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Abstract

The paper presents a new state-of-the-art
sentence-wise readability assessment model
for German L2 readers. We build a linguisti-
cally broadly informed machine learning model
and compare its performance against four com-
monly used readability formulas. To under-
stand when the linguistic insights used to in-
form our model make a difference for read-
ability assessment and when simple readabil-
ity formulas suffice, we compare their perfor-
mance based on two common automatic read-
ability assessment tasks: predictive regression
and sentence pair ranking. We find that leverag-
ing linguistic insights yields top performances
across tasks, but that for the identification of
simplified sentences also readability formulas
– which are easier to compute and more acces-
sible – can be sufficiently precise. Linguisti-
cally informed modeling, however, is the only
viable option for high quality outcomes in fine-
grained prediction tasks.

We then explore the sentence-wise readabil-
ity profile of leveled texts written for language
learners at a beginning, intermediate, and ad-
vanced level of German. Our findings high-
light that a texts’ readability is driven by the
maximum rather than the overall readability of
sentences. This has direct implications for the
adaptation of learning materials and showcases
the importance of studying readability also be-
low the document level.

1 Introduction

Comprehensible input is key to foster language
learning (Swain, 1985), especially when it chal-
lenges learners by falling slightly above their in-
dividual level of language competence (Vygotsky,
1978; Krashen, 1985). Also in content-matter ed-
ucation, input comprehensibility has been linked
to learning success (e.g., O’Reilly and McNamara,
2007). Thus, automatic readability assessment
(ARA) is a crucial tool to support education. ARA

seeks to align language input with readers’ compre-
hension skills (Vajjala, 2021; Collins-Thompson,
2014). It can not only identify suitable reading ma-
terials, but can also ensure learner-input alignment
in applications such as tutoring systems or educa-
tional conversational agents or as a validation tool
for publishers of educational materials. Yet, most
work on ARA focuses on English native speakers,
leaving much potential for other languages and ap-
proaches specifically tailored to the needs of second
or foreign language (L2) learners who experience
language barriers differently than native speakers
(Greenfield, 2004; Collins-Thompson, 2014).

Although most work on ARA has focused on es-
timating the readability of entire documents, there
are many application scenarios in which sentence-
level readability assessment is more suitable. Be-
yond the identification of text simplification targets
(Vajjala and Meurers, 2014), they are also more
suitable for very short text types including social
media language (e.g., tweets and chats), question-
naire or test items used in assessment and empirical
education research, or shorter text units in tradi-
tional learning materials (e.g., captions or tasks in
schoolbooks). Furthermore, there has been little re-
search on the link between sentence and document
readability (but see Vajjala and Meurers, 2014)
which is immediately relevant for the targeted de-
sign and adaptation of educational materials.

There is a startling gap between the methods pro-
posed in ARA research and those used in practice.
While for the last two decades, research on ARA
has favored machine learning approaches over tra-
ditional readability formulas (Vajjala, 2021) due to
their generally better performance (e.g., François
and Miltsakaki, 2012), simple formulas continue
to be used extensively in practice due to their ease
of use and low computation demands (Benjamin,
2012). This discrepancy raises the practical ques-
tion when simple approximations of readability
through formulas suffice, and when the use of more
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elaborate systems is necessary.
This paper addresses these issues with four ma-

jor contributions: First, we present a new state-of-
the-art (SOTA) sentence-level readability model
for L2 German readers which is based on broad
linguistic complexity assessment. Its performance
on a 7-point Likert scale is comparable to human
raters when it comes to estimating the readability
of sentences for German L2 readers. Second, we
make this model accessible online to enhance the
impact of our work outside academic discourse.
Users can extract features from their texts using
the publicly available web platform CTAP (Chen
and Meurers, 2016; Weiss et al., 2021) and use
the results as input for a pre-written R script that
applies the model to users’ input files in the for-
mat that is returned by CTAP.1 Third, we compare
our SOTA machine learning-based approach with
commonly used readability formulas for the two
common ARA tasks predictive regression and rank-
ing to answer the question when using linguistic
insights indeed makes a difference and for which
tasks simple readability formulas suffice. Finally,
we leverage our SOTA model to explore sentence
profiles of leveled L2 articles to provide new in-
sights into the role of sentence readability for doc-
ument difficulty that can help inform input adapta-
tion strategies for educational materials.

The remainder of this paper is structured as fol-
lows: after a brief literature review (Section 2), we
introduce the data (Section 3) and linguistic fea-
tures (Section 4) used for our studies. We then
report on the model training and evaluation for pre-
dictive regression and sentence ranking (Section 5).
Finally, we explore the readability profile of Ger-
man L2 articles on a document level (Section 6)
and discuss our overall findings (Section 7). We
conclude with finals remarks on the impact of our
findings and an outlook on future work (Section 8).

2 Related work

Early approaches to ARA date back to the last
century when traditional readability formulas
(e.g., Flesch, 1948; Dale and Chall, 1948) were
developed, see DuBay (2004, 2006) for a compre-
hensive overview. Readability formulas estimate
text readability solely based on surface level prox-
ies of text characteristics (e.g., sentence and word

1Both, the complexity-based model and the R script can be
accessed at https://osf.io/jg6kc/?view_only=
2d62778d592642a4a210eb4c7cc61f87

length or word frequency). They have been heav-
ily criticized for their lack of linguistic insight and
robustness, and have been shown to yield inferior
results to statistical approaches to ARA on authen-
tic data (François and Miltsakaki, 2012; Collins-
Thompson, 2014; Benjamin, 2012; Vajjala, 2021).
Yet, they are still the most widely distributed form
of ARA in practice due to their low computational
demands, ease of use, and availability for a vari-
ety of languages (Benjamin, 2012). Common use
cases include work on health literacy (Kiwanuka
et al., 2017; Grootens-Wiegers et al., 2015; Es-
fahani et al., 2016) and as evaluation metrics in
computational linguistic work on machine transla-
tion (Agrawal and Carpuat, 2019; Marchisio et al.,
2019; Stymne et al., 2013) or conversational agents
(Langevin et al., 2021; Gnewuch et al., 2018; San-
thanam et al., 2020).

Since the early 2000s (cf. Vajjala, 2021), sta-
tistical approaches became dominant in research
on ARA. This includes feature-based approaches
leveraging rich linguistic information for their pre-
dictions as well as neural approaches without prior
feature engineering. While either method has been
shown to yield SOTA performances (e.g., Vaj-
jala and Lučić, 2018; Weiss et al., 2021; Martinc
et al., 2021; Bengoetxea et al., 2020) on the On-
eStopEnglish corpus by Vajjala and Lučić (2018),
neural approaches have been argued to be more eas-
ily applicable for cross-linguistic readability assess-
ment (Martinc et al., 2021; Madrazo Azpiazu and
Pera, 2019), but see Weiss et al. (2021); De Clercq
and Hoste (2016). Feature-based approaches, in-
stead, are more appropriate when little data is avail-
able or when users need an explanation for the
obtained readability score, as is commonly the case
in education contexts and for publishers of leveled
reading materials who might want to revise their
texts after obtaining a readability score (Collins-
Thompson, 2014). Established features measure
aspects of syntax and lexicon (Collins-Thompson,
2014), morphology (Gonzalez-Dios et al., 2014;
Hancke et al., 2012; Weiss et al., 2021), and dis-
course features. They intersect with common fea-
tures from automatic writing quality assessment
(Crossley, 2020) and Second Language Acquisi-
tion research (Vajjala and Meurers, 2012).

Only limited progress has been made on ARA
for German, after early work on readability formu-
las (e.g., Amstad, 1978; Björnsson, 1983; Bam-
berger and Vanecek, 1984). The now unavailable
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DeLite system has been used to predict readability
for German municipal texts (Vor der Brück and
Hartrumpf, 2007; Vor der Brück et al., 2008a,b).
Hancke et al. (2012) and Weiss and Meurers (2018)
focused on the binary distinction of texts for adult
versus young native speaking readers. However,
binary ARA is of limited use in practice. Weiss
et al. (2021) present to our knowledge the first and
only multi-level classification approach for Ger-
man documents after introducing the first multi-
level readability corpus for German, which is part
of a larger multi-lingual readability corpus for lan-
guage learners. For sentence-wise readability as-
sessment, Naderi et al. (2019a) compiled a German
corpus of rated sentences and sentence simplifica-
tion pairs. Naderi et al. (2019b) used this corpus to
train a feature-based regression model yielding a
root mean squared error (RMSE) of 0.847 which is
to our knowledge the current SOTA on this data.

Little research has investigated the relationship
between sentence and document readability, even
though there has been some work testing the relia-
bility of readability assessment for very short texts
(Collins-Thompson and Callan, 2004) and sen-
tences (Dell’Orletta et al., 2011; Vajjala and Meur-
ers, 2014; Pilán et al., 2014). Vajjala and Meur-
ers (2014) inspect readability differences between
sentences from Wikipedia and Simple Wikipedia
to investigate the poor performance of document-
level ARA models for the identification of sen-
tences from simple and regular texts. They find
that sentences from Wikipedia are not systemati-
cally more complex than sentences from Simple
Wikipedia. This raises several questions for fur-
ther inquiry. The lack of observable differences
might be caused by an insufficient sensitivity of the
document-level model for sentence-level readabil-
ity differences. Also, Simple Wikipedia has criti-
cized as not systematically simpler than Wikipedia
(e.g., Štajner et al., 2012; Xu et al., 2015; Yaneva
et al., 2016). More research is needed to confirm or
refute their finding that harder texts are not simply
characterized by containing generally less readable
sentences which would have direct implications for
work on targeted document adaptation seeking to
identify language barriers in educational materials.

3 Data

3.1 TextComplexityDE

The TextComplexityDE corpus (Naderi et al.,
2019a) consists of 1,119 sentences. 1,019 sen-

Mean Std. Min. Max.

MOS-R 3.02 1.18 1.00 6.33
Words / sent. 20.08 10.62 4.00 63.00
Syll. / word 2.07 0.35 0.96 4.00

Table 1: Summary statistics for the TextComplexi-
tyDE sentences including number of words per sentence
(sent.), number of syllables (syll.) per word, and the
Mean Opinion Score for readability (MOS-R)

tences were extracted from 23 Wikipedia articles
related to history, society, or science and 100 sen-
tences from two articles in Leichte Sprache (engl.
“simple language”). All were rated by 267 Ger-
man L2 learners along three separate dimensions
defined by Naderi et al. (2019a): readability, un-
derstandability, and lexical difficulty. For each di-
mension, sentences were rated by up to ten learners
on a 7-point Likert scale. These ratings were ag-
gregated into a single Mean Opinion Score (MOS).
For this article, we focus on sentences’ readability
score (MOS-R).

Table 1 contains summary statistics for the num-
ber of words per sentence sentence, the number of
syllables per word, and MOS-R. It shows that MOS-
R not quite uses the full range of the scale and that
sentences are on average quite long (around 20
words) whereas words are relatively short (around
two syllables). Sentence length has a strong Spear-
man rank correlation with MOS-R score (rs =
0.70; p < 0.01). Word length only exhibits a weak
correlation with MOS-R (rs = 0.26; p < 0.01).
The current SOTA performance for a ARA model
lies at RMSE = 0.847 (Naderi et al., 2019b).

Sentence simplification pairs The corpus con-
tains 250 sentence pairs of sentences with MOS-R
> 4 sampled from all 23 Wikipedia articles and
their simplifications. The texts were manually sim-
plified by 75 native speakers and contain additional
meta information on whether the simplification is
only slightly or considerably simpler than the orig-
inal. One sentence could not be successfully sim-
plified and was excluded by us, resulting in 249
sentence pairs with valid simplifications.

3.2 Spotlight-DE

The Spotlight-DE corpus (Weiss et al., 2021) con-
sists of 1.447 leveled articles by the Spotlight pub-
lisher. Articles’ topics are connected to German
politics, culture, and every-day life. The texts tar-
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get L2 learners at a beginning (N = 763), medium
(N = 509), or advanced (N = 175) level. The
publisher aligns these three levels with the lev-
els A2, B1/B2, and C1 of the Common European
Framework of Reference (Council of Europe).

The reading levels in this corpus are assigned at
the document level rather than at the sentence level.
To obtain sentence-wise estimates, we split each
article into individual sentences. Table 2 character-
izes the resulting sentence-wise corpus. Compared

Mean Std. Min. Max.

Easy (n = 16, 694)
Words / sent. 11.00 5.09 1.00 73.00
Syll. / word 1.71 0.35 0.50 5.00

Medium (n = 27, 522)
Words / sent. 12.50 6.26 1.00 60.00
Syll. / word 1.73 0.35 0.33 6.00

Advanced (n = 11, 952)
Words / sent. 13.30 6.99 1.00 63.00
Syll. / word 1.78 0.37 0.50 5.50

Table 2: Summary statistics for the Spotlight-DE sen-
tences across document reading levels (easy, medium,
advanced) including number of number words per sen-
tence (sent.), number of syllables (syll.) per word

to the TextComplexityDE corpus, sentences are
much shorter. Also, there are no systematic differ-
ences in either sentence or work length across read-
ing levels and no meaningful Spearman rank corre-
lation between sentence length and article reading
level (rs = 0.12; p < 0.001) or word length and
article reading level (rs = 0.06; p < 0.001). Thus,
unlike many other learner corpora, the SpotlightDE
corpus does not rely on surface level simplifications
to differentiate between proficiency levels.

4 Feature extraction and selection

We extracted 543 features of linguistic complexity
from the linguistic domains of syntax, lexicon, and
morphology as well as psycho-linguistic features of
text cohesion, language use, and human language
processing and surface level text features inspired
by traditional readability formulas. All features
have a long standing tradition in ARA research
(Collins-Thompson, 2014) or in related work on
automatic text scoring (Crossley, 2020) and Second
Language Acquisition complexity research (Wolfe-
Quintero et al., 1998; Housen et al., 2012).

For feature extraction, we used the CTAP system
(Chen and Meurers, 2016, http://ctapweb.com)

which has been extended to facilitate the analy-
sis of German by Weiss et al. (2021). We chose
this system, because it is to our knowledge the
most extensive available analysis system for Ger-
man. The underlying feature extraction engine for
German has proven highly successful and robust
in a variety of education-related tasks including
readability assessment (Weiss and Meurers, 2018;
Weiss et al., 2021; Kühberger et al., 2019) and
work linked to writing quality assessment (Weiss
and Meurers, 2019a,b; Weiss et al., 2019; Bertram
et al., 2021; Riemenschneider et al., 2021). Also,
using a publicly available web-based system in-
creases the re-usability of any model using these
features in practice.

4.1 Feature description

The German pipeline used in CTAP is described in
detail in Weiss et al. (2021) and Weiss and Meurers
(2021). The latter also contains a comprehensive
definition of all complexity measures. We will limit
ourselves here to summarize the types of features
used to represent the individual linguistic domains.

Syntax The system measures 75 syntactic fea-
tures which can be further distinguished into
measures of clausal elaboration (e.g., dependent
clauses per clause or sentence coordination ratio)
and measures of phrasal elaboration (e.g., prenom-
inal modifiers per noun phrase or mean length of
prepositional phrases), as well as measures of syn-
tactic variance (e.g., edit distances between con-
stituency parses or coverage of nominal modifier
types). This set also includes measures of spe-
cific grammatical patterns that have been associ-
ated with comprehension difficulties for non-native
speakers of German (e.g., the percentage of non-
subject prefields which Ballestracci (2010) iden-
tified as language barriers for Italian learners of
German) and raw counts of syntactic patterns, such
as the number of dependent clauses.

Lexicon There are 146 features of lexical com-
plexity which can be further divided into mea-
sures of lexical richness (e.g., MTLD by McCarthy
(2005) as well as different mathematical transfor-
mations of the type-token ratio), measures of lexi-
cal variation (e.g., verb variation), and lexical den-
sity (e.g., noun type-token ratio and other parts-of-
speech specific type-token ratios). This group also
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contains also features measuring the overall occur-
rence of different parts-of-speech such as nouns,
verbs, or puncuation marks.

Morphology CTAP measures 64 measures of
morphological complexity for German. We ex-
tract features of nominal and verbal inflection (e.g.,
genitive case per noun), derivation (e.g., derived
nouns per noun), and compounding (e.g., aver-
age compound depth). We also measure the vari-
ability of morphological exponents using different
parametrizations of the Morphological Complexity
Index (MCI; Brezina and Pallotti, 2019).

Cohesion We extract 46 measures of text cohe-
sion and discourse for German. The features used
here include explicit measures of cohesion (e.g.,
causal connectives per sentence) as well as implicit
measures of cohesion linked to the use of pronouns
and repetitions of subjects, objects, or nouns.

Language use The system offers 172 lexical lan-
guage use features based on external German data
bases. CTAP calculates average word frequencies
and their standard deviations with and without log
transformations and binned in log frequency bands
for four frequency data bases that represent differ-
ent types of language use: frequencies based on
the Subtlex-DE data base consisting of movie and
TV captions and Google Books 2000 (both Brys-
baert et al., 2011), dlexDB frequencies (Heister
et al., 2011) based on German newspaper articles,
and frequencies and age of active use measures ex-
tracted from the Karlsruhe Children’s Text corpus
(Lavalley et al., 2015) consisting of essays written
by German children in first to eighth grade.

Human sentence processing There are 21 mea-
sures of human processing that can be calculated
for German. Weiss and Meurers (2018) and Weiss
et al. (2021) have used features based on the Depen-
dency Locality Theory (DLT; Gibson, 2000) for
German readability classification using different
weight configurations by Shain et al. (2016).

Surface length We extract 18 surface length fea-
tures for German that solely rely on the identifi-
cation of sentences, words, letters, and syllables.
These features include the raw number of these con-
structs as well as means and standard deviations
for sentence and word length based on these units,
e.g., mean sentence length in syllables.

4.2 Feature selection

After extracting these features from the TextCom-
plexityDE corpus, we removed all features with
near-zero variance, i.e., all features for which at
least 80% of the data exhibit the same value. This
is the case for 31.3% of features (N = 170) due to
near-exclusively zero values (i.e., not occurring in
most data). This leaves 373 features for the anal-
ysis coming from all feature domains which were
used for model training in Study 1 (Section 5).

This considerable reduction in the number of
features is to be expected for data that is as short
as the sentences in the TextComplexityDE corpus
(e.g, Weiss and Meurers (2021) also report a reduc-
tion of 50% of complexity features for short texts).
For example, only 7 of the 46 cohesion measures
are sufficiently variable on this data, because most
cohesion measures are calculated across sentence
boundaries. Similarly, only 19 of 64 measures of
morphological complexity are sufficiently variable,
because there is not enough language material to
produce a variety of inflectional properties. Con-
versely, nearly all language use and lexical features
as well as most features of phrasal elaboration re-
main included in the reduced feature set.

5 Sentence-wise readability assessment

5.1 Set-up

We trained and compared several machine learn-
ing algorithms2 using 10-folds cross-validation (10
CV) and the z-transformations of the 373 features
selected in Section 4.2. We selected these algo-
rithms based on their use in previous research
or their robustness against large feature sets with
multi-colinearity. The Bayesian Ridge Regres-
sion outperformed the other models and will be
discussed in more detail in the following. To
evaluate this complexity-based model’s (hence-
forth: CBM) overall performance, we calculated
its RMSE and Spearman rank correlation (rs) dur-
ing 10 CV (Section 5.2) and compared it against
the current SOTA performance on the data (RMSE
= 0.847, Naderi et al., 2019b). We also used the
model to rank the pairs of regular and simplified
sentences in TextComplexityDE (Section 5.3). We
report the ranking accuracy in terms of the percent-
age of correctly ranked pairs for all i) pairs irrespec-

2Multiple linear regression with backward feature selec-
tion, linear support vector machine regression, random forests,
Bayesian ridge regression (model averaged), Bayesian gener-
alized linear model, quantile regression with LASSO penalty
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tive of their degree of simplification (N = 249),
ii) weakly simplified pairs (N = 114), and iii)
strongly simplified pairs (N = 135).

In both evaluation steps, we compared the
CBM’s performance against five alternative mod-
els. We trained a Bayesian Ridge Regression model
using only surface length measures as predictors
as a baseline (henceforth: length-based model or
LBM). We additionally use the following widely
used readability formulas for both tasks:3

• the Amstad Readability Index (ARI; Amstad,
1978) which adapts the Flesch Reading Ease
(Flesch, 1948) to German native speakers;

• the Erste Wiener Sachtextformel (WSF; Bam-
berger and Vanecek, 1984) designed for ex-
pository texts for German native speakers;

• The LIX readability index (Björnsson, 1983)
which has been designed to align texts with
adult native speakers’ reading skills across a
variety of languages including German; and

• the Miyazaki EFL Readability Index
(MER; Greenfield, 1999, 2004) which was
designed for English L2 readers.4

We calculated all formulas using a publicly avail-
able python-based readability calculator which we
adjusted to use stanza (Qi et al., 2020) instead of
NLTK (Bird and Loper, 2004) for segmentation.5

5.2 Results for regression with 10 CV
Table 3 shows the RMSE and Spearman rank corre-
lation of the estimates with MOS-R in the TextCom-
plexityDE data. Both, LBM and CBM outperform

CBM LBM WSF LIX ARI MER

RMSE .685 .739 n.a. n.a. n.a. n.a.
rs .806 .785 .681 .679 -.532 -.666

Table 3: RMSE and Spearman rank correlation between
MOS-R and the predictions by CBM, LBM, and the
readability formulas.

the current SOTA on the TextComplexityDE data
(RMSE = 0.847; Naderi et al., 2019b). Our
linguistically more informed CBM clearly outper-
forms the LBM in terms of both, RMSE and cor-
relation. Due to the differences in the predicted

3All formula equations are defined in Appendix A.
4We added this formula to include an estimate tailored to

L2 readers despite the lack of German L2 readability formulas.
5https://github.com/zweiss/RC_

Readability_Calculator

CBM LBM WSF LIX ARI MER

Acc. 96.0 93.0 93.6 93.6 95.6 96.8
− 95.6 92.1 91.1 91.1 95.6 96.5
+ 96.5 94.1 96.5 96.5 95.6 97.0

Table 4: Overall ranking accuracy (Acc.), ranking ac-
curacy for weakly simplified pairs (−), and ranking
accuracy for strongly simplified pairs (+)

scales, we cannot compute the RMSE for the four
readability formulas, but the correlation shows that
both, the CBM and LBM outperform the formulas.

The correlation of ARI with MOS-R is much
lower than for the other formulas. This is unex-
pected, because all formulas use only sentence
and word length features. However, ARI assigns a
much larger weight to word length than the other
formulas which in turn correlates only weakly with
MOS-R in TextComplexity-DE (see Section 3.1).

CBM’s prediction error lies at RMSE = 0.685
points on the Likert scale. This is comparable to the
variance between raters in the TextComplexityDE
data. Averaged across all rated sentences the across-
rater standard deviation for MOS-R is at 1.03 ±
0.51; IQR = [0.71; 1.41]. This shows that the
error of our CBM lies even below the acceptable
range of disagreement exhibited by human raters.

5.3 Results for ranking of sentence pairs

Table 4 shows the results of the sentence ranking
experiment. The ranking accuracy for all ARA
models lies above 90%. With an overall accuracy
of 96%, CBM again outperforms LBM and the
readability formulas WSF and LIX. However, ARI
and MER perform comparably to CBM despite
their weak performance on the previous regression
experiment. It seems that word length (which is
weighted higher for these two formulas than for the
rest) is more informative than sentence length for
distinguishing simplified and regular sentences.

To also estimate if the models reflect the degrees
of simplification in the data (weak vs. strong), we
compare the difference in the predicted readabil-
ity score between each sentence and its simplified
counterpart. The difference should be systemat-
ically larger for strongly than for weakly simpli-
fied sentences. We test this assumption using sig-
nificance testing6 (α < 0.05) and by estimating

6We used a two-sided t-test or Wilcoxon Rank Sum and
Signed Rank Tests depending on the normality of predictions
determined with a Shapiro-Wilk Normality Test (α < .05).
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the effect size with Cohen’s d.7 We see a signifi-
cant, small effect for CBM (p = 0.02; d = 0.31),
LBM (p = 0.04; d = 0.25), MER (p < 0.01; d =
−0.36), ARI (p < 0.01; d = −0.30), LIX (p =
0.02; d = 0.35), and WSF (p = 0.01; d = 0.35),
see Appendix B for a visualization of the findings.

6 Exploring text profiles in leveled articles

6.1 Set-up

We used CBM to explore the text profiles of easy,
medium, and advanced articles in the Spotlight-DE
corpus, because it was the most precise model in
Study 1. With CTAP, we extracted the 373 features
from the sentence-split Spotlight-DE data that are
used by the model and calculated their z-scores. We
inspected the distribution of sentence readability
scores across article levels from several perspec-
tives. We first compared the overall differences in
sentence complexity per article level and the dif-
ferences in maximum sentence complexity using
significance testing, effect size estimation (parallel
to Study 1) and data visualization. We then evalu-
ated the proportions of sentences within a 0.5 point
sentence readability interval across article levels.
Finally, we visualized the sentence readability of
the first ten sentences in a sample of Spotlight-DE
articles in three heatmaps, one for each article lev-
els annotated in the Spotlight-DE corpus. This way,
we obtain a non-aggregated estimate of the text pro-
files. To keep the heatmaps comparable, we used
all 175 advanced articles as well as a random sam-
ple of 175 easy and 175 medium articles containing
at least ten sentences.

6.2 Results

Figure 1 combines different perspectives on the
sentence-wise article profiles split by article level.
We see that the prediction ranges from 1 to 5, a rea-
sonable coverage of the empirically observed MOS-
R scale (1− 6.33) in the TextComplexityDE data
given the corpus characteristics discussed in Sec-
tion 3. Figure 1a summarizes the overall sentence
readability grouped by article levels with notches
indicating the 95% confidence interval. There
are small significant differences between easy and
medium (p < 0.001; d = −0.259) and easy and ad-
vanced (p < 0.001; d = −0.435) articles, but only
negligible albeit significant differences medium

7We tested for unequal variance using an F test (α < .05).
In case of unequal variance, we used a Welch approximation
for unequal variances to calculate Cohen’s d.

and advanced (p < 0.001; d = −0.178) articles.
The boxplot shows considerable overlap for the
50% range of the data even between easy and ad-
vanced sentences. In Figure 1b, which considers
only articles’ maximum sentence readability scores,
this overlap is considerably reduced. Here, we ob-
serve large significant differences between easy and
advanced (p < 0.001; d = −2.05) and medium
and advanced (p < 0.001; d = −1.24) articles,
and moderate significant differences medium and
advanced (p < 0.001; d = −0.689) articles. This
indicates that the maximum sentence readability is
more indicative for overall readability level of a text
than considering the readability of all its sentences.

Figure 1c confirms this by comparing the per-
centage of sentences falling within a 0.5 point read-
ability range across article levels. Sentences from
articles at all levels are predominantly medium dif-
ficult (MOS-R= 3) and between 55.6% (advanced)
to 64% (easy) of sentences fall in the range from
2.5 ≤ MOS-R ≤ 3.5. Article levels differ mostly in
the tails of the distribution. The difference is most
pronounced for higher difficulty levels (MOS-R
≥ 4): 30% of sentences from advanced articles fall
into this range, but only 23.1% of sentences from
medium and 14.1% of sentences from easy articles.
Even so, it is worth noting that the percentage of
sentences with MOS-R ≤ 3 is systematically high-
est for easy articles and higher for medium than
advanced articles. Inversely, the percentage of sen-
tences with MOS-R > 3 is highest for advanced
articles and higher for medium than easy articles.

Figure 1d visualizes the sentence readability
scores of the first ten sentences of 175 articles
per article level. The heatmap depicts the first ten
sentences of each sampled article rather than sum-
marizing across sentences and articles at the same
article level to demonstrate the relative homogene-
ity of sentence reading scores for articles at the
same article level and the systematic increase in
the proportion of more demanding sentences across
individual articles with higher article levels.

7 Discussion

Study 1 investigated the performance of linguis-
tically informed readability models and readabil-
ity formulas for sentence-wise readability assess-
ment for two common ARA tasks: precise predic-
tive regression (Section 5.2) and ranking to iden-
tify simplified sentences in sentence simplification
pairs (Section 5.3). The results showcase the ver-
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(d) Predicted sentence readability for the first ten sentences of 175 randomly sampled easy, medium, and advanced articles. Each
sentence is represented by a cell. Its readability is encoded with the cell color. The cell’s position on the x-axis encodes the article
it belongs to and its position on the y-axis its position in that article, e.g., the third sentence in each article is located at y = 3.

Figure 1: Sentence readability profiles predicted by our complexity-based model on the Spotlight-DE corpus grouped
by article levels (easy, medium, advanced) to showcase differences in sentence readability across documents at
different difficulty levels.

satile performance of linguistically informed read-
ability models: only our complexity-based model
achieved top performance for both tasks. For the
more difficult and authentic task of precise predic-
tive regression, we showed that our linguistically
informed complexity-based model clearly outper-
forms simplistic formulas and set a new SOTA per-
formance (RMSE=0.685) on the data set. The bet-
ter performance cannot be exclusively attributed to
the statistically stronger method, because on both
tasks, the complexity-based model clearly outper-
formed the length-based model. This shows that
broad linguistic modeling adds valuable insights
beyond the powerful statistical training method.

For ranking, all ARA models achieved an accu-
racy well above 90% and two readability formulas
performed at par with our complexity-based model.
This shows that even simple ARA approaches can
successfully distinguish relative differences in read-
ability between content-wise equivalent sentences
that are being introduced by text simplification.

Despite being a rather artificial task, this has some
limited applications, e.g., when evaluating machine
translation and text simplification systems.

In Study 2, we used our complexity-based model
to inspect the sentence-wise readability profiles of
leveled texts for L2 readers. Our findings clearly
show that while there is a tendency for easier
texts to contain more sentence with lower difficulty
scores, also medium and advanced texts contain
mostly accessible sentences. It is really the pres-
ence of difficult sentences within documents that
dictates an articles’ overall readability. This has
clear implications for the design and simplification
of educational materials: to efficiently adjust the
overall readability level of a text, we need to iden-
tify specific sentences that form language barriers
rather than simplifying the entire text.

8 Conclusion

We have presented a new SOTA sentence-wise
ARA model for German L2 readers which is pub-
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licly available and accessible for users with min-
imal background in R. Leveraging broad linguis-
tic insights, it predicts readability with a margin
of error even below the acceptable disagreement
range for humans raters. We showed that to flag
simplified sentences also traditional readability for-
mulas suffice, but that broad linguistic modeling is
needed to obtain the precise predictive readability
estimates that are often required in practice (e.g.,
to adapting learning and teaching materials).

We further explored leveled articles for German
L2 readers to illustrate the practical benefits of
sentence-level ARA and gain insights into text pro-
files of leveled documents. Our findings highlight
that the readability of texts is driven by the max-
imum rather than the overall readability of sen-
tences. This has direct implications for the adap-
tation of teaching materials, which should focus
on identifying specific sentences posing language
barriers rather than the simplification of all or any
sentence in a text. To our knowledge, this is the
first time detailed analysis of sentence profiles of
leveled reading materials for German. Future work
should further explore the implications of this for
text simplification, for example using eye-tracking
studies. Our work lays the foundation for further
research on ARA for German and opens up nu-
merous opportunities for educational applications,
such as ARA for captions and task descriptions in
school books or the analysis of social media and
chat conversations with L2 learners.
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A Definition of readability formulas

Equation 1 shows the general form of all four read-
ability formulas consisting of an intercept (β0), a
weighted sentence length estimate (β1 × SL), and
a weighted word length estimate (β2 ×WL).

y = β0 + β1 × SL+ β2 ×WL (1)

Table 5 shows the respective weights (β0, β1, β2)
and measurement units for sentence length (SL)
and word length (WL). Equation 2 specifies the

y β0 β1 β2 SL WL

LIX 0.0 1.0 1.0 words syll.
ARI 180.0 −1.0 −58.6 words syll.
MER 164.9 −1.9 −18.8 words char.
WSF 0.0 0.2 1.0 words Eq. 2

Table 5: Weights and measurement units across read-
ability formulas (syll. = syllables, char. = characters)

definition of the composite score for word length
used in the Erste Wiener Sachtextformel.

WLWSF = 0.19× 3SW + 0.13× 6CW

−0.03× 1SW − 0.88,
(2)

with 3SW being the percentage of three or more
syllable words, 6CW being the percentage of six
or more character words, and 1SW being the per-
centage of monosyllabic words. All weights in
Table 5 and Equation 1 have been rounded to one
decimal point for simplicity.

152

https://aclanthology.org/2021.nlp4call-1.4.pdf
https://aclanthology.org/2021.nlp4call-1.4.pdf
https://www.aclweb.org/anthology/C18-1026
https://www.aclweb.org/anthology/C18-1026
https://doi.org/10.2307/3587656
https://doi.org/10.2307/3587656


B Prediction differences between
different degrees of simplification

0.019

−1

0

1

2

strong weak

Degree of simplification

re
a
d
a
b
ili

ty
(o

ri
g
in

a
l)
 −

 r
e
a
d
a
b
ili

ty
(s

im
p
lif

ic
a
ti
o
n
)

W: 6363; Cohen's d: 0.31 (small)

(a) CBM

0.035

−1

0

1

2

strong weak

Degree of simplification

re
a
d
a
b
ili

ty
(o

ri
g
in

a
l)
 −

 r
e
a
d
a
b
ili

ty
(s

im
p
lif

ic
a
ti
o
n
)

W: 6501; Cohen's d: 0.25 (small)

(b) LBM
0.0052

−50

0

50

strong weak

Degree of simplification

re
a
d
a
b
ili

ty
(o

ri
g
in

a
l)
 −

 r
e
a
d
a
b
ili

ty
(s

im
p
lif

ic
a
ti
o
n
)

W: −2.8247; Cohen's d: −0.36 (small)

(c) MER

0.0036

−80

−40

0

40

strong weak

Degree of simplification

re
a
d
a
b
ili

ty
(o

ri
g
in

a
l)
 −

 r
e
a
d
a
b
ili

ty
(s

im
p
lif

ic
a
ti
o
n
)

W: 6046; Cohen's d: −0.3 (small)

(d) ARI
0.023

−10

0

10

20

30

40

strong weak

Degree of simplification

re
a
d
a
b
ili

ty
(o

ri
g
in

a
l)
 −

 r
e
a
d
a
b
ili

ty
(s

im
p
lif

ic
a
ti
o
n
)

W: 8986; Cohen's d: 0.35 (small)

(e) LIX

0.0068

0.0

2.5

5.0

7.5

strong weak

Degree of simplification

re
a
d
a
b
ili

ty
(o

ri
g
in

a
l)
 −

 r
e
a
d
a
b
ili

ty
(s

im
p
lif

ic
a
ti
o
n
)

W: 8993; Cohen's d: 0.35 (small)

(f) EWS

Figure 2: Predicted readability difference between regu-
lar and simplified sentences by degree of simplification
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