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Abstract

Semantic parsing aims to convert natural language utterances to logical forms. A critical challenge
for constructing semantic parsers is the lack of labeled data. In this paper, we propose a data
synthesis and iterative refinement framework for neural semantic parsing, which can build semantic
parsers without annotated logical forms. We first generate a naive corpus by sampling logic forms
from knowledge bases and synthesizing their canonical utterances. Then, we further propose
a bootstrapping algorithm to iteratively refine data and model, via a denoising language model
and knowledge-constrained decoding. Experimental results show that our approach achieves
competitive performance on GEO, ATIS and OVERNIGHT datasets in both unsupervised and
semi-supervised data settings.

1 Introduction

Semantic parsing is the task of translating natural language (NL) utterances to their formal meaning
representations (MRs), such as lambda calculus (Zettlemoyer and Collins, 2005; Wong and Mooney, 2007),
FunQL (Kate et al., 2005; Lu et al., 2008), and SQL queries (Guo et al., 2019; Bogin et al., 2019; Chang
et al., 2020). Currently, most neural semantic parsers (Dong and Lapata, 2016; Dong and Lapata, 2018)
model semantic parsing as a sequence translation task via a encoder-decoder framework. For instance,
given an utterance “What is the length of river traverses state0”, a SEQ2SEQ parsing model obtains its
FunQL representation by sequentially generating its tokens answer(length(river(traverse 2(
state0)))).

One of the key challenges in building a semantic parser is the scarcity of annotated data. Since
annotating utterances with MRs is time consuming and requires specialized expert knowledge. Witnessed
the data bottleneck problem, there are many learning algorithms have been proposed, such as denotation-
based weak supervised learning (Pasupat and Liang, 2016; Misra et al., 2018), dual learning (Cao et al.,
2019) , transfer learning (Su and Yan, 2017; Herzig and Berant, 2018). There are also many studies focus
on the quick construction of training data, such as OVERNIGHT (Wang et al., 2015). However, these works
still require some degree of human efforts.

In this paper, we propose a data synthesis and iterative refinement framework, which can build semantic
parsers without labeled data. Inspired by the idea that, a simple and noise corpus can be synthesized by a
grammar-lexicon method, like the one used in OVERNIGHT, and can be refined by leveraging external
knowledges, like language models and knowledge base constraints. So, we first obtain a naive corpus
based on synchronous context-free grammars and a seed lexicon. Then we improve the corpus with the
knowledge of language models and knowledge base constraints by iteratively refining data and model to
obtain mature corpus. Finally, we use the refined corpus to train the semantic parser. Figure 1 shows the
overview of our method.

Specifically, to get the naive corpus, we sample logical forms from knowledge bases, and then syn-
thesize their corresponding canonical utterances using a grammar-based synthesizing algorithm. For
example, like in Overnight, we can synthesize an unnatural utterance “what is length river traverse state0”
from answer(length(river(traverse 2( state0)))). Although the synthesized utterance
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Figure 1: The overview of our approach.

“what is length river traverse state0” is different from the real-world utterance “what is the length of river
traverse state0”, the naive corpus can provide a start for unsupervised learning, and can be used to pretrain
a base semantic parser.

Then, to improve the synthesized naive corpus, we iteratively refine the model and the data via a
bootstrapping process, using the knowledge of language models and knowledge base constraints. Due
to the limitation of grammars and seed lexicon, the synthesized training instances in naive corpus are
often noisy, differing from real-world utterances, and with limited diversity, which hinder the model from
generalizing to natural data. To address these issues, we propose to iteratively refine the model and the
synthesized data via a denoising language model and knowledge-constrained decoding. Firstly, we view
synthesized canonical utterances as an artificial version of utterances which are often not as fluent as
natural utterances, then leverage a denoising language model to rewrite the canonical utterances to be
closer to natural utterances. Secondly, to address the noise problem, a knowledge-constrained decoding
algorithm is employed to exploit constraints from knowledge bases, therefore meaning representations
can be more accurately predicted even when semantic parser is not strong enough. Finally, the data
synthesization and semantic parsing are iteratively refined to bootstrap both the corpus and the semantic
parser: the refined corpus is used to train a better semantic parser, and the better semantic parser in turn is
used to refine training instances.

The main contributions of this paper are:

• We propose a data synthesis and iterative refinement framework to build neural semantic parsers
without labeled logical forms, in which we generate naive corpus from scratch and improve them
with the knowledge of language models and knowledge base constraints via an iterative data-model
refinement.

• Experimental results on GEO, ATIS and OVERNIGHT datasets show that our approach achieves
competitive performance without using annotated data.

2 Background

2.1 Base Semantic Parsing Model

We employ the SEQ2SEQ semantic parser as our base model (Dong and Lapata, 2016), which has shown
its simplicity and effectiveness. Notice that our method is not specialized to SEQ2SEQ model and it can
be used for any neural semantic parsers.

Encoder. Given a sentence x = w1, w2, ..., wn, the SEQ2SEQ model encodes x using a bidirectional
RNN. Each word wi is mapped to a fixed-dimensional vector by a word embedding function φ(·) and then
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Figure 2: The illustration of our approach. MRs denotes meaning representations, NLs denotes natural
language sentences. The naive corpus is synthesized by seed lexicon. In each bootstrapping iteration, the
corpus is refined via denoising language model and knowledge-constrained decoding. The data and the
models are improved iteratively.

fed into a bidirectional LSTM (Hochreiter and Schmidhuber, 1997). The hidden states in two directions
are concatenated hi = [

−→
h i;
←−
h i], and the encoding of the whole sentence is: h1,h2, ...,hn.

Attention-based Decoder. Given the sentence representation, the SEQ2SEQ model sequentially gener-
ates the tokens of its logical form. Specifically, the decoder is first initialized with the hidden states of
encoder s0 = [

−→
h n;
←−
h 1]. Then at each step t, let φ(yt−1) be the vector of the previous predicted logical

form token, the current hidden state st is obtained from φ(yt−1) and st−1. Then we calculate the attention
weights for the current step t, with the i-th hidden state in the encoder:

αi
t =

exp (st · hi)∑n
i=1 exp (st · hi)

(1)

and the next token is generalized from the vocabulary distribution:

ct =

n∑
i=1

αi
thi

P (yt|y<t,x) = softmax(Wo[st; ct] + bo)

(2)

where Wo ∈ R|Vy |×3n, bo ∈ R|Vy | and |Vy| is the output vocabulary size.

Learning. Given a training corpus consisting of <utterance, logical form> pairs, the SEQ2SEQ model
is trained by optimizing the objective function:

J = −
∑

(x,y)∈D

m∑
t=1

log p(yt|y<t,x) (3)

where D is the corpus, x is the utterance, y is its logical form label.

2.2 SCFG for Data synthesization
Wang, Berant, and Liang (2015) use a synchronous context-free grammar(SCFG) to generate logical
forms paired with canonical utterances, and use crowdsourcing to paraphrase these canonical utterances
into natural utterances. The SCFG consists of a set of production rules (lexicon): N → 〈α, β〉, where N
is a non-terminal, and α and β are sequence of terminal and non-terminal symbols. Any non-terminal
symbol in α is aligned to the same non-terminal symbol in β, and vice versa. Therefore, SCFGs define a
set of joint derivations of aligned pairs of strings. The seed lexicon in OVERNIGHT is specified by the
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builder containing types, entities, and properties in databases. Type checking is also performed to rule out
some uninterpretable canonical utterances.

3 Approach

This section describes our data synthesis and iterative refinement method for semantic parsing. Firstly,
we generate a naive training corpus by sampling meaning representations from knowledge bases and
synthesizing their utterances using a grammar-based algorithm. Then, to reduce the noise and eliminate
the gap with real corpus, we propose to iteratively refine the data and the model by rewriting synthesized
utterances via a denoising language model and generating meaning representations via knowledge-
constraint decoding. Figure 2 shows the overview of our approach and we describe all components in
detail as follows.

3.1 Data Synthesis

In OVERNIGHT (Wang et al., 2015) and PARASEMPRE (Berant and Liang, 2014), they use simple
grammars to generate logical forms paired with canonical utterances. To generate corpus from scratch, we
also synthesize data via a grammar-based algorithm.

Specifically, we first sample MRs from knowledge bases via a graph sampling algorithm, then we
synthesize their utterances by mapping predicates to words from a seed lexicon and composing these
words using context free grammars. Different from the corpus generation method in OVERNIGHT, our
method starts from not only grammar but also the knowledge base schema, and can be easier to extended
to other datasets like GEO and ATIS.

Generating MRs via Graph Sampling
The graph sampling algorithm aims to sample meaning representations from knowledge bases. Given
a knowledge base, Graph Sampling regards MRs as subgraphs of the knowledge base. To ensure the
truthfulness and integrality of generated meaning representations, we sample subgraph-based MRs
according to both the structure of MRs and the schemas of knowledge bases.

Specifically, to generate MRs, we start from the nonterminal token root and then recursively expand
all nonterminal tokens in current MRs. For general/functional nonterminal tokens such as root, argmax
and count, because they are domain-independent, we expand them using hand-crafted general production
rules. For nonterminal tokens about entities and relations such as river, state and city for GEO,
because they are domain dependent, we expand them by production rules sampled from knowledge base
schemas.

To utilize the schema to produce MRs, we extend the original schema by adding the attribute value as

Lake

City

River

LakeMountain

Country

loc_in
capital
traverse
loc_in

loc_inloc_in
loc_in

loc_in

loc_in

border

area_value

population_value

length_value

State

Figure 3: The extended schema of GEO (partial). To sample the subgraph from the dotted edges , the root
nonterminal token root is recursively extended by the production rules:
root→ answer(length value)

length value→ length(river set)

river set→ river(river attri)

river attri→ traverse 2(state set)

state set→ state0

, generating the MR: answer(length(river(traverse 2 (state0))))
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value type nodes and the aggregation operations as self-loop edges. We provide the extended schema and
sampling examples in the Fig 3.

Based on the schema graph, the meaning representations can be effectively sampled by utilizing context-
free grammar (i.e., the production rules) for grammatical correctness and knowledge base schemas for
semantic correctness.

Synthesizing Utterances via SCFG-based Algorithm
Based on canonical compositionality assumption in Wang, Berant, and Liang (2015), we also use SCFG to
generate utterances. We extend the context-free grammar in Graph Sampling to synchronous context-free
grammar. For example in Fig 2, based on the SCFG rules, we can synthesize the utterance “what is length
river traverse state0” from the sampled MR:

root→ 〈answer(FORM),what is FORM〉
FORM → 〈length(FORM), length FORM〉
FORM → 〈river(FORM), river FORM〉
FORM → 〈traverse 2(FORM), traverse FORM〉
FORM → 〈state0, state0〉

Seed Lexicon Construction To synthesize utterances from sampled semantic representations, a lexicon
is further needed for SCFG, which maps logical tokens to their natural language words. For OVERNIGHT,
we simply use its original seed lexicon. For other datasets, we use the following simple way to build an
initial lexicon:

For domain-general logical tokens we manually write their natural language templates. The number of
domain-general rules is usually very small. Some examples of our domain-general rules are in Table 1.

Category Domain-general Rules NL Templates
Query answer ( FORM ) what is FORM

Count count ( FORM ) the number of FORM

Exclusion exclude ( FORM1, FORM2 ) FORM1 do not FORM2

Superlative(max) largest one ( VALUE (FORM) ) FORM with largest VALUE

Filter(type) λtλs: ( $t $s ) $t $s
Filter(property) λpλvλs: ( $p $v $s ) $s whose $p is $v
Comparative(<) λpλvλs: ( < ( $p $v ) $s ) $s whose $p is smaller than $v
Superlative(max) λpλs: argmax $s ( $p $s ) $s with largest $p

Table 1: Examples of our domain-general rules on GEO (above) and ATIS (below). We write seed lexicon
of domain-general grammar manually, the number of which is usually very small (only 5 needed in GEO

and 12 in ATIS and 23 in OVERNIGHT).

For domain-dependent entity tokens and relation tokens, we simply use the words in their logical tokens,
with a simple preprocessing which removes numbers and underlines. For example, the area 1 denotes
the words “area” and departure time denotes the words “departure time”.

Using the above SCFG with seed lexicon, an initial training corpus can be synthesized. Although, this
seed lexicon is obviously with limited coverage and lack of diversity. This naive corpus can still provide a
helpful start for semantic parsing. Next, we describe how to iterative refine the parsing mode and data.

3.2 Iterative Data-Model Refining

Due to the limitation of grammar and lexicon, the synthesized training instances in naive corpus are
often noisy, differing from real-world sentences, and with limited diversity. To address these issues,
we refine the corpus with the knowledge of language models and knowledge base constraints through
a bootstrapping process: 1) we rewrite synthesized utterances via a denoising language model, so the
utterances will be more fluent and closer to natural utterances; 2) we propose to exploit knowledge during
decoding, so that meaning representations can be more accurately predicted even when the model is not
strong enough; 3) we iteratively refine the data and the model via a bootstrapping process. After several
iterations of refinement, we obtain the mature corpus and the final semantic parser.
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Utterance Rewriting via Denoising Language Model
The synthesized utterances are often not fluent, differing from real-world sentences. For example, the
synthesized utterance in Fig 2: “what is length river traverse state” is very different to its natural
expression “what is the length of river traverses state0”. And this discrepancy misleads models to learn
incorrect patterns.

Thanks to the current powerful language models, we can use a denoising language model to rewrite
synthesized utterances to more natural sentences. Specifically, we regard the synthesized utterances as a
noisy version of natural expressions, and then denoise them via neural language model-based language
denoising techniques (Lample et al., 2018).

Specifically, we train a language model based on GPT2.0 (Radford et al., 2019), which is then used to
denoise by minimizing:

Llm = Ex∼X[− logP (x|C(x))] (4)

where C is a noise model with some words dropped and swapped as in Lample et al. (2018).

Generating High-quality Lexicon via Knowledge-Constrained Decoding
To obtain high-quality lexicon, which can be used to synthesize better 〈MR, canonical utterance〉 pairs,
we use the current parser to generate parallel data. Without manually annotated corpus, the initial semantic
parser is often not strong enough, therefore it is difficult to find high-quality meaning representations. So
we also apply knowledge-constrained decoding.

Like previous work (Xiao et al., 2016; Krishnamurthy et al., 2017; Yin and Neubig, 2017), we decode
the meaning representations under the grammar we mentioned in Graph Sampling. Only the grammatical
logical forms are generated during the decoding. Additionally, we leverage knowledge base schemas to
effectively filter out illegal logical forms. Given a semantic parser, we first obtain the top K meaning
representations for each sentence. Then if there exists an executing program or search engine for logical
forms, we will only keep the executable logical forms. Otherwise, we verify whether the logical form is
well-typed under the knowledge base schema constraints, and only preserve the eligible logical forms.

After obtaining the higher quality parallel data, following Wong and Mooney (2006), we apply the
GIZA++ on the parallel data to get the alignments between words and grammar rules and induce a new
SCFG lexicon.

Iterative Learning
It is obviously that the model promotion and the data refining can reinforce each other: better parsers can
generate data of higher quality, and higher quality data can be used to train stronger models. Based on this
intuition, we propose to iteratively refine model and data by leveraging the duality between them.

Specifically, in each data-model refining iteration, we: 1) first synthesize the utterances X′ of the
sampled MRs Y′ using the current lexicon and the denoising model; 2) train a new semantic parser using
the synthesized data; 3) parse the unlabeled utterances via knowledge-constrained decoding; 4) induce a
new lexicon using both the highly confident automatically labeled data and the synthesized data.

We gradually increase the proportion of parsing data at each iteration. In the k-th iteration, we select
the top δ × (k + 1) confident parsing pairs for lexicon learning. The confidence scores are calculated as
the normalized likelihood:

Score(x, y) =
1

Ny
logP (y|x) (5)

4 Experiments

4.1 Experimental Settings

Datasets We conduct experiments on three standard datasets: GEO, and ATIS, OVERNIGHT, which use
different meaning representations and contain different domains.
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Bas. Blo. Cal. Hou. Pub. Rec. Res. Soc. Avg.
Supervised

SEQ2SEQ 84.3 57.9 78.1 69.9 76.2 80.7 78.0 80.5 75.7
RECOMBINATION (Jia and Liang, 2016) 85.2 58.1 78.0 71.4 76.4 79.6 76.2 81.4 75.8
CROSSDOMAIN (Su and Yan, 2017) 86.2 60.2 79.8 71.4 78.9 84.7 81.6 82.9 78.2
SEQ2ACTION (Chen et al., 2018) 88.2 61.4 81.5 74.1 80.7 82.9 80.7 82.1 79.0
DUAL (Cao et al., 2019) 87.5 63.7 79.8 73.0 81.4 81.5 81.6 83.0 78.9

Unsupervised (with nonparallel data)
Two-stage (Cao et al., 2020) 64.7 53.4 58.3 59.3 60.3 68.1 73.2 48.4 60.7
WmdSamples (Cao et al., 2020) 31.9 29.0 36.1 47.9 34.2 41.0 53.8 35.8 38.7
Mature Corpus + Samples 58.5 55.3 62.4 65.1 66.7 62.2 72.3 47.1 61.2

Unsupervised
Cross-domain Zero Shot∗ (Herzig and Berant, 2018) - 28.3 53.6 52.4 55.3 60.2 61.7 - -
GENOVERNIGHT (Wang et al., 2015) 15.6 27.7 17.3 45.9 46.7 26.3 61.3 9.7 31.3

Naive Corpus
EMBED BERT 15.9 24.6 18.6 44.1 46.9 27.0 62.2 9.7 31.1

Glove 16.2 23.6 16.2 30.3 36.9 27.0 43.2 9.2 25.3
Rand 13.8 21.1 15.6 28.2 21.9 27.0 31.1 8.2 20.9

Mature Corpus

EMBED BERT 45.9 52.5 52.7 58.5 61.9 52.1 69.8 33.6 53.4
Glove 44.1 51.5 48.5 56.4 58.8 50.2 68.9 32.0 51.3
Rand 35.1 43.2 36.5 44.7 46.9 46.5 65.0 25.6 42.9

w/o Denoising 32.8 45.0 40.1 46.8 52.5 45.6 63.1 26.6 44.1
w/o Constraint 29.0 39.7 35.3 37.8 41.9 42.8 64.7 23.4 39.3

Table 2: Accuracies on OVERNIGHT. The previous methods with superscript ∗ means they use different
unsupervised settings.

GEO This is a semantic parsing benchmark about U.S. geography (Zelle and Mooney, 1996). The
variable-free semantic representation FunQL (Kate et al., 2005) is used in this dataset. We follow the
standard 600/280 train/test instance splits.

ATIS This is a large dataset, which contains 5,410 queries to a flight booking system. Each question
is annotated with a lambda calculus query. Following Zettlemoyer and Collins (2007), we use the standard
4,473/448 train/test instance splits in our experiments.

OVERNIGHT OVERNIGHT contains natural language paraphrases paired with lambda DCS logical
forms across eight domains. We evaluate on the standard train/test splits as Jia and Liang (2015).

In all our experiments, we only use the unlabeled sentences in each dataset. The standard accuracy is
used to evaluate different systems, which is obtained as the same as Jia and Liang (2016).

Synthesized Training Corpus We generate training instances proportional to the original dataset sizes
(1500 for GEO, 5000 for ATIS, and 1500 for each domain in OVERNIGHT). For OVERNIGHT, we use its
original defined grammar and lexicon.

Denoising Language Model We train an individual denoising language model for each dataset (each
domain for OVERNIGHT). For each utterance in unlabeled queries, we sample 5 noisy sentences to
construct the training pairs by dropping words randomly or slightly shuffling the utterance as Lample
et al. (2018). The pretrained language model GPT2.0 is adapted on paraphrase generation dataset, then
fine-tuned on denoising sentences with 15 epochs and the learning rate of 1e-5.

System Settings We train all our models with 5 data-model refining iterations. In each iteration,
the neural semantic parser is trained 15 epochs, with the initial learning rate of 0.001. We use Adam
algorithm (Kingma and Ba, 2015) to update parameters, with batch size is 20. Our model uses 200-
dimensional hidden units and 200-dimensional word vectors for sentence encoding. We initialize all
parameters by uniformly sampling within [-0.1, 0.1]. BERTLARGE (Devlin et al., 2019) is uesd to get word
representations. The beam size K during decoding is 5. The hyper-parameter δ is 0.1. Following Dong
and Lapata (2016), we handle entities with a Replacing mechanism, which replaces identified entities
with their types and IDs.
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GEO ATIS
Supervised

SEQ2SEQ 88.2 84.2
Dong and Lapata (2016) 87.1 84.6
Jia and Liang (2016) 89.3 83.3
Susanto and Lu (2017) 90.0 -
Xu et al. (2018) 88.1 85.9
Chen, Sun, and Han (2018) 88.9 85.5
Jie and Lu (2018) 89.3 -
Guo et al. (2020) 87.1 83.1

Unsupervised
Confidence-driven∗ 66.4 -
Two-stage∗ 63.7 -
Naive Corpus 29.3 25.0
Mature Corpus

EMBED BERT 58.2 52.9
GloVe 55.0 52.5
Rand 44.6 43.3

w/o Denoising 45.0 39.5
w/o Constraint 38.9 37.1

Table 3: Accuracies on GEO and ATIS. The previous methods with superscript ∗ means they use different
unsupervised settings. Confidence-driven and Two-stage both use the nonparallel data.

4.2 Experimental Results
Overall Results
We compare our model with different settings:

1) Naive Corpus – the semantic parser is trained from the naive corpus, which is generated by meaning
representation sampling and utterance synthesizing;

2) Mature Corpus – the corpus is improved by iterative data-model refining;
3) Supervised – the model is trained using the original training corpus with the same settings.
For Overnight, we further compare with the Cross-domain Zero Shot (Herzig and Berant, 2018) which

is trained on other source domains and then generalized to new domains and GENOVERNIGHT (Wang et
al., 2015) in which all the canonical utterances are also generated without manual annotation. With the
nonparallel data: Two-stage (Cao et al., 2020) employs the cycle learning framework. WmdSamples (Cao
et al., 2020) labels each input sentences with the most possible outputs in the unparallel corpus and
deals with these faked samples in a supervised way. Our Mature Corpus + Samples method follows
WmdSamples, using the parser built on the refined data to label each input.

The results are shown in Table 2 and Table 3. We can see that:
1) Our learning framework is promising for resolving the training data bottleneck problem of

semantic parsing. In all datasets, our method outperforms other baselines in the same unsupervised
settings. On OVERNIGHT, our method also surpasses the previous approaches in unsupervised data
settings. These results verify that data synthesis and iterative data-model refinement is a promising method
for semantic parsing without annotated logical forms.

2) The iterative data-model refining is effective to bootstrap semantic parsers. Compared with
Naive Corpus, after corpus refinement our Mature Corpus gains 27.9 accuracy improvement in ATIS.
This verifies the effectiveness of the data-model refining. We believe it results from: i) denoising language
model can improve the quality of generated utterances and knowledge-constrained decoding can filter out
invalid meaning representations; ii) the bootstrapping can leverage the duality between data and model for
iterative refining.

Detailed Analysis
Effects of Utterance Denoising and Constrained Decoding. Table 2 and 3 show the accuracies by re-
moving denoising language model (–Denoising) and by removing knowledge constraints during decoding
(–Constraint). We can see that: 1) Both utterance denoising and constrained decoding are effective. In
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Figure 4: Test accuracies on GEO with different size of synthesized data. The number of sampled meaning
representations has increased from 0.1 times the amount of original data to 10 times. The dash line shows
the accuracy of Golden MRs

GEO ATIS
Iterative Updating

Iter.1 41.4 37.7
Iter.2 49.3 44.6
Iter.3 57.1 48.0
Iter.4 58.9 52.5
Iter.5 58.2 52.9

Table 4: Evaluation Accuracies on GEO and ATIS with the increase of iterations.

average on all three datasets, removing denoising results in 12.0 accuracy drop and removing constrained
decoding results in 16.4 accuracy drop. 2) Constrained decoding is more helpful than denoising. We
believe this is because the grammar and the knowledge-base can effectively improve the quality of
automatically generated parallel data, from which a new lexicon is built and is further used to synthesize
new parallel data.

Effects of Word Embeddings. To analyze the effects of word embeddings settings, we compare our
method with different settings of word embeddings: BERT – word representations are from the pretrained
BERTLARGE (Devlin et al., 2019); GloVe – word embeddings are initialized by GloVe (Pennington et al.,
2014); Rand – the word embeddings are initialized by uniformly sampling within the interval [-0.2, 0.2],
and the unseen words are all presented as UNK token. We can see that the pretrained word embeddings can
effectively improve the model. We believe this is because it empowers the model with better representation
and helps the model generalize to similar words.

Effect of Data Synthesis. To analyze the effectiveness of synthesized data, we: 1) compare our models
with Golden MRs – in which all utterances are synthesized from the manually labeled meaning represen-
tations in original corpus; 2) increase the amount of sampled meaning representations from ×0.1 to ×10
size of the original labeled data. The results on GEO are shown on Figure 4.

We can see that: 1) the graph sampling algorithm can effectively sample meaning representations –
compared with Golden-MRs, our method can achieve nearly the same performance with ×1 dataset. 2)
The data synthesis is useful, when the size of data increases from ×0.1 to ×1, the performance gradually
increases. We also noticed that when the data size exceeds the original data, the performance of the model
does not improve much. We believe that this is because too much data generated with a certain amount of
noise can no longer provide useful supervision information.

Effect of Iterative Bootstrapping. Table 4 shows the accuracies by increasing the number of iterations.
We can see that: 1) the iterative data-model refining is effective: when we conduct more refining iterations,
the performance gradually increases and stabilizes at a reasonable level – from 41.4 accuracy in Iter 1 to
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Figure 5: Test accuracies on ATIS with different amounts of labeled data.

58.9 in Iter 4 in GEO; 2) The bootstrapping process can reach its equilibrium within few iterations: for
GEO in 5 iterations and for ATIS in 4 iterations.

Semi-supervised learning. To investigate the effectiveness of our method given some additional labeled
instances, we vary the amount of labeled data from 0 to all labeled data. Our model can use the labeled
data to train semantic parser and induce lexicon in each iteration. Seq2Seq can only use the labeled data.
Dual learning (Cao et al., 2019) forms a closed loop to learn unlabeled data in reinforcement learning. In
Figure 5, We can see that our model enhances semantic parsing over most settings. Especially, our model
has obvious advantages when there is a small amount of labeled data.

5 Related Work

Neural semantic parsers In recent years, neural semantic parsers have achieved significant progress.
Neural parsers model semantic parsing as a sentence to logical form translation task (Xiao et al., 2016; Jia
and Liang, 2016; Iyyer et al., 2017; Jie and Lu, 2018), And many constrained decoding algorithms are
also proposed (Krishnamurthy et al., 2017; Liang et al., 2017; Iyyer et al., 2017; Chen et al., 2018);

Data scarcity in semantic parsing Witnessed the labeled data bottleneck problem, many techniques
have been proposed to reduce the demand for labeled logical forms. Many weakly supervised learning are
proposed (Artzi and Zettlemoyer, 2013; Berant et al., 2013; Reddy et al., 2014; Agrawal et al., 2019), such
as denotation-base learning (Pasupat and Liang, 2016; Goldman et al., 2018), iterative searching (Dasigi
et al., 2019). Semi-supervised semantic parsing is also proposed, such as variational auto-encoding (Yin
et al., 2018), dual learning (Cao et al., 2019), dual information maximization (Ye et al., 2019), and
back-translation (Sun et al., 2019). Constrained language models are also proposed to resolve few-shot
semantic parsing (Wu et al., 2021; Shin et al., 2021).

Unsupervised semantic parsers There are also some unsupervised semantic parsers, such as
USP (Poon and Domingos, 2009) proposes the first unsupervised semantic parse, and GUSP (Poon,
2013) builds semantic parser by annotating the dependency-tree nodes and edges. Wang et al. (2011)
select high confidence pairs for unsupervised learning. Two-stage (Cao et al., 2020) train unsupervised
paraphrasing model with non-parallel data for semantic parsing.

6 Conclusions

We propose a data synthesis and iterative data-model refining algorithm for neural semantic parsing,
which can build semantic parsers without labeled data. In our method, the naive corpus is generated
from scratch by grammar-based method and knowledge base schemas, and the corpus is improved on
bootstrapping to refine model and data with the knowledge of language models and knowledge bases
constraints. Experimental results show our approach can achieve promising performance in unsupervised
settings.
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