push the aligned words
in parallel data to have similar representations. Pan et al. (2021), Wang et al. (2021) and Wei et al.
(2021) propose to utilize contrastive learning for post-alignment by contrasting positive and negative
samples, where positive samples are parallel to each other while negative samples are randomly picked.

0https://comparable.limsi.fr/bucc2017/
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Zheng et al. (2021) and Lai et al. (2021) propose to augment the training set with different views, and
align the representations by dragging two views close to each other. In a nutshell, despite all variations
of supervision in both sentence or word-level, from both parallel data or automatically crafted data,
the alignment must be performed by inter-lingual comparing, either by bringing two representations
closer or contrasting a representation with random sampled representations. However, we argue that
both methods are in contradiction with the cross-lingual classification objective, for which we will give
detailed analysis in Section 3.2.

3 Approach

In this section, we first introduce the three cross-lingual data augmentation methods. Based on that, we
propose three paradigms to post-align the multilingual representations, and provide theoretical analysis
and comparison for them.

3.1 Cross-lingual Data Augmentation

Figure 1: Different cross-lingual data-augmentation methods. Here we use sentence-pair classification
as an example, therefore each sample contains two sentences.

In this work, we do not want to incorporate any parallel data (which is inaccessible in a lot of scenarios,
especially for a resource-lean language that we want to transfer to). Therefore, to provide cross-lingual
supervision for post-alignment, we propose three data augmentation methods:

1. Code-switching: Following Qin et al. (2020), we randomly select words in the original text in the
source language and replace them with target language words in the bilingual dictionaries, to generate
code-switched data. The intuition is to help the model automatically and implicitly align the replaced
word vectors in the source and all target languages by mixing their context information, and the switched
words can serve as anchor point for aligning two representation space.

2. Full-translation: Machine translation has been proved to be an effective data augmentation strategy
under the cross-lingual scenario. It can provide translations almost in-line-with human performance, and
therefore serves as a strong baseline for cross-lingual tasks.

3. Partial-translation: This method simply takes a portion of input and replace it with its translation
in another language. According to Singh et al. (2019), partial-translation could provide inter-language
information, where the non-translated portion serves as the anchor point. This is somehow akin to code-
switching, and can be deemed as code-switching in segment-level.

The three methods can provide cross-lingual supervision in a coarse-to-fine manner (sentence-level,
segment-level, word-level). We perform all the three methods to the whole training set. Each training
sample could be code-switched multiple times with different results, and each task contains translation
into multiple languages, leading to multiple views from a cross-lingual perspective.

3.2 Cross-lingual Alignment: What do we want?
Many experiments (Cao et al., 2020; Kulshreshtha et al., 2020) suggest that to achieve reasonable per-
formance in the cross-lingual setup, the source and the target languages need to share similar represen-
tations. However, current multilingual pre-trained models are commonly pre-trained without explicit
cross-lingual supervision. Therefore, the cross-lingual transfer performance can be further improved by
additional cross-lingual alignment.
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Given the training sample in source language and its cross-lingual augmentations, previous methods
perform cross-lingual alignment in two different trends: Multi-view Alignment (Zheng et al., 2021; Lai
et al., 2021) or Contrastive Learning (Wei et al., 2021; Pan et al., 2021). The multi-view alignment is to
bring the sample and the corresponding augmentation together, while the contrastive learning is to bring
these two together while pushing apart other random sampled augmentations. Suppose we are working
with a batch of training examples of size N , {xi, yi}, i = 1, ...N , xi denotes the training sample, while
yi is the label, the two different objectives can be denoted as follows:

LMVA = −s(Φ(xi),Φ(x̂i))

LCL =− log
s(Φ(xi),Φ(x̂i))

s(Φ(xi),Φ(x̂i)) +
∑N

j=1 Ij ̸=is(Φ(xi),Φ(x̂j))

where Φ(·) ∈ Rd denotes the L2-normalized embedding of the final encoder hidden layer before the soft-
max projection, and x̂i denotes the augmented view (code-switching, full-translation, partial-translation,
etc.), and s(q, k) denotes the similarity measure (cosine similarity, KL divergence, etc.). MVA is short
for multi-view alignment, and CL is short for contrastive learning.

Since in vanilla contrastive learning, the similarity function is normally in the form of exponential,
therefore LCL can be detached into two terms:

LCL = −s(Φ(xi),Φ(x̂i)))︸ ︷︷ ︸
alignment

+ log(es(Φ(xi),Φ(x̂i)) + e
∑N

j=1 Ij ̸=is(Φ(xi),Φ(x̂j)))︸ ︷︷ ︸
uniformity

where the first term optimize the alignment of representation space, and the second term optimize the
uniformity, as discussed in Wang et al. (2020). According to Gao et al. (2021), let W be the sentence
embedding matrix corresponding to xi, i.e., the i-th row of W is Φ(xi), optimizing the uniformity
term essentially minimizes an upper bound of the summation of all elements in WW⊤, and inherently
“flatten” the singular spectrum of the embedding space.

However, the uniformity term in LCL is in contradiction with the classification objective. In clas-
sification task, we want the representations to be clustered in several bunches, each bunch corresponds
to a class. Or else to say, we want the representations to be inductively biased, rather than uniformly
distributed.

On the other hand, it is obvious that the multi-view alignment objective LMVA is to solely maximize
the alignment. This would easily lead to representation collapse, since simply projecting all represen-
tations to one data point could easily reduce the alignment term to zero. Contrast between samples is
necessary to avoid collapse, and simply removing the uniformity term is also not what we want.

3.3 Better Alignment with SCL

To better perform cross-lingual alignment, we propose to introduce label information to the vanilla con-
trastive learning, named as Supervised Contrastive Learning (SCL):

LSCL =− log
s(Φ(xi),Φ(x̂i))

s(Φ(xi),Φ(x̂i)) +
∑N

j=1 Iyj ̸=yis(Φ(xi),Φ(x̂j))

More concretely, our modification is based on InfoNCE loss (van den Oord et al., 2018), therefore the
similarity function is written as:

s(Φ(xi),Φ(x̂i)) = ecos(Φ(xi),Φ(x̂i))/τ

where τ > 0 is an adjustable scalar temperature parameter that controls the separation of classes. Em-
pirical observations show that both L2-normalization of the encoded embedding representations (which
is incorporated in the calculation of cosine similarity) and an adjustable scalar temperature parameter τ
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Figure 2: Our proposed supervised contrastive learning. Solid line connects positive pairs while dashed
line connects negative pairs. Notice the false negative sample is removed.

improve performance. This can serve as a cross-lingual regularization term and be combined with the
canonical classification loss:

LCE = yi · log(1− ŷi) + ŷi · log(1− yi)

Ltotal = LCE + λLSCL

where λ is a scalar weighting hyperparameter that we tune for each downstream task.
The core idea is simple, just to remove the negative samples which belong to the same class with

the anchor point. Therefore, only samples from different classes would be pulled apart. The modified
uniformity term is not to unify the representations any more, but to push the multilingual decision
clusters apart from each other.

This loss can be applied to a variety of encoders, not just limited to multilingual pre-trained
transformer-like models. The loss is meant to capture similarities between examples of the same class
and contrast them with examples from other classes. This is in line with the objective of cross-lingual
alignment. When we are doing cross-lingual alignment, what we really want to do is to transfer the repre-
sentation for a certain class to another language, rather than to learn a unified multilingual representation
space.

4 Experiments

4.1 Data Preparation
In this work, we mainly focus on sentence-level tasks, for which the aggregated representation is eas-
ily accessible. We conduct experiments on two cross-lingual sentence-pair classification tasks: natural
language inference and paraphrase identification. The Cross-lingual Natural Language Inference corpus
(XNLI) (Conneau et al., 2018) asks whether a premise sentence entails, contradicts, or is neutral toward
a hypothesis sentence. The Cross-lingual Paraphrase Adversaries from Word Scrambling (PAWS-X)
(Yang et al., 2019a) dataset requires to determine whether two sentences are paraphrases. Both tasks are
from XTREME benchmark (Hu et al., 2020). Despite their intrinsic different objective, both tasks can
be formalized as sentence-pair classification tasks. For both tasks, the training set is in English, while
human annotated development and test sets are available for a bunch of different languages. The model
is evaluated on the test data of the task in the target languages.

For cross-lingual data augmentation, we first randomly sample a target language and then adapt the
generating method for each data augmentation method. Since XNLI covers more target languages than
PAWS-X, we set tf = 2, tp = 2, tc = 1 in XNLI, and tf = 1, tp = 1, tc = 1 in PAWS-X, where tf , tp
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Method en ar bg de el es fr hi ru sw th tr ur vi zh Avg
cross-lingual transfer (Models are fine-tuned on English training data only.)
InfoXLM 86.4 74.2 79.3 79.3 77.8 79.3 80.3 72.2 77.6 67.5 74.6 75.6 67.3 77.1 77.0 76.5
HITCL 86.3 74.8 80.6 79.5 78.9 81.3 80.5 73.1 79.0 69.9 75.7 75.4 69.7 77.4 77.6 77.3
xTune∗ 84.7 76.7 81.0 79.9 79.4 81.6 80.5 75.6 77.9 68.4 75.4 77.2 72.2 78.1 77.4 77.7
XLMR-base 84.8 72.7 78.8 77.9 76.5 79.8 78.9 72.2 76.5 66.8 73.9 73.7 68.0 76.8 75.4 75.5
MVA 85.0 75.0 79.1 78.2 78.1 79.7 79.1 72.5 76.8 68.9 75.5 74.5 70.0 76.9 77.4 76.5
CL 84.4 75.5 80.0 79.3 78.7 80.4 79.8 74.1 78.3 71.5 76.1 76.0 71.0 78.2 77.8 77.4
SCL 86.3 77.8 81.7 81.3 80.6 82.7 81.8 76.3 80.4 73.8 78.9 78.1 73.1 80.5 80.2 79.6
translate-train (Models are fine-tuned on both English data and its translations.)
InfoXLM 86.5 78.9 82.4 82.3 81.3 83.0 82.6 77.8 80.6 73.3 78.9 79.5 71.6 81.0 80.7 80.0
HITCL 86.5 78.1 82.2 80.8 81.6 83.2 82.3 76.7 81.3 73.8 78.6 80.5 73.9 80.4 80.7 80.0
xTune∗ 86.6 79.7 82.7 82.2 81.9 83.1 82.3 78.9 80.9 75.7 78.4 79.8 75.3 80.5 80.0 80.5
XLMR-base 84.3 76.9 80.3 79.8 79.1 81.5 80.3 75.3 78.1 72.9 77.1 77.4 70.8 79.8 79.7 78.2
MVA 85.4 78.5 81.5 81.8 80.6 82.3 81.0 77.3 79.9 74.1 78.8 78.2 73.5 80.2 80.2 79.6
CL 85.9 77.2 81.6 80.5 80.0 81.7 81.5 76.5 80.3 73.5 77.8 78.2 72.5 79.9 79.9 79.1
SCL 86.4 78.8 82.0 82.0 80.5 82.9 82.3 77.3 80.5 74.5 78.6 79.7 74.2 80.9 80.3 80.1

Table 1: Experiment results on XNLI. Results with ∗ are reimplemented by us with their released codes.
InfoXLM (Chi et al., 2021a) and HITCL (Wei et al., 2021) use contrastive learning while xTune (Zheng
et al., 2021) uses multi-view alignment. Notice xTune uses more augmentation data and model ensemble
compared to us.

and tc respectively represent the number of samples generated by full-translation, partial translation and
code-switching for each training data. Therefore, each training batch contains 6 × batch size sentence
pairs in XNLI and 4 × batch size sentence pairs in PAWS-X. The code-switching ratio rc is set as
0.75 in XNLI and 0.5 in PAWS-X. For cross-lingual retrieval tasks mentioned below, each training pair
from PAWS-X is detached into two sentences when feeding to the model, and we do not incorporate
code-switching as data augmentation.

4.2 Setup

For sentence pair classification tasks of XNLI and PAWS-X, we concatenate the input as the formation
defined by XLM-R:

[s] input1 [\s] input2 [\s]

and we use the final hidden layer corresponding to [s] as aggregated representation. For retrieval tasks
of BUCC and tatoeba, we perform alignment on the same aggregated representation, but the retrieval is
performed on the averaged pooled eighth layer, following the related works (Chi et al., 2021b; Chi et al.,
2021a). Adam optimizer is applied with a learning rate of 5e-6. Batch size is set as 24 for XNLI, 36 for
PAWS-X and 48 for retrieval.

We evaluate a number of strong baselines and the three post-align strategies discussed in the former
section. The baseline is trained with cross-entropy loss with no alignment term serving as cross-lingual
regularizer. Then we create cross-lingual augmentations with different methods, and apply different
alignment strategies. Three groups of augmentations (full-translation, partial translation, code-switching)
are mixed together. The bilingual dictionaries we used for code-switch substitution are from MUSE
(Lample et al., 2018). For languages that cannot be found in MUSE, we ignore these languages since
other bilingual dictionaries might be of poorer quality. The machine translated training set is taken from
the XTREME repository, which is obtained by an in-house translation model from Google.

We mainly compare with models that learn multilingual contextual representations as they have
achieved state-of-the-art results on cross-lingual tasks. All cross-lingual alignment strategies are applied
to pre-trained XLM-R-base. Following the trend of Hu et al. (2020), we mainly consider the following
two scenarios:

Cross-lingual Transfer: the models are fine-tuned on English training data, and directly evaluated on
different target languages.
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Method en de es fr ja ko zh avg
cross-lingual transfer (Models are fine-tuned on English training data only.)
InfoXLM∗ 94.7 89.7 90.1 90.4 78.7 79.0 82.3 86.4
xTune∗ 93.7 90.2 89.9 90.4 82.6 81.9 84.3 87.6
XLMR-base 94.5 88.4 89.4 89.3 76.0 77.2 82.6 85.3
MVA 95.0 89.1 90.9 90.6 79.5 81.1 83.7 87.1
CL 94.6 89.8 91.3 90.9 78.9 80.0 82.8 86.9
SCL 95.3 91.3 91.8 91.7 83.2 84.5 85.7 89.0
translate-train (Models are fine-tuned on both English data and its translations.)
InfoXLM∗ 94.5 90.5 91.6 91.7 84.4 83.9 85.8 88.9
xTune∗ 93.9 90.4 90.9 91.7 85.6 86.8 86.6 89.4
XLMR-base 95.0 89.8 91.8 91.6 81.2 84.3 84.4 88.3
MVA 95.3 90.9 92.0 91.8 83.1 83.6 85.3 88.8
CL 95.4 90.2 92.1 91.4 81.7 84.0 85.3 88.6
SCL 95.5 91.4 92.3 92.3 83.2 85.0 87.2 89.5

Table 2: Experiment results on PAWS-X. Results with ∗ are reimplemented by us with their released
codes.

Translate-train: the models are fine-tuned on the concatenation of English training data and its trans-
lation to all target languages. Translate-train is normally a strong baseline for cross-lingual transfer tasks.
For classification tasks, it is straightforward that the translation should be assigned with the same label.

In both settings, the alignment term is combined with the canonical cross-entropy loss to be back-
propagated together. We use KL Divergence as the similarity measure for multi-view alignment. For
contrastive learning, we only consider in-batch negative samples, leaving more complicated methods
(e.g. to maintain a memory bank for negative samples (He et al., 2020)) to the future.

4.3 Main Results
As shown in Table 1 and Table 2, we can see that our proposed method could improve the cross-lingual
transfer results of pre-trained XLM-R by a large margin. Our method is especially effective in zero-shot
setting, where the accuracy is improved by 4.1 points on XNLI and 3.7 points on PAWS-X. Our method
can also achieve significant improvement in translate-train setting, where the accuracy is improved by
1.9 points on XNLI and 1.2 points on PAWS-X. Results are consistently improved among all languages,
despite their relation with English close or not.

The results of multi-view alignment and vanilla contrastive learning, despite using the same augmen-
tation data, underperform our method on both datasets. This proves the pre-trained representations are
better aligned according to the label information after SCL. Different representations, despite belonging
to different languages, are projected to the same cluster if they belong to the same class.

SCL is a simple yet effective framework to align the pre-trained multilingual representations on down-
stream tasks. Cross-lingual signals can be obtained by machine translation or bilingual dictionary, there-
fore no extra human annotation is needed. While previous works also propose other methods to align the
pre-trained representations, the results in Table 1 and 2 prove the superiority of our method.

5 Analysis and Discussion

5.1 Different Augmentations
In this section, we want to explore the influence of different cross-lingual augmentations. We apply
different groups of augmentations under the zero-shot setting, and compare the results on different tasks.

As shown in Table 3, we can see that the results of full translation and partial translation are better than
code-switching. We think it is because the information provided by code-switching is comparably sparse,
only a few anchor words covered by the bilingual dictionary. On the other side, well-trained machine
translation system can provide fluent and accurate translation, therefore the multilingual representation
can be better aligned. We can also tell that the results of our proposed method outperform the counterparts
again on both datasets, proving its superiority.
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AugData Method XNLI PAWS-X
en avg en avg

None XLMR 84.9 75.5 94.5 85.3

full-trans
MVA 85.2 76.6 94.9 87.1
CL 85.0 77.9 94.9 87.2
SCL 85.6 79.2 95.3 88.7

partial-trans
MVA 83.7 75.7 95.2 86.5
CL 84.5 76.9 94.9 86.6
SCL 85.3 78.4 95.3 88.1

code-switch
MVA 85.3 76.4 94.7 86.1
CL 84.5 76.1 95.2 86.5
SCL 84.8 76.2 95.1 87.2

Table 3: Experiment results on XNLI and PAWS-X based on different cross-lingual data augmentations,
including full-translation, partial translation, and code-switching. For each group of data, we apply all
three post-align methods.

similarity measure lambda XNLI
en avg

KLDiv 1 85.19 76.64
10 85.05 76.71

Symmetric KLDiv 1 84.67 76.17
10 83.85 76.20

Cosine Similarity 1 83.03 75.16
10 84.05 76.38

Mean-Square Error 1 83.95 75.37
10 84.35 76.58

Table 4: Experiment results of different similarity measures and loss weight λ on XNLI. Here we only
use the augmentation of full-translation, and the results is in cross-lingual setting. We do not experiment
on PAWS-X due to resource limitation.

5.2 Similarity Measure

The similarity measure in LMVA has many alternatives. Previous studies on multi-view learning propose
all kinds of measures (Yang et al., 2019b), such as Cosine-Similarity, Mean-Square Error, Kullback-
Leibler Divergence and Symmetric Kullback-Leibler Divergence. Suppose we are dealing with an input
x and its augmentation x̂, different similarity measures can be denoted as:

LKLDiv = Φ(x)log
Φ(x̂)

Φ(x)

LSymKLdiv = Φ(x)log
Φ(x̂)

Φ(x)
+ Φ(x̂)log

Φ(x)

Φ(x̂)

Lcosine =
Φ(x) · Φ(x̂)

||Φ(x)|| ||Φ(x̂)||

LMSE = ||Φ(x)− Φ(x̂)||2

where Φ(·) denotes the L2-normalized aggregated representation. We experiment different similarity
measures on the multi-view alignment objective, in combination with different loss weight λ, and the
results are shown in Table 4. Surprisingly, we do not see a clear difference between different measures,
and in the end we decide to use cosine similarity with λ = 10 in all experiments. On the other hand, λ is
set as 1 for contrastive learning.
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setting temp XNLI PAWS-X
en avg en avg

cross-transfer
1.0 85.6 79.2 95.3 88.7
0.3 85.2 79.1 94.8 88.7
0.1 85.8 79.2 95.3 88.2

translate-train
1.0 86.4 79.8 95.4 89.0
0.3 85.8 79.8 95.4 89.1
0.1 85.9 79.5 95.3 89.2

Table 5: Experiment results of different contrast temperatures on XNLI and PAWS-X. Here we only use
the augmentation of full-translation, and the results are based on supervised contrastive learning.

5.3 Contrast Temperature

Previous empirical observations show that an adjustable scalar temperature parameter τ can improve
the performance of contrastive learning (Wang and Isola, 2020; He et al., 2020). Lower temperature
increases the influence of examples that are harder to separate, effectively creating harder negatives.
However, we do not find such a pattern in our experiments, as shown in Table 5, and finally we decide to
set the temperature τ as 1.0 in all experiments.

5.4 SCL for Cross-lingual Retrieval

To further prove the importance of label information in cross-lingual fine-tuning, we also apply the
alignment methods on cross-lingual sentence retrieval tasks. We experiment on two datasets, BUCC1

and tatoeba (Artetxe and Schwenk, 2019). Both datasets aim at extracting parallel sentences from a
comparable corpus between English and other languages, with BUCC covering 4 languages and tatoeba
covering more than 100 languages. To compare with previous works, we only use a subset of tatoeba (33
languages) in this work.

The pre-trained multilingual models are able to provide language-deterministic representations by
nature. Previous works directly calculate the similarity of different sentences by representations from
the pre-trained model, to determine whether two sentences are parallel or not (Hu et al., 2020; Chi et al.,
2021b; Chi et al., 2021a). In this work, we propose to use the data of paraphrase identification, including
the original training sentence pairs and their translations to six languages, to post-align the pre-trained
representations.

We compare the previously proposed three strategies to post-align the pre-trained representations.
Since we are dealing with retrieval task, the sentence pair from two different languages are encoded
separately by the pre-trained XLM-R. We apply the alignment training methods on the aggregated rep-
resentation. For multi-view alignment, only two translation pairs are pulled closer to each other. For
vanilla contrastive learning, we treat all translation pairs as positive while the others as negative. For
our proposed SCL, both translation pairs and translation with paraphrasing pairs are deemed as positive,
while the others are deemed as negative, as denoted by the following formula:

LSCL = −
N∑
j=1

Iyij=1 log
s(Φ(xi),Φ(x̂j))

s(Φ(xi),Φ(x̂j)) +
∑N

k=1 Iyik ̸=1s(Φ(xi),Φ(x̂k))

where xi is a training sample and x̂i is its translation, and yij = 1 denotes xi and xj are a paraphrase pair.
After the fine-tuning stage, following previous work, we utilize the average pooled hidden representation
of the eighth layer of the pre-trained model as the sentence representation.

As shown in Table 6 and Table 7, paraphrase identification dataset with translated augmentation, de-
spite containing noise generated by the MT model, can provide cross-lingual signal to post-align the mul-
tilingual representations. Vanilla contrastive learning can perform alignment space by pulling translation
pairs together and pushing translation pairs apart, but paraphrase pairs also possess the same semantics,
and should not be contrasted as negative samples. After introducing label information into contrast, the

1https://comparable.limsi.fr/bucc2017
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Method en-de en-fr en-ru en-zh avg
mBERT∗ 62.5 62.6 51.8 50.0 56.7
XLM∗ 56.3 63.9 60.6 46.6 56.8
XLMR-large∗ 67.6 66.5 73.5 56.7 66.0
XLMR-base 82.68 74.85 82.08 64.09 75.93
MVA 43.92 26.24 38.71 7.58 29.11
CL 87.22 79.93 86.88 78.83 83.21
SCL 88.82 81.88 88.01 82.47 85.29

Table 6: Experiment results on BUCC2018 test set. Results with ∗ are released by XTREME(Hu et
al., 2020). We apply different post-align strategies on pre-trained XLM-RoBERTa-base model using the
training set of PAWS-X with translation augmentation.

Method en-xx xx-en
XLMR-base∗ 55.50 53.40
XLM-E(Chi et al., 2021b) 65.00 62.30
InfoXLM(Chi et al., 2021a) 68.62 67.29
XLMR-base 55.60 53.49
MVA 28.00 27.79
CL 78.80 77.87
SCL 80.41 80.84

Table 7: Experiment results on tatoeba. Result with ∗ is released by (Chi et al., 2021b). xx denotes the
33 languages as experimented in (Chi et al., 2021a) and (Chi et al., 2021b), and we release the averaged
accuracy in both directions.

retrieval accuracy is further improved by 2-3 points. On the contrary, multi-view alignment would lead
to representation collapse and cannot converge at all. This is in line with our previous analysis.

6 Conclusion

In this paper, we propose to improve cross-lingual fine-tuning with supervised contrastive learning.
Cross-lingual supervision is created by augmenting the training set, and different methods to post-align
the multilingual pre-trained representation are compared. We propose to incorporate label-information
when performing cross-lingual contrastive fine-tuning, and outperforms previous methods by a large
margin on four cross-lingual transfer benchmark datasets.

Canonical cross-entropy has many intrinsic problems, especial when performing transfer learning
tasks, and contrastive learning can be a decent supplementary. By alleviating the commonality and
differences between different examples, representations are efficiently transferred from one domain or
language to another. In the future, we would explore the application of supervised contrastive learning
on other transfer learning tasks, including token-level classification, language generation, cross-domain
transfer, etc.
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