
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE), pages 7 - 15
December 7-8, 2022 ©2022 Association for Computational Linguistics

EventGraph: Event Extraction as Semantic Graph Parsing

Huiling You,1 David Samuel,1 Samia Touileb,2 and Lilja Øvrelid1

1University of Oslo
2University of Bergen

{huiliny, davisamu, liljao}@ifi.uio.no
samia.touileb@uib.no

Abstract

Event extraction involves the detection and ex-
traction of both the event triggers and corre-
sponding event arguments. Existing systems
often decompose event extraction into multi-
ple subtasks, without considering their possible
interactions. In this paper, we propose Event-
Graph, a joint framework for event extraction,
which encodes events as graphs. We repre-
sent event triggers and arguments as nodes in a
semantic graph. Event extraction therefore be-
comes a graph parsing problem, which provides
the following advantages: 1) performing event
detection and argument extraction jointly; 2)
detecting and extracting multiple events from a
piece of text; and 3) capturing the complicated
interaction between event arguments and trig-
gers. Experimental results on ACE2005 show
that our model is competitive to state-of-the-art
systems and has substantially improved the re-
sults on argument extraction. Additionally, we
create two new datasets from ACE2005 where
we keep the entire text spans for event argu-
ments, instead of just the head word(s). Our
code and models are released as open-source.1

1 Introduction

Event extraction aims at extracting event-related
information from unstructured texts into structured
form (i.e. triggers and arguments), according to a
predefined event ontology (Ahn, 2006; Doddington
et al., 2004). In these types of ontologies, events
are characterized by event triggers, and comprise a
set of predefined argument types. Figure 1 shows
an example of a sentence containing two events,
an Attack event triggered by “friendly-fire” and
a Die event triggered by “died”; the two events
share the same arguments, but each plays a different
role in the specific event. For instance, “U.S.” is
the Agent in the Die event, but plays the role of
Attacker in the Attack event.

1https://github.com/huiling-y/
EventGraph

Victim Agent
Place

A Kurdish journalist died in a U.S.

Attacker

friendly-fire accident in the north

Die

Place
Target

Attack

Figure 1: Example of an Attack and a Die events
in the sentence “A Kurdish journalist died in a U.S.
friendly-fire accident in the north.”

As opposed to dividing event extraction into in-
dependent subtasks, we take advantage of recent
advances in semantic dependency parsing (Dozat
and Manning, 2018; Samuel and Straka, 2020) and
develop an end-to-end event graph parser, dubbed
EventGraph. We adopt intuitive graph encoding to
represent the event mentions of a piece of text in
a single event graph, and directly generate these
event graphs from raw texts. We evaluate our Event-
Graph system on ACE2005 (LDC2006T06).2 Our
model achieves competitive results with state-of-
the-art models, and substantially improves the re-
sults on event argument extraction. The main con-
tributions of this work are:

1. We propose EventGraph, a text-to-event
framework that solves event extraction as se-
mantic graph parsing. The model does not rely
on any language-specific features or event-
specific ontology, so it can easily be applied
to new languages and new datasets.

2. We design an intuitive graph encoding ap-
proach to represent event structures in a single
event graph.

3. The versatility of our approach allows for an
effortless decoding of full trigger and argu-
ment mentions. We create two novel and more
challenging datasets from ACE2005, and pro-
vide corresponding benchmark results.

2https://catalog.ldc.upenn.edu/
LDC2006T06

7

https://github.com/huiling-y/EventGraph
https://github.com/huiling-y/EventGraph
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06


2 Related work

Our work is closely related to two research direc-
tions, event extraction and semantic parsing.

Supervised event extraction is an established re-
search area in NLP. There are different methods to
obtain the structured information of an event, and
the mainstream methods can be divided into: 1)
classification-based methods: treat event extraction
as several classification subtasks, and either solve
them separately in a pipeline-based manner (Ji and
Grishman, 2008; Li et al., 2013; Liu et al., 2020;
Du and Cardie, 2020; Li et al., 2020) or jointly
infer multiple subtasks (Yang and Mitchell, 2016;
Nguyen et al., 2016; Liu et al., 2018; Wadden et al.,
2019; Lin et al., 2020); 2) generation-based ap-
proaches: formulate event extraction as a sequence
generation problem (Paolini et al., 2021; Lu et al.,
2021; Li et al., 2021; Hsu et al., 2022); 3) prompt
tuning methods: inspired by natural language un-
derstanding tasks, these approaches take advantage
of “discrete prompts” (Shin et al., 2020; Gao et al.,
2021; Li and Liang, 2021; Liu et al., 2022).

Meaning Representation Parsing has seen signif-
icant interest in recent years (Oepen et al., 2014,
2015, 2020). Unlike syntactic dependency repre-
sentations, these semantic representations are cru-
cially not trees, but rather general graphs, charac-
terised by potentially having multiple entry points
(roots) and not necessarily being connected, since
not every token is a node in the graph. There has
further been considerable progress in developing
variants of both transition-based and graph-based
dependency parsers capable of producing such se-
mantic graphs (Hershcovich et al., 2017; Dozat and
Manning, 2018; Samuel and Straka, 2020).

A recent and highly relevant development in the
current context has been the application of semantic
parsers to NLP tasks beyond meaning representa-
tion parsing. These approaches rely on the reformu-
lation of task-specific representations to semantic
dependency graphs. For example, Yu et al. (2020)
exploit the parser of Dozat and Manning (2018)
to predict spans of named entities, while Kurtz
et al. (2020) phrase the task of negation resolution
(Morante and Daelemans, 2012) as a graph parsing
task with promising results. Recently, Barnes et al.
(2021) proposed a dependency parsing approach
to extract opinion tuples from text, dubbed Struc-
tured Sentiment Analysis, and a recent shared task
dedicated to this task demonstrated the usefulness
of graph parsing approaches to sentiment analysis

Attack Transport

<root>

Instrument Attacker

pummeled

Origin Artifact

retreat

coalitioncoalition 
fighter jets

the hills above
Chamchamal

Place

Iraqi troops

Artificial root:

Triggers:

Arguments:

Figure 2: Event graph for the sentence “That’s because
coalition fighter jets pummeled this Iraqi position on
the hills above Chamchamal and Iraqi troops made a
hasty retreat.”

(Barnes et al., 2022). Most similar to our work is
the work by Samuel et al. (2022) which adapts the
PERIN parser (Samuel and Straka, 2020) to parse
directly from raw text into sentiment graphs.

3 Event graph representations

We adopt an efficient “labeled-edge” representa-
tion for event graph encoding within the scope of a
sentence. Each node in an event graph corresponds
to either an event trigger or an argument, which is
anchored to a unique text span in a sentence, ex-
cept for the top node, which is only a dummy node
for every event graph. The edges are constrained
only between the top node and an event trigger, or
between an event trigger and an argument, with the
corresponding edge label as an event type or argu-
ment role. The “labeled-edge” encoding has the
ability to represent: 1) multiple event mentions; 2)
nested structures (overlapping between arguments
or trigger-argument); 3) multiple argument roles
of a single argument. Taking the event graph from
Figure 2 as example, the sentence contains two
event mentions, which share the same argument

“the hills above Chamchamal” but as different roles,
and the argument “coalition” is nested inside the
argument “coalition fighter jets”.

4 Event parsing

EventGraph is an adaptation of PERIN (Samuel
and Straka, 2020), a general permutation-invariant
framework for text-to-graph parsing. Given the
“labeled-edge” encoding for event graphs, we cre-
ate EventGraph by customizing the modules of
PERIN as illustrated in Figure 3, which contains
three classifiers to generate nodes, anchors, and
edges, respectively. Each input sequence is pro-
cessed by four modules of EventGraph to generate
a final structured representation.

8



They moved away

finetuned XLM-R

q1,1 q1,2 q2,1 q2,2 q3,1 q3,2

Transformer layers

linear

node classifier<root> <node> <node>

anchor biaffine attention

edge biaffine attention

1

2

3

4c

4b

4a

<root> They moved
away

Transport

<root> They

Artifact

moved
away

Figure 3: EventGraph architecture. 1) the input gets a
contextualized representation, 2) queries are generated
for every input token, 3) queries are further processed
with a decoder to predict 4a) node presence, 4b) node
anchors, and 4c) edge labels.

Encoder We use the large version of XLM-R
(Conneau et al., 2020) as the encoder to obtain con-
textualized representations of the input sequence;
each token gets a contextual embedding via a
learned subword attention layer over the subwords.

Query generator We use a linear transformation
layer to map each embebbed token onto n queries.

Decoder The decoder is a stack of Transformer
encoder layers (Vaswani et al., 2017) without po-
sitional encoding, which is permutation-invariant
(non-autoregressive); the decoder processes and
augments the queries of each token by modelling
the inter-dependencies between queries.

Parser head It consists of three classifiers: a)
the node classifier is a linear classifier that pre-
dicts node presence by classifying the augmented
queries of each token; since more than one query
is generated for each token, a single token can pro-
duce more than one node; b) the anchor biaffine
classifier (Dozat and Manning, 2017) uses deep
biaffine attention between the augmented queries
and contextual embeddings of each token to map
the predicted nodes to surface tokens; c) the edge
biaffine classifier uses two deep biaffine attention
modules to process generated nodes and predict
edge presence between a pair of nodes and the
edge label.

Given a piece of text, EventGraph generates its
corresponding graph, and it is effortless to extract

the structured information of event mentions from
the nodes and edges.3

5 Experimental setup

5.1 Datasets
We evaluate our system on the widely used bench-
mark dataset ACE20054 (LDC2006T06). The
ACE2005 dataset contains 599 English documents
annotated for several tasks, entities, values, rela-
tions, and events, with an event ontology of 33
event types, and 35 argument roles. Event argu-
ments come from both entities and values. The an-
notation of an entity also includes its head word(s);
for instance, from Table 1, entity “the Iraqi gov-
ernment’s key center of power” has “center” as its
head word. Following previous works (Wadden
et al., 2019; Lin et al., 2020; Wang et al., 2019), we
preprocess the dataset (details in Appendix B) and
obtain the following configurations:

1. ACE05-E: Wadden et al. (2019) keep 22 event
argument roles (excluding “time” and “value”
event arguments), ignore events with multi-
token trigger(s), and use only the head word(s)
of event arguments.

2. ACE05-E+: similar to Wadden et al. (2019),
Lin et al. (2020) only use 22 event argument
roles and keep only the head word(s) of event
arguments, but keep events with multi-token
trigger(s).

3. ACE05-E++: we create a new dataset that
keeps the full text spans for event triggers and
event arguments, but also keep 22 argument
roles for comparing with previous work.

4. ACE05-E+++: we create another dataset that
keeps all the 35 argument roles in ACE2005,
with full text spans for event triggers and ar-
guments.

Table 1 shows how an event mention is extracted
in ACE05-E+ and ACE05-E++, and the same
event is not present in ACE05-E. Although keeping
the full text spans for arguments makes the task
of argument extraction more difficult, we believe
that the extracted events are more informative and
self-contained.

3The tool for conversion between event mentions and event
graphs is included in our codes.

4https://catalog.ldc.upenn.edu/
LDC2006T06

9

https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06


ACE05-E+ ACE05-E++

Trigger “push ahead” “push ahead”
Destination “center” “the Iraqi government’s key center of power”
Artifact “forces” “American forces”

Table 1: A Transport event in “Well, as American
forces do push ahead toward the Iraqi government’s key
center of power, British forces are keeping up their work
to the south of the Iraqi capital”, and corresponding
extracted events in ACE05-E+ and ACE05-E++.

Dataset Split # Sentences # Events # Roles

ACE05-E
Train 17 172 4 202 4 859
Dev 923 450 605
Test 832 403 576

ACE05-E+
Train 19 216 4 419 6 607
Dev 901 468 759
Test 676 424 689

ACE05-E++
Train 15 603 4 416 6 513
Dev 893 509 802
Test 729 424 685

ACE05-E+++
Train 15 603 4 416 7 844
Dev 893 509 945
Test 729 424 894

Table 2: Statistics of the preprocessed ACE2005
datasets.

Dataset Triggers Arguments
Avg. Len Avg. Len Single-token Multi-token

ACE05-E 1.00 1.18 86.2% 13.8%
ACE05-E+ 1.06 1.17 88.0% 12.0%
ACE05-E++ 1.05 2.86 43.5% 56.5%
ACE05-E+++ 1.05 2.82 43.2% 56.8%

Table 3: Statistics of event triggers and arguments. We
report the average lengths of triggers and arguments;
for arguments, we also report the percentages of single-
token and multi-token arguments.

5.2 Evaluation metric
We report Precision P, Recall R, and F1 scores for
each of the following evaluation criteria (Wadden
et al., 2019; Lin et al., 2020):

• Trigger classification (Trg-C): an event trig-
ger is correctly predicted if its offsets and
event type matches the gold trigger.

• Argument classification (Arg-C): an event
argument is correctly predicted if its offsets,
argument role, and event type match the gold
argument.

For argument classification, in order to have a
better insight into our models’ performance on
multi-token arguments, we include another met-

ric based on token-level span overlap for argument
identification, instead of perfect match.

• Token-level span overlap: an event argument
is correctly identified if its offsets have 80%5

overlap (token-level) with the gold argument,
and correctly predicted if its argument role
and event type match the gold argument.

5.3 System comparisons

We compare EventGraph to the following event
extraction systems: 1) DYGIE++ (Wadden et al.,
2019): a span-based framework capturing both
local and global contexts; 2) ONEIE (Lin et al.,
2020): an end-to-end framework for general infor-
mation extraction; 3) TEXT2EVENT (Lu et al.,
2021): a generation-based model for sequence-to-
event generation; 4) GTEE-DYNPREF (Liu et al.,
2022): a template-based method for text-to-event
generation.

5.4 Implementation details

Our code is built upon the official implementation
of the PERIN parser (Samuel and Straka, 2020).6

Details about our training setup and hyperparam-
eter settings are given in Appendix A. For each
dataset, we train 5 models with 5 different random
seeds, and report the means and standard deviations
of the corresponding results.

6 Results and discussion

In Table 4, we compare our results on ACE05-E
and ACE05-E+ with the previous systems. On
both datasets, EventGraph achieves SOTA results
on Arg-C over all metrics, with an improvement of
7 percentage points on ACE-E and more than 10
percentage points on ACE05-E+ in F1 scores. For
Trg-C, despite not beating the SOTA systems, our
results are still very competitive.

On the two new datasets that we created, Event-
Graph has achieved overall competitive results
(Table 4). On ACE-E++, despite having longer
and more complicated arguments, EventGraph has
generated comparable results to those of GTEE-
DYNPREF (current SOTA) on ACE-E+. On ACE-
E+++, even though the argument role set is ex-
panded from 22 to 35 argument roles, the results of
EventGraph on Arg-C remain stable.

5This metric only affects arguments longer than 5 tokens.
Arguments containing fewer than 5 tokens are still evaluated
with perfect match.

6https://github.com/ufal/perin

10

https://github.com/ufal/perin


Model Triggers (Trg-C) Arguments (Arg-C)
P R F1 P R F1

Dataset: ACE05-E

DYGIE++ 69.7 48.8
ONEIE 74.7 56.8
GTEE-DYNPREF 63.7 84.4 72.6 49.0 64.8 55.8
EventGraph 66.5±0.7 71.0±0.9 68.6±0.7 63.4±2.7 67.3±2.0 65.3±2.2

Dataset: ACE05-E+

ONEIE 72.1 73.6 72.8 55.4 54.3 54.8
TEXT2EVENT 71.2 72.5 71.8 54.0 54.8 54.4
GTEE-DYNPREF 67.3 83.0 74.3 49.8 60.7 54.7
EventGraph 70.0±1.1 70.0±1.2 70.0±1.1 64.5±1.0 66.4±2.6 65.4±1.7

Dataset: ACE05-E++

EventGraph 72.9±1.3 75.2±1.9 74.0±1.5 57.3±0.8 59.9±1.2 58.6±0.9

Dataset: ACE05-E+++

EventGraph 72.4±0.7 75.9±1.0 74.0±0.7 56.9±0.6 58.2±0.9 57.5±0.6

Table 4: Results on ACE05-E, ACE05-E+, ACE05-
E++, and ACE05-E+++. We report the average perfor-
mance of 5 runs with different random seeds, together
with the standard deviations. For clarity, we bold the
highest scores.

Results show that EventGraph performs well on
joint modelling of event triggers and arguments,
and benefits from longer text spans for event trig-
gers and arguments. When the full text spans of ar-
guments are used, the model receives more training
signals, so it has more information in differentiat-
ing sentences containing events from those without,
as shown in Table 6, and thus identifying event trig-
gers, which is also shown by the increasing Trg-C
scores from ACE-E and ACE-E+ to ACE-E++ and
ACE-E+++. For instance, as the example in Ta-
ble 1 shows, “the Iraqi government’s key center
of power” is less ambiguous than mere “center”.
As shown in Table 3, the average argument length
of ACE-E++ and ACE-E+++ is much longer, but
the average trigger length is very similar across the
four datasets; it is also evident that single-token
arguments make up a large proportion of all ar-
guments, even for ACE-E++ and ACE-E+++, so
there is a long tail in argument length distribution.
For longer arguments, it is more difficult to obtain
a perfect match with a gold argument, so we ob-
serve decreasing Arg-C scores when EventGraph
is evaluated on ACE-E++ and ACE-E+++.

To further look into our model’s performance
on identifying multi-token event arguments, espe-
cially those containing more than 5 tokens, we
further report Arg-C scores based on token-level
span overlap. As shown in Table 5, when we relax
argument identification from perfect match to 80%
token-level span overlap, the scores of Arg-C in-
crease consistently, especially those of ACE-E++

and ACE-E+++, now comparable to the results on
ACE-E and ACE-E+.

Dataset Perfect Match 80% Span Overlap
P R F1 P R F1

ACE05-E 63.4±2.7 67.3±2.0 65.3±2.2 63.9±2.4 68.5±1.7 66.2±1.9

ACE05-E+ 64.5±1.0 66.4±2.6 65.4±1.7 65.1±0.9 67.8±2.5 66.4±1.5

ACE05-E++ 57.3±0.8 59.9±1.2 58.6±0.9 63.9±1.1 66.2±2.1 65.0±1.6

ACE05-E+++ 56.9±0.6 58.2±0.9 57.5±0.6 64.0±0.7 64.4±1.3 64.2±0.9

Table 5: Results of EventGraph on Arg-C, evaluated
with perfect match and token-level span overlap.

ACE05-E ACE05-E+ ACE05-E++ ACE05-E+++

88.8±0.4 87.9±0.5 96.2±0.2 96.5±0.6

Table 6: Results of EventGraph correctly identifying
the presence of event(s) in a sentence.

7 Conclusion

In this paper, we have proposed a new method for
event extraction as semantic graph parsing. Our
proposed EventGraph has achieved competitive re-
sults on ACE2005 for the task of event trigger clas-
sification, and obtained new state-of-the-art results
for the task of argument role classification. We
also provide a graph representation for better visu-
alizing event mentions, and offer an efficient tool
to facilitate graph conversion. We create two new
datasets from ACE2005, with the full text spans
for both triggers and arguments, and offer the cor-
responding benchmark results. We show that de-
spite adding more and longer text sequences, Event-
Graph outperforms previous models tested on more
restricted datasets. For future work, we would like
to experiment with different pretrained language
models, and carry out more detailed error analysis.
Our codes and models are released as open-source.

Acknowledgements

This work was supported by industry partners and
the Research Council of Norway with funding to
MediaFutures: Research Centre for Responsible
Media Technology and Innovation, through the cen-
ters for Research-based Innovation scheme, project
number 309339.

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events, pages 1–8, Sydney,
Australia. Association for Computational Linguistics.

Jeremy Barnes, Robin Kurtz, Stephan Oepen, Lilja
Øvrelid, and Erik Velldal. 2021. Structured sentiment
analysis as dependency graph parsing. In Proceed-
ings of the 59th Annual Meeting of the Association for

11

https://www.aclweb.org/anthology/W06-0901
https://doi.org/10.18653/v1/2021.acl-long.263
https://doi.org/10.18653/v1/2021.acl-long.263


Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3387–3402, Online.
Association for Computational Linguistics.

Jeremy Barnes, Laura Ana Maria Oberländer, En-
rica Troiano, Andrey Kutuzov, Jan Buchmann, Ro-
drigo Agerri, Lilja Øvrelid, and Erik Velldal. 2022.
Semeval-2022 task 10: Structured sentiment analysis.
In Proceedings of the 16th International Workshop
on Semantic Evaluation (SemEval-2022), Seattle. As-
sociation for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassel, and Ralph
Weischedel. 2004. The automatic content extrac-
tion (ACE) program – tasks, data, and evaluation. In
Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal. European Language Resources As-
sociation (ELRA).

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In International Conference on Learning Repre-
sentations.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency pars-
ing. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 484–490, Melbourne,
Australia. Association for Computational Linguistics.

Xinya Du and Claire Cardie. 2020. Event extraction by
answering (almost) natural questions. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 671–683,
Online. Association for Computational Linguistics.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1127–1138,
Vancouver, Canada. Association for Computational
Linguistics.

I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,
Scott Miller, Prem Natarajan, Kai-Wei Chang, and
Nanyun Peng. 2022. Degree: A data-efficient gen-
erative event extraction model. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Heng Ji and Ralph Grishman. 2008. Refining event
extraction through cross-document inference. In Pro-
ceedings of ACL-08: HLT, pages 254–262, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Robin Kurtz, Stephan Oepen, and Marco Kuhlmann.
2020. End-to-end negation resolution as graph pars-
ing. In Proceedings of the 16th International Con-
ference on Parsing Technologies and the IWPT 2020
Shared Task on Parsing into Enhanced Universal De-
pendencies, pages 14–24, Online. Association for
Computational Linguistics.

Fayuan Li, Weihua Peng, Yuguang Chen, Quan Wang,
Lu Pan, Yajuan Lyu, and Yong Zhu. 2020. Event
extraction as multi-turn question answering. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 829–838, Online. Association
for Computational Linguistics.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.
Association for Computational Linguistics.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level
event argument extraction by conditional generation.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 894–908, Online. Association for Computa-
tional Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1641–1651, Online. Association
for Computational Linguistics.

12

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/P17-1104
https://doi.org/10.18653/v1/P17-1104
https://www.aclweb.org/anthology/P08-1030
https://www.aclweb.org/anthology/P08-1030
https://doi.org/10.18653/v1/2020.iwpt-1.3
https://doi.org/10.18653/v1/2020.iwpt-1.3
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://www.aclweb.org/anthology/P13-1008
https://www.aclweb.org/anthology/P13-1008
https://www.aclweb.org/anthology/P13-1008
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2020.emnlp-main.128


Xiao Liu, Heyan Huang, Ge Shi, and Bo Wang. 2022.
Dynamic prefix-tuning for generative template-based
event extraction. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5216–5228,
Dublin, Ireland. Association for Computational Lin-
guistics.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018.
Jointly multiple events extraction via attention-based
graph information aggregation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1247–1256, Brussels,
Belgium. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2Event: Controllable sequence-to-
structure generation for end-to-end event extraction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2795–2806, Online. Association for Computational
Linguistics.

Roser Morante and Walter Daelemans. 2012.
ConanDoyle-neg: Annotation of negation cues and
their scope in Conan Doyle stories. In Proceedings
of the Eighth International Conference on Language
Resources and Evaluation (LREC’12), pages
1563–1568, Istanbul, Turkey. European Language
Resources Association (ELRA).

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016. Joint event extraction via recurrent neural
networks. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 300–309, San Diego, California.
Association for Computational Linguistics.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajic, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The second shared task on cross-
framework and cross-lingual meaning representa-
tion parsing. In Proceedings of the CoNLL 2020
Shared Task: Cross-Framework Meaning Represen-
tation Parsing, pages 1–22, Online. Association for
Computational Linguistics.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. SemEval 2015
Task 18: Broad-Coverage Semantic Dependency
Parsing. Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
915–926.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 Task
8: Broad-Coverage Semantic Dependency Parsing.
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie
Ma, Alessandro Achille, RISHITA ANUBHAI, Ci-
cero Nogueira dos Santos, Bing Xiang, and Stefano
Soatto. 2021. Structured prediction as translation be-
tween augmented natural languages. In International
Conference on Learning Representations.

David Samuel, Jeremy Barnes, Robin Kurtz, Stephan
Oepen, Lilja Øvrelid, and Erik Velldal. 2022. Direct
parsing to sentiment graphs. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
470–478, Dublin, Ireland. Association for Computa-
tional Linguistics.

David Samuel and Milan Straka. 2020. ÚFAL at
MRP 2020: Permutation-invariant semantic pars-
ing in PERIN. In Proceedings of the CoNLL 2020
Shared Task: Cross-Framework Meaning Represen-
tation Parsing, pages 53–64, Online. Association for
Computational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Xiaozhi Wang, Ziqi Wang, Xu Han, Zhiyuan Liu, Juanzi
Li, Peng Li, Maosong Sun, Jie Zhou, and Xiang Ren.
2019. HMEAE: Hierarchical modular event argu-
ment extraction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 5777–5783, Hong Kong, China. Association
for Computational Linguistics.

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-
tion of events and entities within a document context.

13

https://doi.org/10.18653/v1/2022.acl-long.358
https://doi.org/10.18653/v1/2022.acl-long.358
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/D18-1156
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/2020.conll-shared.1
https://doi.org/10.18653/v1/2020.conll-shared.1
https://doi.org/10.18653/v1/2020.conll-shared.1
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.3115/v1/S14-2008
https://doi.org/10.3115/v1/S14-2008
https://openreview.net/forum?id=US-TP-xnXI
https://openreview.net/forum?id=US-TP-xnXI
https://doi.org/10.18653/v1/2022.acl-short.51
https://doi.org/10.18653/v1/2022.acl-short.51
https://doi.org/10.18653/v1/2020.conll-shared.5
https://doi.org/10.18653/v1/2020.conll-shared.5
https://doi.org/10.18653/v1/2020.conll-shared.5
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1584
https://doi.org/10.18653/v1/D19-1584
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/N16-1033


In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 289–299, San Diego, California. Association
for Computational Linguistics.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named Entity Recognition as Dependency Parsing.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 6470–
6476, Online. Association for Computational Lin-
guistics.

14



A Training details

We reuse the training settings from the original
PERIN system (Samuel and Straka, 2020) when-
ever possible. The model weights are optimized
with AdamW (Loshchilov and Hutter, 2019) fol-
lowing a warmed-up cosine learning rate sched-
ule. We use a pre-trained multi-lingual XLM-R
language model implemented by the HuggingFace
transformers library.7 The hyperparameter
configuration is shown in Table 7, please con-
sult it with our released code for context: https:
//github.com/huiling-y/EventGraph.

The training was done on a single Nvidia
RTX3090 GPU, the runtimes and model sizes (in-
cluding the fine-tuned language model backbone)
for each dataset are given in Table 8.

Hyperparameter EventGraph

batch_size 16
beta_2 0.98
decoder_learning_rate 1.0e-4
decoder_weight_decay 1.2e-6
dropout_transformer 0.25
dropout_transformer_attention 0.1
encoder "xlm-roberta-large"
encoder_learning_rate 4.0e-6
encoder_weight_decay 0.1
epochs 180
hidden_size_anchor 256
hidden_size_edge_label 256
hidden_size_edge_presence 256
n_transformer_layers 3
query_length 2
warmup_steps 1 000

Table 7: Hyperparameter setting for our system, all four
datasets use the same configuration.

Dataset Runtime Model size

ACE05-E 20:39 h 341.3 M
ACE05-E+ 21:59 h 341.3 M
ACE05-E++ 20:06 h 341.3 M
ACE05-E+++ 20:03 h 342.0 M

Table 8: The training times and model sizes (number of
trainable weights) of all our experiments.

7https://huggingface.co/docs/
transformers/index

B Data preprocessing

Data splits All datasets use the same splits8 for
train/dev/test. Out of the 599 documents, 529 doc-
uments are used for training, 30 documents for
development, and 40 documents for testing.

ACE-E We use the preprocessing code9 of Wad-
den et al. (2019) to obtain the dataset, and they use
an older version (v2.0.18) of Spacy10 for prepro-
cessing.

ACE05-E+ We use the preprocessing code11

(v0.4.8) of Lin et al. (2020) to obtain the dataset,
and they use NLTK12 for preprocessing.

ACE05-E++ and ACE05-E+++ We use the pre-
processing code13 of Wang et al. (2019) to obtain
the two datasets, and they use Stanford CoreNLP14

for preprocessing.

8https://github.com/dwadden/dygiepp/
tree/master/scripts/data/ace-event/
event-split

9https://github.com/dwadden/dygiepp
10https://spacy.io/
11http://blender.cs.illinois.edu/

software/oneie/
12https://www.nltk.org/
13https://github.com/thunlp/HMEAE
14https://stanfordnlp.github.io/

CoreNLP/

15

https://github.com/huiling-y/EventGraph
https://github.com/huiling-y/EventGraph
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://github.com/dwadden/dygiepp/tree/master/scripts/data/ace-event/event-split
https://github.com/dwadden/dygiepp/tree/master/scripts/data/ace-event/event-split
https://github.com/dwadden/dygiepp/tree/master/scripts/data/ace-event/event-split
https://github.com/dwadden/dygiepp
https://spacy.io/
http://blender.cs.illinois.edu/software/oneie/
http://blender.cs.illinois.edu/software/oneie/
https://www.nltk.org/
https://github.com/thunlp/HMEAE
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/

