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Abstract
Cancer immunology research involves several
important cell and protein factors. Extract-
ing the information of such cells and proteins
and the interactions between them from text
are crucial in text mining for cancer immunol-
ogy research. However, there are few avail-
able datasets for these entities, and the amount
of annotated documents is not sufficient com-
pared with other major named entity types. In
this work, we introduce our automatically anno-
tated dataset of key named entities, i.e., T-cells,
cytokines, and transcription factors, which en-
gages the recent cancer immunotherapy. The
entities are annotated based on the UniProtKB
knowledge base using dictionary matching. We
build a neural named entity recognition (NER)
model to be trained on this dataset and evaluate
it on a manually-annotated data. Experimen-
tal results show that we can achieve a promis-
ing NER performance even though our data is
automatically annotated. Our dataset also en-
hances the NER performance when combined
with existing data, especially gaining improve-
ment in yet investigated named entities such as
cytokines and transcription factors.

1 Introduction

Cancer immunology research has a central focus on
T lymphocytes (T-cells), which engage the immune
system in fighting against cancer (Luckheeram
et al., 2012; Waldman et al., 2020; Kim et al., 2021).
The development of T-cells can be guided by cy-
tokines and transcription factors (Hosokawa and
Rothenberg, 2018). Transcription factors (TF) are
nuclear proteins that bind specific gene sequences
and involved in decision-making processes dur-
ing T-cell differentiation (Naito et al., 2011; Xia
et al., 2019). Meanwhile, cytokines are signal-
ing molecules secreted and sensed by immune and
other cell types (Kveler et al., 2018). Extracting
T-cell, cytokine, and TF entities and the interac-
tions between them can be crucial for text mining
in cancer immunology research.

However, there are few existing datasets contain-
ing these entities to train text mining models. At the
core of text mining tasks, the named entity recogni-
tion (NER) task also lacks such datasets for training
NER models to detect these named entities, which
may limit the development of text mining systems
in this cancer immunology research field. There
is an existing T-cell related named entity dataset
called TCRE (Czech and Hammerbacher, 2019),
but the amount of annotated data is also limited
to only 89 documents. Several knowledge bases
related to immune system have been proposed such
as immuneXpresso (Kveler et al., 2018) and DES-
Tcell (AlSaieedi et al., 2021), which contain cell
type and cytokine information, but they lack utiliz-
ing and evaluating with modern NER models on
these named entities.

In this paper, as a step to fill these gaps and
promote the development of text mining systems
on these named entities in cancer immunology re-
search articles, we present our automatically anno-
tated dataset containing named entities of T-cell,
cytokine and TF, which are important for mining
and understanding cancer immunology research
articles. The entities in the dataset are automati-
cally annotated using dictionary matching based
on the UniProtKB (UniProt-Consortium, 2021),
a knowledgebase of protein sequences with func-
tional information.1 From the annotations of cy-
tokine and TF entries in UniProtKB, a dictionary
is constructed to annotate cytokine and TF named
entities in their referenced PubMed articles. Addi-
tionally, we utilized the existing JNLPBA corpus,
which contains manually annotated protein named
entities, to annotate cytokine and TF entities. We
build a NER model based on the span-based model
with pre-trained BERT. We trained the NER model
on our automatically annotated dataset and evalu-
ated the model on an existing manually annotated
T-cell related named entity TCRE dataset (Czech

1https://www.uniprot.org/uniprot/
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Item cytokine TF
# UniProtKB entries 1,001 3,418
# Dictionary size 6,859 20,055
# Collected articles 585 1,903

Table 1: UniProtKB entries and annotated data

and Hammerbacher, 2019). We achieve a promis-
ing result that the NER model trained on our au-
tomatically annotated data gains a slightly lower
performance than a supervised NER model trained
on a manually annotated data, although our data
is automatically annotated. Furthermore, our data
enhances NER performance when combined with
the existing manually annotated data.

2 Approach

We present our datasets containing three named
entity types: cell_type, cytokine, and transcription
factor (TF). The datasets are automatically anno-
tated using dictionary matching with the entries in
the UniProtKB in two different ways.

2.1 UniProtKB
Cytokine and TF queries From the UniProtKB,
we obtain entries by querying cytokine. We fil-
tered the options to keep only Reviewed annotations
(manually annotated, added by expert biocuration
team) and for Human organism. Similarly, we con-
ducted for transcription factor. They are equivalent
to the following queries.

• cytokine AND reviewed:yes AND organ-
ism:"Homo sapiens (Human) [9606]".

• transcription factor AND reviewed:yes AND
organism:"Homo sapiens (Human) [9606]"

UniProtKB entries We obtained 1,001 entries
for cytokine and 3,418 entries for TF from UniPro-
tKB. Each entry contains protein names, gene
names, and referenced PubMed articles, etc.

UniProtKB-dictionary We built a dictionary
containing protein and gene names of the cytokine
and TF entries in UniProtKB, which we named
UniProtKB-dictionary.

Collecting PubMed references For each UniPro-
tKB entry, there is a list of referenced PubMed ar-
ticles. We collect the referenced articles’ abstract
texts from PubMed for each entry. Since there is
a large number of references, we only collect the

Data #Docs. #Entities
CT CY TF

KB-T-cell 386 340 744 2,891
Dic-T-cell 761 2,686 1,752 2,686
TCRE 89 1,006 235 114

Table 2: Statistics of the datasets (Docs: documents;
CT (cell type), CY (cytokine), TF (transcription factor))

abstracts that contain a large number (≥ k) of cy-
tokine/TF protein and gene names (we set k = 20,
which we based on several preliminary experiments
to remove abstracts containing few annotations).
We present the statistics of UniProtKB entries and
related annotated data in Table 1.

2.2 Automatically Annotated Datasets

We constructed two automatically annotated
datasets using the UniProtKB-dictionary. The
statistics for automatically annotated datasets are
presented in Table 2.

2.2.1 Knowledge-based Annotation
(KB-T-cell)

Annotating cytokine and TF From the UniPro-
tKB dictionary, we identify the position of each
name in the collected articles by strict text match-
ing to annotate cytokine and TF named entities.

Annotating cell_type We found that
JNLPBA (Collier and Kim, 2004) is a large
manually annotated dataset for NER, which
contains named entities of cell_type, protein, etc.
Therefore, we utilized the JNLPBA data to train
a NER model to predict cell_type named entities
in the collected articles. We build a neural-based
NER method with span-based and pre-trained
BERT model, which we present in §3. These
cell_type entities are combined with the cytokine
and TF named entities, and we named KB-T-cell.

2.2.2 Dictionary-based Re-annotation
(Dic-T-cell)

Since the JNLPBA dataset contains protein enti-
ties while CT and TF are proteins, we utilized the
annotated protein names in the JNLPBA to anno-
tate cytokine and TF entities. Specifically, if an
annotated protein name in the JNLPBA is included
in the UniProtKB-dictionary, we re-annotate it as
cytokine or TF, correspondingly. We ignored doc-
uments which do not contain any matched CT/TF
entity. We named this dataset as Dic-T-cell.
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3 NER model

We explain the NER model to be trained on the an-
notated datasets. We build a neural-based NER
model using a span-based method (Lee et al.,
2017; Luan et al., 2018) and finetuned pre-trained
BERT (Devlin et al., 2019). Specifically, each sen-
tence is split into sub-word sequences, which are
passed through the BERT layer for contextual rep-
resentations. Then, for each span (i.e., a sequence
of continuous words in a sentence), its representa-
tion is calculated by concatenating the representa-
tions of the first, last, and averaged sub-words of
the span, which follows (Sohrab and Miwa, 2018a;
Trieu et al., 2020). Finally, each span representa-
tion is passed to classifiers to predict named entity
types for each span.

4 Experiments

4.1 Data
We used our datasets KB-T-cell and Dic-T-cell to
train NER models using the NER model introduced
in §3 and evaluated NER performance.

TCRE For evaluation data, we employed the
TCRE (Czech and Hammerbacher, 2019), an ex-
isting manually annotated data which contains 89
documents of cell_type, cytokine, and TF named
entities. We utilized this data for training super-
vised NER models and for evaluation. The original
TCRE dataset contains a mixture of both abstract
and full-text documents. For the scope of this pa-
per, we aim at utilizing only abstracts from both
UniProtKB’s references and JNLPBA data. There-
fore, we used only the abstract documents and the
abstract section of full-text documents from the
TCRE data.

The data statistics of the datasets are presented
in Table 2.

4.2 Settings
Cross validation We conducted k-fold cross val-
idation evaluation on the TCRE dataset. Since the
TCRE data size is quite small, we set k = 3 to
ensure a reasonable amount of data in the test set.
For each fold, we further randomly split the train-
ing set into train/development sets so that we can
tune hyper-parameters to get the best models on the
development set. Finally, all of our reported results
are based on the TCRE test set in each fold.

NER training settings Our model was imple-
mented on PyTorch (Paszke et al., 2017). We

used the BERT model from the PyTorch Pretrained
BERT repository2 as our BERT layer. We em-
ployed the pre-trained SciBERT model (Beltagy
et al., 2019) trained on large-scale biomedical texts.
The model is trained on multiple GPUs in the
AI Bridging Cloud Infrastructure (ABCI)3. We
train the model with the Adam optimizer (Kingma
and Ba, 2015), gradient clipping, dropout, and L2
regularization. The model is trained with early-
stopping, and the training mini-batch size is set as
16.

Evaluation settings We compared the following
NER models, which mostly differ in the training
data settings.

1. Matching-NER: we created a baseline using
dictionary matching. The dictionary is built
from the entity’s texts of the JNLPBA train-
ing data (for cell_type) and the UniProtKB-
dictionary for cytokine and TF.

2. Supervised-NER: we used the training set of
the TCRE data to train the NER model.

3. KB-NER, Dic-NER, KB-Dic-NER: we train
the NER models on our annotated datasets:
KB-T-cell, Dic-T-cell, and merged the KB-T-
cell and Dic-T-cell, respectively.

4. Enhanced-KB-NER, Enhanced-Dic-NER,
Enhanced-KB-Dic-NER: we merge the train-
ing set of the TCRE with the KB-T-cell, Dic-
T-cell, and merged KB-T-cell and Dic-T-cell,
respectively, to train NER models.

The results are reported based on the commonly
used micro-averaged precision (P), recall (R), and
F-score (F) metrics at entity level.

4.3 Results

We compare the results of different NER models
on each data fold in Table 3.

Enhancement Using our automatically anno-
tated dataset, we achieved the best perfor-
mance with 2-5% point improvements in F-
score (Enhanced-KB-NER) in comparison with the
Supervised-NER in all of the data folds.

2https://github.com/huggingface/
pytorch-pretrained-BERT/tree/34cf67fd6c

3https://abci.ai/

https://github.com/huggingface/pytorch-pretrained-BERT/tree/34cf67fd6c
https://github.com/huggingface/pytorch-pretrained-BERT/tree/34cf67fd6c
https://abci.ai/
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Model Fold-1 Fold-2 Fold-3
P R F P R F P R F

Matching-NER 39.88 66.16 49.76 39.54 68.63 50.17 38.05 69.27 49.12
Supervised-NER 68.67 66.92 67.78 70.92 70.75 70.84 73.36 74.23 73.80
KB-NER 64.55 62.09 63.29 71.34 54.01 61.48 63.85 57.21 60.35
Dic-NER 63.19 61.58 62.37 66.67 60.38 63.37 67.00 64.30 65.62
KB-Dic-NER 65.33 66.16 65.74 71.74 62.26 66.67 67.07 65.48 66.27
Enhanced-KB-NER 72.98 73.54 73.26 75.12 76.89 75.99 75.71 75.89 75.80
Enhanced-Dic-NER 71.11 72.02 71.55 70.14 73.11 71.59 73.23 75.65 74.42
Enhanced-KB-Dic-NER 72.18 73.28 72.73 72.86 72.17 72.51 74.13 75.18 74.65

Table 3: Comparison NER results of the models (the best scores are in bold)

Model Fold-1 Fold-2 Fold-3
CT CY TF CT CY TF CT CY TF

Matching-NER 65.18 1.45 15.07 66.42 6.00 18.44 65.96 6.86 5.97
Supervised-NER 71.22 56.64 41.18 76.36 56.36 32.14 76.15 65.45 57.78
KB-NER 69.57 31.46 52.38 73.70 18.95 0.00 70.79 20.95 8.00
Dic-NER 72.81 3.33 0.00 79.50 5.56 3.03 76.00 13.19 0.00
KB-Dic-NER 73.62 22.54 35.29 79.21 8.33 0.00 78.06 18.69 8.00
Enhanced-KB-NER 76.32 62.50 63.77 82.16 60.66 43.48 80.65 68.91 21.74
Enhanced-Dic-NER 77.49 55.32 18.18 81.61 36.51 39.44 79.21 60.34 27.03
Enhanced-KB-Dic-NER 77.55 64.08 30.77 81.33 41.44 37.68 80.06 63.64 15.79

Table 4: Results on each entity type in F-score (%). The underline scores are higher than the Supervised-NER’s.

Supervised vs. unsupervised When training
NER models on our automatically annotated
datasets (KB-NER, Dic-NER, KB-Dic-NER), the
performance is lower than the Supervised-NER,
which is trained on a time-consuming manually an-
notated data. The degraded performance is about
5-7% points in F-score, which are acceptable con-
sidering that our datasets are automatically anno-
tated. We can further improve the quality of our
datasets in future work, such as filtering noisy an-
notations.

Dictionary matching Since our automatically
annotated data is based on the dictionary built from
the UniProtKB and JNLPBA, we may raise a ques-
tion whether using only the dictionary with the
same vocabulary is still enough. The results of
KB-NER and Dic-NER show that our automati-
cally annotated data can improve from 11-15% in
comparison with the Matching-NER.

KB vs Dic Table 3 also shows that the NER mod-
els based on the KB-T-cell (KB-NER, Enhanced-
KB-NER) obtain higher performance than those
based on the Dic-T-cell (Dic-NER, Enhanced-Dic-
NER). When combining these two datasets, the
performance decreased even though the data size

of the Dic-T-cell is mostly double of the KB-T-cell,
which indicates that we need to investigate a better
combination. Another possible direction can be
filtering noisy annotations of the Dic-T-cell.

4.4 Analyses and Discussions

We further investigate the detailed performance on
each entity type: cell_type, cytokine, and TF. The
results from Table 4 show that the Enhanced-KB-
NER achieves improvements on all entity types
except for the TF entity type in Fold-3.

Comparing the performance among the entity
types between the Supervised-NER and the en-
hanced models, the CT type performance gains
improvement (3-5% points) in most cases. The rea-
son may come from the quality of the CT type
in the large manually annotated JNLPBA data.
Meanwhile, the improvement of the CY type is
3-6% points, and the improvement of TF is 11-22%
points. When training only on our automatically
annotated datasets (KB-NER, Dic-NER), we still
obtain the higher performance for the CT type. We
obtain some reasonable performance in cytokines
(lower than the Supervised-NER but much better
than the Matching-NER).
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Limitation The performance of CY and TF from
KB-NER and Dic-NER is low in most cases. There
is no correct TF prediction (Dic-NER in Fold-1
and Fold-3, KB-NER in Fold-2). For CY, the per-
formance is also low from Dic-NER (3% to 13%
F-score), but it is slightly better in KB-NER (18%
to 31% F-score). These results show a challenge
to extract CY and TF entities based on only our
automatically annotated corpus. This work is our
first investigation in utilizing the UniProtKB and
the existing JNLPBA corpus for our research goal
in extracting T-cell related entities, and we accept
this limitation in this first version. It is required to
conduct further investigation and improvement es-
pecially for these CY and TF types in future work.

Future work We would like to improve the per-
formance of CY and TF. We also plan to con-
duct the evaluation not only on the TCRE task
but other NER tasks such as JNLPBA (Collier
and Kim, 2004), NCBI (Doğan et al., 2014), and
BC5CDR (Li et al., 2016). Additionally, we intend
to extend our corpus for other tasks such as relation
and event extraction on these T-cell named entities.

5 Related Work

Distant supervision methods for NER have been in-
vestigated in several previous works. (Shang et al.,
2018) revised the LSTM-CRF NER model (Lam-
ple et al., 2016) and utilized the MeSH database
for chemical and disease entities. Some methods
are proposed to reduce noisy annotations for Chi-
nese NER(Yang et al., 2018), or general domain
OntoNotes (Liang et al., 2020; Meng et al., 2021).

The span-based method has been used to build
our NER model in this work. The method was pro-
posed and employed in previous work (Lee et al.,
2017; Luan et al., 2018; Sohrab and Miwa, 2018b;
Trieu et al., 2020), which have shown the advan-
tages in extracting nested or continuous text se-
quences and successful in many sequence labeling
tasks such as NER or coreference resolution.

Immunotherapy has achieved remarkable ad-
vances in recent years and can be important cancer
treatment in future (Falzone et al., 2018; Zhang and
Chen, 2018; Kruger et al., 2019). However, there
are few related work or annotated datasets in text
mining on this domain. immuneXpresso (Kveler
et al., 2018) is a text mining engine related to mam-
malian immune system, and NER is evaluated on
cells and cytokine using dictionary matching. DES-
Tcell (AlSaieedi et al., 2021) is a knowledgebase

containing concepts of T-cell and other types of
drugs, diseases, genes, etc in PubMed documents.
However, it lacks utilizing novel text mining meth-
ods in the creation and evaluation the extracted data
including NER tasks.

For the datasets used in our work, TCRE is
manually annotated by Czech and Hammerbacher
(2019) containing cell_type, cytokine, and TF enti-
ties, which are closed to our goal, and we used for
our evaluation. A limitation of the TCRE is that it
contains only 89 documents, which is insufficient
to train powerful NER models. Therefore, our an-
notation method in this work can advance the task
in extracting T-cell named entities. JNLPBA (Col-
lier and Kim, 2004) contains manually annotated
cell_type and protein entities. Meanwhile, UniPro-
tKB (UniProt-Consortium, 2021) is a large and use-
ful knowledgebase containing protein sequences
annotated by experts with corresponding PubMed
references. The UniProtKB and JNLPBA are lever-
aged to build our corpus.

6 Conclusion

We introduce our automatically annotated dataset
for NER containing cell_type, cytokine, and TF
entities, which are important in cancer immunol-
ogy research, using a distant supervision method.
The dataset is automatically annotated based on
the entries in the UniProtKB knowledge base. We
built a dictionary of the protein and gene names
of cytokines and TF from the UniProtKB annota-
tions. We then collected referenced PubMed arti-
cles and annotated these names in the texts using
text matching with the dictionary entries. Addi-
tionally, we utilized the large manually annotated
JNLPBA dataset, which contains cell_type and
protein named entities to build our dataset. We
trained NER models on our automatically anno-
tated dataset and evaluated them on a manually
annotated T-cell corpus. The results show that our
automatically annotated dataset helps to improve
the NER performance by extracting more named
entities of cytokines and TF accurately. For future
work, we plan to improve and extend our dataset to
extract interactions or events related to these enti-
ties for text mining in cancer immunology research.
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