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Abstract

Artistic painting has achieved significant
progress during recent years. Using a varia-
tional autoencoder to connect the original im-
ages with compressed latent spaces and a cross
attention enhanced U-Net as the backbone
of diffusion, latent diffusion models (LDMs)
have achieved stable and high fertility image
generation. In this paper, we focus on en-
hancing the creative painting ability of cur-
rent LDMs in two directions, textual condition
extension and model retraining with Wikiart
dataset. Through textual condition extension,
users’ input prompts are expanded with rich
contextual knowledge for deeper understand-
ing and explaining the prompts. Wikiart dataset
contains 80K famous artworks drawn during
recent 400 years by more than 1,000 famous
artists in rich styles and genres. Through the
retraining, we are able to ask these artists to
draw artistic and creative paintings on modern
topics. Direct comparisons with the original
model show that the creativity and artistry are
enriched.

1 Introduction

Artistic painting has achieved significant progress
during recent years thanks to the appearing of hun-
dreds of GAN variants (Jabbar et al., 2020; Wang
et al., 2021). However, adversarial training has
been reported to be notoriously unstable and can
lead to mode collapse. To escape from adversar-
ial training and inspired by non-equilibrium ther-
modynamics, diffusion probabilistic models (Sohl-
Dickstein et al., 2015), such as noise-conditional
score network (NCSN) (Song and Ermon, 2019),
denoising diffusion probabilistic models (DDPM)
(Ho et al., 2020), stable diffusion models in latent
spaces (Rombach et al., 2021) have achieved GAN-
level sample quality without adversarial training.
These diffusion models are appealing with rather
flexible model architectures, exact log-likelihood
computation, and inverse problem solving without

re-training models.
There are two Markov chain style processes in

a typical diffusion model. The first process is a
forward diffusion process which appends multiple-
scale random noise to a given data sample “step by
step” or “in jump” until the disturbed sample slip
into a predefined isotropic Gaussian distribution.
This process does not include trainable parameters.
The second process is a reverse diffusion process
which generates a target distribution data sample
from pure noise guided by some (user-input) pre-
given conditions. A parameterized deep learning
model is required in this reverse process.

Intuitively speaking, the forward diffusion pro-
cess can be recognized as “directional blasting
of a building” x0 to “ruins with dusts” xT . The
learning algorithm is a reverse engineering which
learns how to (re-)construct a building (expressed
by pθ(xt−1|xt) with a parameter set θ and t ∈
{1, ..., T}) from each step of inverse directional
blasting (expressed by q(xt−1|xt, x0)) of each
given building sample x0. In one step of this re-
verse engineering, xt−1 represents “one complete
wall” in a building and xt represents “concrete and
sands” that can be used to construct the complete
wall xt−1 in a reconstruction process or can be ob-
tained from the complete wall xt−1 in a forward
“blasting” process. The reconstruction process is
learned from the blasting process with targets such
as noise prediction in DDPM (Ho et al., 2020) or
score prediction using score matching strategy in
NCSN (Song and Ermon, 2019).

We follow a recent impressive work of high-
resolution image synthesis with LDMs by given
textual or visual conditions1 (Rombach et al., 2021).
There are several proposals in this LDM. The first
proposal is applying the encoder part of a pre-
trained variational autoencoder to project images
into low-dimension latent spaces and then perform

1https://github.com/CompVis/
stable-diffusion

https://github.com/CompVis/stable-diffusion
https://github.com/CompVis/stable-diffusion
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diffusion/construction processes. Training diffu-
sion models on such a low-dimension representa-
tion space allows us to reach a near-optimal point
between computation complexity reduction and de-
tail preservation to boost virtual fidelity of con-
structed images. The second is a cross-attention-
enhanced (Vaswani et al., 2017) U-Net framework
(Ronneberger et al., 2015) in the diffusion model
where general conditioning inputs such as text or
bounding boxes are taken as memory (i.e., keys and
values in the cross-attention layers) for the query
(latent representations of images to be generated)
to retrieve information on. Finally, the decoder
module in the variational autoencoder is applied to
recover the target image into high-resolution.

We aim at improving the creativity of image
synthesis, or painting, using conditional LDMs. It
is relatively difficult to precisely define the concept
of creativity since it is subjective and influenced
by culture, history, and region. The color, style,
objects included in painting reflect rich emotions
of numerous topics. For example, when we are
given a textual condition, “a painting of a virus
monster playing guitar”, we can recognize noun
entities such as “virus monster” and “guitar” and
a verbal action “playing”. What are the emotions
involved in this textual hint? Happy, surprise and
funny should be the major emotions. The painting
requires less imagination since we should better
include the entries with a determined action.

However, there are challenges for the models to
draw painting for rather high-level topics such as
“urbanization of China” or “Asian morning”. These
textual hints should be enriched and extended with
concrete objects and actions to tell a story in a
painting or in a series of paintings. Extensions to
“urbanization of China” include “originally a col-
lection of fishing villages, Shenzhen rapidly grew
to be one of the largest cities in China”, “a train
runs on the snow-capped mountains of the Qinghai-
Tibet Plateau”, and “left-behind children running in
wheat-field”. Given an initial textual hint, we lever-
age Wikipedia and large-scale pretrained language
models to execute this extension.

In addition, we retrain existing checkpoints by
the WikiArt paintings dataset2 which has a collec-
tion of 81,444 fine-art paintings from 1,119 artists,
ranging from fifteenth century to modern times.
This dataset contains 27 different styles (e.g., Mini-

2https://www.wikiart.org/ and can be down-
loaded from https://archive.org/download/
wikiart-dataset/wikiart.tar.gz

malism, Symbolism, Realism) and 45 different gen-
res. As far as our knowledge, it is currently the
largest digital art datasets publicly available for
research usage. This dataset was used to train an
ArtGAN (Tan et al., 2017) where conditions such
as categorical label information was used for art-
work synthesis. In this paper, we embed the textual
information of artists, year, styles, and genres as
additional conditions to the LDM. Through this
way, we can explicitly invite Vincent van Gogh or
Rembrant to help us “draw” artworks of modern
topics such as “urbanization of China”.

This paper is organized as follows. In Section
2, we briefly review the background knowledge re-
quired for understanding the stable diffusion mod-
els (Rombach et al., 2021). In particular, we de-
scribe the two processes defined in DDPM (Ho
et al., 2020), the variational autoencoder frame-
work and loss functions used in it (Esser et al.,
2020), cross attention enhanced U-Net which acts
as the backbone of the diffusion model, and pseudo
numerical methods integrated with DDIMs for fast
sampling. In Section 3, we describe our proposal
of extending users’ prompts by pretrained language
models and existing knowledge resources. In Sec-
tion 4, we show detailed information of the Wikiart
dataset and our pipeline of retraining. We describe
the experiments in Section 5 and finally conclude
in Section 6.

2 Background

Diffusion models have been successfully used in
image generation (Rombach et al., 2021), text-to-
speech synthesis (Popov et al., 2021; Jeong et al.,
2021), sing synthesis and conversion (Liu et al.,
2021; Xue et al., 2022), music generation (Mittal
et al., 2021) and healthcare Medical Anomaly De-
tection (Wolleb et al., 2022). Surveys can be find in
(Croitoru et al., 2022; Cao et al., 2022; Yang et al.,
2022).

We limit our discussion to text-to-image gen-
eration by leveraging the LDMs (Rombach et al.,
2021) and existing checkpoints3. We briefly re-
view the core processes and target objectives of
DDPMs (Ho et al., 2020) that are used in LDMs. In
addition, variational autoencoders enhanced with
KL-divergence, cross-attention embedded U-Net
(Ronneberger et al., 2015; Vaswani et al., 2017),
CLIP pretrained language models (Radford et al.,

3https://huggingface.co/CompVis/
stable-diffusion-v-1-4-original

https://www.wikiart.org/
https://archive.org/download/wikiart-dataset/wikiart.tar.gz
https://archive.org/download/wikiart-dataset/wikiart.tar.gz
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
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Figure 1: The Markov chain of forward diffusion (back-
ward reconstruction) process of generating a sample by
step-by-step adding (removing) noise. Image adapted
from (Ho et al., 2020).

2021) and sampling algorithms such as that used
in denoising diffusion implicit models (DDIMs)
(Song et al., 2020) and pseudo numerical methods
(Liu et al., 2022) will be briefly reviewed.

2.1 DDPM
Given a data point x0 sampled from a real data dis-
tribution q(x) (x0 ∼ q(x)), Ho et al. (2020) define
a forward diffusion process in which small amount
of Gaussian noise is added to sample x0 in T steps
to obtain a sequence of noisy samples x0, ..., xT .
A predefined (hyper-parameter) variance schedule
{βt ∈ (0, 1)}Tt=1 controls the step sizes:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI); (1)

q(x1:T |x0) :=
T∏
t=1

q(xt|xt−1). (2)

When T → ∞, xT is equivalent to following an
isotropic Gaussian distribution. Note that, there
are no trainable parameters used in this forward
diffusion process.

Let αt = 1 − βt and ᾱt =
∏t

i=1 αi, we can
express an arbitrary step t’s diffused sample xt by
the initial data sample x0:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt. (3)

Here, noise ϵt ∼ N (0, I) shares the same shape
with x0 and xt.

In order to reconstruct from a Gaussian noise
input xT ∼ N (0, I), we need to learn a model pθ
to approximate the conditional probabilities to run
the reverse diffusion process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)); (4)

pθ(x0:T ) := p(xT )
T∏
t=1

pθ(xt−1|xt). (5)

Note that the reverse conditional probability is
tractable by first applying Bayes’ rule to three
Gaussian distributions and then completing the
“quadratic component” in the exp(·) function:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI) (6)

= q(xt|xt−1, x0)
q(xt−1|x0)
q(xt|x0)

(7)

∝ exp(− 1

2β̃t
(xt−1 − µ̃t)

2). (8)

Here, variance β̃t is a scalar and mean µ̃t depends
on xt and noise ϵt:

β̃t =
1− ᾱt−1

1− ᾱt
βt; (9)

µ̃t =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵt). (10)

Intuitively, q(xt−1|xt, x0) acts as a reference to
learn pθ(xt−1|xt). We can use the variational
lower bound (VLB) to optimize the negative log-
likelihood:

− logpθ(x0) ≤ −logpθ(x0)+
DKL(q(x1:T |x0) ∥ pθ(x1:T |x0)). (11)

Using the definitions of q(x1:T |x0) in Equation
2 and pθ(x0:T ) in Equation 5, a loss item Lt (1 ≤
t ≤ T − 1) is expressed by:

Lt = DKL(q(xt|xt+1, x0) ∥ pθ(xt|xt+1)) (12)

= Ex0,ϵt

[
1

2 ∥ Σθ(xt, t) ∥22
∥ µ̃t − µθ(xt, t) ∥2

]
.

We further reparameterize the Gaussian noise term
instead to predict ϵt from time step t’s input xt and
use a simplified objective that ignores the weight-
ing term:

L
simple
t = Et∼[1,T ],x0,ϵt

[
∥ ϵt − ϵθ(xt, t) ∥2

]
(13)

= E
[
∥ ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t) ∥2

]
.

In (Rombach et al., 2021), LDMs are proposed
so that the diffusion processes are performed in
compressed latent spaces through a pretrained vari-
ational autoencoder E(x0):

LLDM
t = Ez0=E(x0),ϵt,t

[
∥ ϵt − ϵθ(zt, t) ∥2

]
(14)

= E
[
∥ ϵt − ϵθ(

√
ᾱtz0 +

√
1− ᾱtϵt, t) ∥2

]
.

In order to perform condition-based image synthe-
sis, a pre-given textual prompt (or other formats
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such as layout) y is first encoded by a domain spe-
cific encoder τθ(y) and then sent to the model to
predict ϵθ:

LLDM
t = EE(x0),ϵt,t

[
∥ ϵt − ϵθ(zt, t, τθ(y)) ∥2

]
.

(15)
Here, τθ(y) acts as memory (key and value) in the
cross-attention mechanism (Vaswani et al., 2017)
and can be jointly trained together with ϵθ’s U-Net
framework (Ronneberger et al., 2015) from image-
conditioning pairs. In the text-to-image generation
task of (Rombach et al., 2021), a 12-layer trans-
former with a hidden dimension of 768 is used4

(Radford et al., 2021) to encode textual prompts.

2.2 Variational Autoencoder GAN with
KL-divergence

The variational autoencoder is pretrained (Esser
et al., 2020) beforehand and used directly for en-
coding the original data sample into latent space
and for decoding the reconstructed z0 back to the
original sizes of x0. In order to combine the effec-
tiveness of the inductive bias of CNNs with the ex-
pressivity of transformers, both the encoder (E) and
the decoder (or, generator, G) parts of the autoen-
coder use ResNet blocks and self-attention blocks.
Adversarial learning is used to train this vector
quantised GAN framework with a combination of
several losses:

(1) a reconstruction loss:

Lrec =∥ x − G(q(E(x))) ∥2, (16)

where q(·) is element-wise quantization in (Esser
et al., 2020) and a simple 2D 1×1 convolution
network in the stable diffusion implementation. We
set x̂ = G(q(E(x)) hereafter.

(2) a perceptual loss using the learned perceptual
image patch similarity (LPIPS) loss (Zhang et al.,
2018):

Scale(x) = (x − shift)/scale,

gi(x) =∥ VGGi(Scale(x)) ∥2,

Lper =
4∑

i=0

{
lini((gi(x)− gi(x̂))2)

}
. (17)

Here, “shift” and “scale” respectively stands for
mean vector and standard deviation vector of each
channel of the images in the training data. A pre-
trained VGG checkpoint5 is used here and VGGi

4https://huggingface.co/openai/
clip-vit-large-patch14

5https://download.pytorch.org/models/
vgg16-397923af.pth

stands for the i-th layer’s output tensor with half-
size down sampling shapes (e.g., h,w=256, 128,
64, 32, 16 and c=64, 128, 256, 512, 512). A group
of “dropout + conv2d 1×1” (linear) modules lini
are used project the mean square distances of x and
x̂ into channel number of 1 and then average on
height and width. The five scale losses are added
up together as the final perceptual loss.

(3) a KL loss between the diagonal Gaussian
distribution constructed from q(E(x)) = [µ; logσ2]
and N (0, I):

LKL(N (µ,σ2) ∥ N (0, I)) =∑
c,h,w

(µ2 + σ2 − 1− logσ2)/2, (18)

where c is channel number, h is height and w is
width for an image. The output tensor q(E(x)) is
separated into two parts (e.g., from (6, 64, 64) to
two (3, 64, 64) shape tensors) for the mean and the
log of the variance of the Gaussian distribution.

(4) GAN losses which includes the following
component:

Lg = −logD(x̂), (19)

Ld = Hinge(D(x),D(x̂)) (20)

=
relu(1−D(x)) + relu(1 +D(x̂))

2
. (21)

Here, D stands for a patch-based discriminator that
aims to differentiate between real and reconstructed
images. Adaptive weight is used to combine these
losses and more details can be found in (Esser et al.,
2020):

L = Lrec+λ1Lper+λ2LKL+λ3Lg+λ4Ld. (22)

In the configuration used in this paper, λ1 = 1.0,
λ2 = 1e− 06. Specially,

λ3 =
∇Glast [Lrec + λ1Lper]

∇Glast [Lg] + δ
. (23)

Here, ∇Glast stands for the gradient of the combined
reconstruction and perceptual losses with respect
to the last layer of G, and δ = 1e − 4 is used for
numerical stability. The model sets λ3 = λ4 = 0.0
at the first M (e.g., 50,000) iterations to focus on
training the reconstruction and perceptual abilities
of the model. After M iterations, λ4 is set to be 1.0
for adversarial learning.

https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/openai/clip-vit-large-patch14
https://download.pytorch.org/models/vgg16-397923af.pth
https://download.pytorch.org/models/vgg16-397923af.pth
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2.3 U-Net with Cross Attention

In (Rombach et al., 2021), a U-Net with a multi-
head cross attention mechanism (Vaswani et al.,
2017) is used to predict ϵθ with a MSE loss for
training (Equation 15). In a typical U-Net im-
plementation, there are five blocks, a time em-
bedding block that embeds an input time step t,
input/middle/output blocks that perform convolu-
tional and self-attention based representations of zt
and their cross attentions with conditional memory
τθ(y), and finally a out block that projects the result
tensor back to the shape of zt.

The input block performs a down sampling with
a stack of “resnet + spatial transformer” modules
(e.g., 12 modules from (channel, height, width)
shape of from (4, 64, 64) to (1280, 8, 8)). Then, the
middle block with “resnet + transformer + resnet”
modules links the input and output blocks without
changing the shape of the tensor. Next, the output
block performs a up sampling with the same num-
ber of modules of the input block (e.g., 12 modules
from shape (1280, 8, 8) to (320, 64, 64)). There are
residual-style shortcut links here: each module’s
output is sent respectively from the input block to
the output block with the same level. The final
out block uses a 2D convolutional layer to project
the hidden channel number (e.g., 320) back to the
original channel number (e.g., 4).

2.4 DDIMs and Pseudo Numerical Methods

DDIMs (Song et al., 2020) generalizes DDPMs via
a class of non-Markovian diffusion processes that
lead to the same training objective and give rise to
implicit models that generate high quality samples
much faster. In the non-Markovian forward pro-
cess, a real vector σ ∈ RT

≥0 is introduced to index
a family of inference distributions:

qσ(x1:T |x0) := qσ(xT |x0)
T∏
t=2

qσ(xt−1|xt, x0);

qσ(xT |x0) = N (
√
ᾱT x0, (1− ᾱT )I);

qσ(xt−1|xt, x0) = N (µ̃(x0, xt, σt), σ2
t I);

µ̃(x0, xt, σt) =
√
ᾱt−1x0+√

1− ᾱt−1 − σ2
t

xt −
√
ᾱtx0√

1− ᾱt
.

The mean function µ̃(x0, xt, σt) is chosen to ensure
that qσ(xt|x0) = N (

√
ᾱtx0, (1 − ᾱt)I) without

depending on σ anymore.
In the generative process of DDIM, the denoised

observation x0 is predicted from pre-given xt (re-
verse usage of Equation 3):

fθ(xt, t) := (xt −
√
1− ᾱtϵθ(xt, t))/

√
ᾱt.

Then, a sample xt−1 can be generated from xt via:

xt−1 =
√
ᾱt−1fθ(xt, t)

+
√

1− ᾱt−1 − σ2
t ϵθ(xt, t) + σtϵt. (24)

When σt = 0 for all t, the coefficient of ϵt becomes
zero and samples are generated from xT to x0 with
a fixed procedure. The DDIM(·) is thus defined as:

xt−1, fθ(xt, t) = DDIM(xt, ϵt, t). (25)

To accelerate the reconstruction process and
keep the sample quality, DDIMs (Equation 25)
are included in pseudo numerical methods (Liu
et al., 2022) which treat DDPMs as solving dif-
ferential equations on manifolds. In (Rombach
et al., 2021)’s code implementation6 (Algorithm 1),
a linear multi-step algorithm, the Adams-Moulton
method7, is used. This pseudo numerical algorithm
includes a gradient part of 2nd order pseudo im-
proved Euler, 2nd/3rd/4th order Adams-Bashforth
methods, and a transfer part of DDIM. Here, the
discrete indices t−1, t+1 stand for next (e.g., from
T to T − 1) and former time steps, respectively.

3 Textual Condition Extension

We perform textual condition extension by lever-
aging wikipedia as the knowledge base and large-
scale pretrained language models as implicit knowl-
edge graphs. The pipeline is depicted in Figure 2.
Given a textual prompt, we first match it with the
title list in wikipedia. At the same time, the input
prompt is sent to (1) a pretrained language model,
T5 (Raffel et al., 2019), to continue writing by tak-
ing the given prompt as a prefix hint and to (2) a
pretrained dialog model, DialoGPT8 (Zhang et al.,
2019) that takes the input prompt as “query” and
consequently generate “responses”.

Wikipedia’s titles and contents are used for
matching the input prompt and T5/DialoGPT’s out-
puts. We use BM25 (Robertson, 2009) here to

6https://github.com/CompVis/
stable-diffusion/blob/main/ldm/models/
diffusion/plms.py#L218-L232

7https://en.wikipedia.org/wiki/Linear_
multistep_method#CITEREFHairerN%C3%
B8rsettWanner1993

8https://github.com/microsoft/DialoGPT

https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py#L218-L232
https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py#L218-L232
https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py#L218-L232
https://en.wikipedia.org/wiki/Linear_multistep_method#CITEREFHairerN%C3%B8rsettWanner1993
https://en.wikipedia.org/wiki/Linear_multistep_method#CITEREFHairerN%C3%B8rsettWanner1993
https://en.wikipedia.org/wiki/Linear_multistep_method#CITEREFHairerN%C3%B8rsettWanner1993
https://github.com/microsoft/DialoGPT
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Algorithm 1: Pseudo linear multi-step
(PLMS) algorithm enhanced by DDIM

1 xT ∼ N (0, I);
2 for t = T, T − 1, ..., 1 do
3 et = ϵθ(xt, t);
4 if t == T then
5 # pseudo improved Euler-2nd;
6 xt−1, fθ(xt, t) = DDIM(xt, et, t);
7 et−1 = ϵθ(xt−1, t− 1);
8 e′t = (et + et−1)/2;
9 else if t == T-1 then

10 # PLMS-2nd (Adams-Bashforth) ;
11 e′t = (3et − et+1)/2;
12 else if t == T-2 then
13 # PLMS-3rd (Adams-Bashforth) ;
14 e′t = (23et − 16et+1 + 5et+2)/12;
15 else
16 # PLMS-4th (Adams-Bashforth) ;
17 e′t = (55et − 59et+1 + 37et+2 −

9et+3)/24;

18 xt−1, fθ(xt, t) = DDIM(xt, e′t, t);
19 return x0;

simplify the matching process. From the result doc-
ument(s), we further compute sentence importance
to rank their content fertility and the relationship
with the initial prompt. We use the (English) text
part of LAION-5B9 and Wikiart to train a TF-IDF
model and then use it to score the prompts in the
result prompt list. With a higher score, we subjec-
tively believe that the prompt can possibly yield
better images. To score the “relationship” with the
initial prompt u, we embed a pair of initial and
result prompts by T5 and compute their cosine sim-
ilarity. Thus, the importance of a result prompt v is
computed by:

w(v) = TFIDF(v)+λ1Cos(T5(u),T5(v)). (26)

Here, λ1 stands for a hyper-parameter to balance
the scale of two scores.

In addition, we encourage the result prompts
to include spatial and temporal information. We
leverage a named entity recognizer10 and regular
expressions to recognize place/region names, ad-
dresses, time, and date. The number of spatial and
temporal entities discounted by a hyper parameter

9https://laion.ai/blog/laion-5b/
10https://github.com/kamalkraj/BERT-NER
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Figure 2: The textual prompt extension pipeline
by retrieving wikipedia and continue generating by
T5/DialoGPT pretrained language models (Raffel et al.,
2019; Zhang et al., 2019).

λ2 is added with w(v) for the final scoring of a
prompt.

4 Retraining with WikiArt

Different artists have quite different numbers of
paints in WikiArt dataset. The top-3 artists are
Vincent van Gogh, Nicholas Roerich, and Pierre
Auguste Renoir with 1,889, 1,860, and 1,400 paint-
ings, respectively. The top-10, top-20, and top-30
artists share 14.18%, 21.80%, and 27.62% of the
samples, respectively. Figure 3 shows the distribu-
tion of the number of paintings and their authors.

We first retrain the CLIP text encoder with the
same tokenizer with the LDM fixed. This stage is
expected to map the captions used in Wikiart to
stable diffusion’s latent space. Then, we fine-tune
the text encoder and the LDM jointly. This stage is
expected to help the LDM to enrich its knowledge
of artworks from different artists, in different styles
and genres.

5 Experiments

We use a DGX-A100-80GB server with 8 NVIDIA
A100-80GB GPU cards. The original code and set-
tings of the stable diffusion model’s checkpoint v1-
4 is reused. During inferencing, single GPUs are
used with ddim_eta=1.0, ddim_steps=200, height
and width are both 512, and scale is set to be 5.0.

https://laion.ai/blog/laion-5b/
https://github.com/kamalkraj/BERT-NER
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Figure 3: Top-30 artists and their painting numbers in Wikiart.

5.1 Direct Comparison with Original LDMs

Figure 4 directly compares the images generated by
the original model and that retrained under Wikiart.
We used the same prompts as described in (Rom-
bach et al., 2021). For direct comparison, we also
directly copy the first two rows from their original
paper. We list four rows picked from the top-30
artists (Figure 3). The painting skills and styles of
the artists are reflected. For example, in our first
row all "drawn" by Vincent van Gogh, it is rela-
tively easy to distinguish them from other artists:
star sky appears often and the Zombie painting is
telling a rich story of the author himself.

When the "street sign" is given in the first col-
umn, the original paper’s two results mainly fo-
cused on the photo-style signs themselves. Yet, for
the artists, the background’s nice street views are
also important parts of the final painting, such as
the sky, the forest, the building and the people with
an orange umbrella. With these hints, we mod-
estly draw a preliminary conclusion that our four
paintings (rows 3 to 6) of the first column are more
creative and include richer sounding environments
and humane information.

Column three, five and six are drawn from
prompts which include “fake objects” which do
not frequently exist in the real-world. The “half
mouse half octopus” is more like photos in the
original paper (column 3, first 2 rows), our images
are closer to hand-drawn paints. When drawing a
“chair that looks like an octopus”, all the rows in
column six are close to artworks.

The final column can be regarded as an indus-
trial design oriented prompt. With the artists’ style

and genre included, we can positively imagine that
when these paints are printed in real-world T-shirts,
people will show their interests of further personal-
ized customization and buy them.

5.2 Textual Condition Extension Results

We use the former example of “urbanization of
China” to show the results of textual condition ex-
tension. Figure 5 shows four artworks by four fa-
mous artists, Vincent van Gogh, Nicholas Roerich,
Pierre Auguste Renoir and Claude Monet. Inter-
estingly, the major elements frequently used by
artists are also reflected here. For example, the star
sky of Vincent van Gogh, the water and boats of
Claude Monet. The major elements included in the
four paintings are also interesting, combinations
of Chinese traditional buildings and skyscrapers,
combinations of individual houses and mountains,
rather crowded endless buildings and blurry sky,
and Chinese traditional building style boats with
super high skyscrapers around the rivers.

Figure 6 shows the same four artists’ artwork
for an extended prompt related to one of the most
rapidly developed cities, Shenzhen, during the ur-
banization of China. With the extended prompts,
the model could generate more expressive images.
For Vincent van Gogh, a moon in the middle of
the sky, with fishing-boats near and high buildings
in the far view. The same elements of fish boats
and skyscrapers are all included in the other three
paintings. Interestingly, for Nicholas Roerich, even
the skyscrapers are drawn by following traditional
Chinese style.

Figure 7 shows the same four artists’ artwork for
an extended prompt related to a train running on
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the snow-capped mountains, during the urbaniza-
tion of China. With the extended prompts, again,
the model could generate more expressive images
and keep the characters of each artist. The gen-
eral styles and viewpoints of the four artists are
reflected: now we have the mountain as the “sky”
of Vincent van Gogh and the “sky and mountain”
in Claude Monet looks like a reversed river.

Figure 8 shows the same four artists’ artwork
for an extended prompt related to children running
in wheat-fields, during the urbanization of China.
With the extended prompts, again, the model could
generate more expressive images with rich emo-
tional colors such as blue skies, golden wheat fields,
and running-enjoy children. The general styles and
viewpoints of the four artists are reflected, such as
Vincent van Gogh’s sky and the skirts of the two
girls from Claude Monet.

Full images of the top-30 artists (Figure 4) of the
one initial prompt and three extended prompts are
shown in Figure 9, 10, 11 and 12 respectively.

5.3 Diversity and Styles

We finally investigate the diversity and style influ-
ences. Figures 13, 14, 15 and 16 shows the 27
styles of Vincent van Gogh, each style with 5 sam-
ples (per row), for the former prompt “left-behind
children running in wheat-field”. Most images are
with a "van Gogh" style sky. The diversity is en-
sured by comparing the columns in each row. Since
Vincent van Gogh is famous for “Post Impression-
ism” (Figure 16, row 2), the characteristics of other
styles are relatively less recognizable. The balanc-
ing of between keeping the typical style of van
Gogh and introducing new styles is relatively dif-
ficult. Still, from the five images of style “Ukiyo
e” (Figure 14, row 2), we can recognize that the
children are with Japanese traditional cloths and
hair styles (so do the buildings behind).

6 Conclusion

In order to improve the creativity of LDMs, we
have proposed two directions of extending the input
prompts and of retraining the original model by the
Wikiart dataset. We take the 1,000 artists in recent
400 years as the major source of both creativity
and artistry. With these proposals, the resulting
diffusion models can ask these famous artists to
draw novel and expressive paints of modern topics.

We believe this is an interesting topic and has
industrial design requirements for real-world ap-

plications, such as cloth designing, advertisement
posters, and game character designing. Through
drawing the real-world’s topics with the help of
hundreds to thousands famous artists, it is reason-
able to learn the creativity and fertility from these
artists’ eyes.
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Figure 4: Direct comparison with the same prompts used in (Rombach et al., 2021) yet different artists.
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Vincent van Gogh Nicholas Roerich 

Claude Monet Pierre Auguste Renoir 

Figure 5: Four artists’ artworks for the same prompt of “a painting of urbanization of china”.
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Vincent van Gogh Nicholas Roerich 

Claude Monet Pierre Auguste Renoir 

Figure 6: Four artists’ artworks for the same extended prompt of “originally a collection of fishing villages, Shenzhen
rapidly grew to be one of the largest cities in China”.
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Vincent van Gogh Nicholas Roerich 

Claude Monet Pierre Auguste Renoir 

Figure 7: Four artists’ artworks for the same extended prompt of “a train runs on the snow-capped mountains of the
Qinghai-Tibet Plateau”.
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Vincent van Gogh Nicholas Roerich 

Claude Monet Pierre Auguste Renoir 

Figure 8: Four artists’ artworks for the same extended prompt of “left-behind children running in wheat-field”.
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Figure 9: Top-30 artists’ artworks for the same extended prompt of “a painting of urbanization of china”.
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Figure 10: Top-30 artists’ artworks for the same extended prompt of “originally a collection of fishing villages,
Shenzhen rapidly grew to be one of the largest cities in China”.
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Figure 11: Top-30 artists’ artworks for the same extended prompt of “a train runs on the snow-capped mountains of
the Qinghai-Tibet Plateau”.
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Figure 12: Top-30 artists’ artworks for the same extended prompt of “left-behind children running in wheat-field”.



77

Figure 13: Vincent van Gogh’s seven styles (Minimalism, Abstract Expressionism Fauvism, Naive Art Primitivism,
Symbolism, Color Field Painting, Pointillism), each style with five samples (per row).
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Figure 14: Vincent van Gogh’s seven styles (Baroque, Ukiyo e, Early Renaissance, Action painting, Contemporary
Realism, Mannerism Late Renaissance, Analytical Cubism), each style with five samples (per row).
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Figure 15: Vincent van Gogh’s seven styles (New Realism, Northern Renaissance, Cubism Impressionism, Expres-
sionism, Realism, High Renaissance), each style with five samples (per row).
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Figure 16: Vincent van Gogh’s six styles (Pop Art, Post Impressionism, Synthetic Cubism Art Nouveau Modern,
Rococo, Romanticism, ), each style with five samples (per row).


