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Abstract

Argument Unit Recognition and Classification
aims at identifying argument units from text
and classifying them as pro or against. One of
the design choices that need to be made when
developing systems for this task is what the
unit of classification should be: segments of
tokens or full sentences. Previous research sug-
gests that fine-tuning language models on the
token-level yields more robust results for clas-
sifying sentences compared to training on sen-
tences directly. We reproduce the study that
originally made this claim and further investi-
gate what exactly token-based systems learned
better compared to sentence-based ones. We
develop systematic tests for analysing the be-
havioural differences between the token-based
and the sentence-based system. Our results
show that token-based models are generally
more robust than sentence-based models both
on manually perturbed examples and on spe-
cific subpopulations of the data.

1 Introduction

Identifying argumentation units is difficult, both
for humans and machines. The challenge starts
with the question of what it means for a segment
to be argumentative towards a given topic in the
first place (Trautmann et al., 2020; Habernal et al.,
2014, e.g.). Trautmann et al. (2020) propose a
pragmatic approach for defining arguments and ask
annotators to identify segments that can be placed
in the <argument span> slot of the following tem-
plate: “<TOPIC> should be supported/opposed,
because <argument span>”. They compare mod-
els that are trained to label tokens as being part
of argumentative segments to models that clas-
sify full sentences as containing argumentative seg-
ments (ARG) or not (non-ARG) (see Figure 1), ul-
timately arguing that token-based training is prefer-
able. Their experiments suggest that a token-based
approach is more robust when sentence boundaries
are unknown or not precisely given.

Argumentative segments provide reasons for tak-
ing a positive (pro) or negative (against) stance on
a topic. These arguments are highly topic-specific,
but the decent accuracy of cross-topic models indi-
cates that there are also topic-independent cues.
Niven and Kao (2019) previously showed that
transformer-based models learn to map specific
cue words to a label and learn little about argu-
mentation reasoning. It could be that this is the
most we can expect in a cross-topic scenario. The
question then remains where these cues are found:
are they in the ARG segments themselves or are
they also provided by the non-ARG context? When
comparing token-based and sentence-based mod-
els, we expect token-based models to be better at
picking up cues that are specific to ARG segments
themselves, whereas sentence-based models may
be more susceptible to cues from the non-ARG con-
text, in particular, when these appear to announce
an argumentation (e.g. because I think that...). Re-
liance on (non-ARG) cues is a particularly strong
signal that general cues rather than reasoning are
used.

In this paper, we dive further into this line of re-
search. We rerun experiments with the best models
of Trautmann et al. (2020) to ensure a fair basis
of comparison, reproducing most of the original
results and coming close for the rest. We then de-
sign multiple robustness tests comparing the behav-
ior of token- and sentence-based models in mixed-
segment sentences, i.e. sentences that contain at
least one ARG segment and one non-ARG seg-
ment. We expect token-based models to be more
robust because they are trained to distinguish be-
tween ARG and non-ARG segments within sen-
tence boundaries and thus have access to more pre-
cise information as to what makes up an ARG seg-
ment during training. This hypothesis is confirmed
by our perturbation tests, which also show different
behavior on subpopulations of the data. We thus
show that a relatively small, curated dataset of ad-
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Figure 1: An example sentence from the AURC-8 (Trautmann et al., 2020) topic gun control. Each sentence in the
dataset has one vector of token-wise gold labels (in- and output in a sequence labeling approach, i.e. token-based)
as well as one sentence-wise gold label (in- and output in a sequence classification approach, i.e. sentence-based).
ARG and non-ARG gold segments are sequences of tokens that carry the same label.

versarial examples can provide systematic insights
into model behavior. Additional robustness tests
with subpopulations of the data surprisingly do not
yield clear differences between the two approaches.

2 Background and Related Work

In this section, we first present related work on
argument unit recognition (§2.1) and then dive fur-
ther into the concept of robustness tests (§2.2).

2.1 Argument Unit Recognition

Argumentation theory is about identifying how
humans reach common ground and compromise,
how societal information is exchanged, what the
degree of subjectivity in viewpoints is and how
polarised different stances can be. In the digital
era, arguments from a wide range of sources are
analysed. These sources range from debates on
social media and (online) fora to technical docu-
ments used by professionals in the legal domain.
Arguments roughly reflect the rationale behind a
stance or decision, in relation to a certain topic
or proposition. The field of computational argu-
mentation attempts to model the argument patterns
that are present in human language. Lauscher
et al. (2021) distinguish between different tasks
in argument modeling: ∼mining, ∼assessment,
∼reasoning, and ∼generation. Argument Unit
Recognition and Classification is a task that can be
positioned within argument mining, as argumenta-
tive from non-argumentative expressions are first
distinguished, and a stance is then attributed to each
of the identified arguments. Ajjour et al. (2017)
show that the task of segmenting a text into argu-
ment units of different types remains particularly
challenging in a cross-domain setting.

The first part of this research aims to reproduce
the Argument Unit Recognition and Classification
experiments by Trautmann et al. (2020), who train
multiple transformer-based models on a novel ar-
gumentation dataset that is labeled at the token

level: spans of tokens are then predicted as being
pro, against or non-argumentative towards a given
topic.

Argument mining has been thoroughly ap-
proached by (Bi-)LSTM modeling (Eger et al.,
2017), SVMs and RNNs (Niculae et al., 2017).
Apart from Trautmann et al. (2020), however,
transformer-based architectures have been de-
ployed more rarely. Poudyal et al. (2020) show how
RoBERTa (Liu et al., 2019) can successfully be ap-
plied on the legal ECHR dataset on a claim-premise
task. Ruiz-Dolz et al. (2021) test several flavors
of BERT models (Devlin et al., 2019) on the same
task, but on a less domain-specific debate corpus.
Mayer et al. (2020a) compare different domain-
generic and -specific transformer-based models in
combination with CRF and GRU layers on med-
ical texts. Similarly to Trautmann et al. (2020),
they experiment with both sequence labeling and
sequence classification, applying the former to a
component detection task, and using the latter to
classify relations between argument components.

The next subsection provides background and re-
lated work on the second contribution of our paper:
testing robustness.

2.2 Robustness Testing

Goel et al. (2021) describe three ways of testing ro-
bustness: (1) testing on subpopulations of the test
data the model is expected to perform poorly on;
(2) perturbing the test data by creating adversarial
examples (Zhang et al., 2020) that are expected to
shed light on weaknesses of the model; (3) assess-
ing model performance on pre-existing evaluation
sets to establish scalability and cross-domain va-
lidity. We briefly discuss the role of each of these
three in our work.

We design three subpopulation tests, two of
which are based on similarity between training and
test instances and one based on the ratio of argu-
mentative tokens in a sentence. We also design
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three perturbation tests. The first design choice
involves the level of granularity, which is usually
on the word- or phrase-level. In our case, per-
turbation units are aligned with the granularity of
the annotated spans, i.e. the ARG or non-ARG
segments remain intact but are combined in differ-
ent ways. A second point of attention in creating
perturbations is the risk of altering the grammar
or semantics in an unintended way. Automatic
metrics have been utilised to determine whether
linguistic aspects are preserved after perturbation,
such as the Jaccard similarity coefficient, grammar
and syntax related measurements and edit-based
measurements (Zhang et al., 2020). These may be
relatively fast to use, especially on a large scale, but
might fall short in tasks where generating adversar-
ial candidates goes beyond relatively simple, single
word substitutions. We therefore opt for manual
verification of our samples. Trautmann et al. (2020)
include the third type of robustness test already in
that they apply cross-topic evaluation. Since we
are mostly interested in the models’ generic ability
in identifying argumentative segments, we apply
our robustness tests in the cross-topic setting only.

A handful of studies have applied robustness
tests to transformer-based models on an argument
mining task. Schiller et al. (2021) apply para-
phrases, spelling alterations and negation stress
tests on a stance detection task. Niven and Kao
(2019) apply a negation stress test on a Argument
Reasoning Comprehension Task, where negating
a warrant (i.e. a type of argument) should result in
predicting the inverted label. Mayer et al. (2020b)
protract robustness testing into adversarial training:
by inserting or replacing simple linguistic elements
in the original data, such as nouns, scalar adverbs
and punctuation, they use the perturbed examples
for retraining the model, achieving higher perfor-
mance. Mayer et al. (2020b) show the effectiveness
of single, token-level perturbations, while aiming
to control for same-meaning preservation between
the original and perturbed example pairs. Instead,
we focus on the different argumentative load that
different parts of a sentence carry to guide our per-
turbations, and ensure that the result of each per-
turbation is semantically sound (yet not unaltered).
Finally, the in-domain versus cross-domain compar-
ison is a more frequent type of testing, but it is of-
ten approached from a generalisability perspective
(how well does the model perform on cross-domain
data?), which has a slightly different connotation

from a robustness perspective (how well does the
model defend itself from specific adversaries in
cross-domain data?). Our work can be seen as
an extension to Trautmann et al. (2020), who find
that token-based models are more robust against
sentence segmentation errors than sentence-based
models. Our robustness tests go beyond their work
in that they show that token-based models are also
more robust compared to sentence-based models
in well-formed sentences with manipulated combi-
nations of ARG and non-ARG segments. Further-
more, the phenomena that we are testing robustness
on are more likely to occur than scenarios in which
sentence boundaries are not given.

3 Reproduction Experiments

This section describes our reproduction study, in-
cluding the dataset used (§3.1), the experimental
setup (§3.2), the model evaluation metrics (§3.3),
and the requirements for a successful reproduction
together with our results (§3.4).

3.1 Dataset Description

The AURC-8 dataset developed by Trautmann et al.
(2020) is divided over eight topics: 1. abortion
2. cloning 3. marijuana legalization 4. minimum
wage 5. nuclear energy 6. death penalty 7. gun
control 8. school uniforms. In their manual labeling
process, annotators were presented with candidate
sentences in which arguments related to one given
topic were possibly present. Argument spans were
annotated according to the slot-filling template

“<TOPIC> should be supported/opposed, because
<argument span>”. This results in spans anno-
tated as PRO (a supporting argument) or CON
(an opposing argument). Spans that remain un-
labeled are assigned NON (a non-argumentative
segment). As an example, both underlined spans in
the following sentence about death penalty are la-
beled as CON segments: ‘It does not deter crime
and it is extremely expensive to administer .’ In-
stead, the first underlined span in the following
sentence about gun control is labeled as a CON
segment whereas the second span is labeled as
PRO: ‘Yes , guns can be used for protection but
laws are meant to protect us , too .’ In both exam-
ple sentences, the spans of adjacent non-underlined
tokens form the NON segments. The dataset con-
sists of 1,000 example sentences per topic. Of the
8,000 total sentences, 3,500 (43.75%) are annotated
as ARG and 4,500 (56.25%) as non-ARG. The por-
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tion of ARG sentences is divided over 658 exam-
ples (14.62%) containing exclusively PRO seg-
ments, 621 examples (13.80%) containing exclu-
sively CON segments and 3,221 (71.58%) contain-
ing any combination of PRO, CON and NON
segments.1

The models are run on two different splits of
the data: in-domain and cross-domain. In the in-
domain setup, the first 70% of the examples from
each of the Topics 1-6 is assigned to training, the
next 10% to the development set, and the last 20%
to the test set. The cross-domain setup assigns all
sentences from Topics 1-5 to training, Topic 6 to
development, whereas Topic 7 and 8 form the test
set.2

3.2 Experimental Setup

We use two training approaches: token-based and
sentence-based.

Token-based Models are trained on the sequence
of token-wise gold labels, in a sequence-labeling
fashion. The input to the model are tokenised sen-
tences.

Sentence-based Models are trained on a
sentence-level gold label, in a sequence-
classification fashion. The sentence-level gold
label is a modification of the token-level gold
labels. Let tL be the set of labels assigned to
individual tokens in a sentence, and fPRO and
fCON the number of tokens in the sentence that
are labeled as PRO and CON , respectively. Then,
the sentence label sL is obtained as follows:

tL = {NON}, sL := NON
tL = {NON,PRO}, sL := PRO
tL = {NON,CON}, sL := CON
tL ⊇ {PRO,CON}:

if fPRO > fCON , sL := PRO
if fCON > fPRO, sL := CON
if fPRO = fCON , sL := random3

The input instance fed to the sentence-based
model is the same tokenised sentence used as input
in the token-based model. Instead of feeding along
a sequence of token-wise labels, we feed its unique
sL. The output is a predicted sL.

1In this calculation, NON segments that are solely formed
by punctuation marks are ignored.

2Visit Appendix A for additional details on dataset version-
ing and pre-processing of the data.

3A random choice from {PRO,CON} is made.

We re-train the models based on the architec-
ture that performed best in the original paper:
BERTLARGE (Devlin et al., 2019). We also train
a token-based model with a CRF layer.4 In the
original results, the CRF layer improved segmen-
tation. The model without CRF more often broke
segments up into multiple single-word segments.

For each domain split, for each model setup we
carry out series of 5 training runs with a differ-
ent random seed for each run. We report mean
F1-scores and standard deviation for each series
of runs. Hyperparameter settings are reported in
Appendix A.

3.3 Model Evaluation

The models are evaluated on two metrics: token-F1
and sentence-F1.5 Token-F1 is calculated as the av-
erage over the per-class F1-scores for all tokens in
the evaluation set. Sentence-F1 is the average over
per-class F1-scores for all sentences in the evalua-
tion set. Whereas token-F1 is straightforward for
the token-based setup, and sentence-F1 is for the
sentence-based setup, one extra step is needed to
retrieve the sentence labels from the token-based
predictions, and token labels from the sentence-
based predictions. When using the token-based
model, we obtain the sentence labels from the as-
signed tokens using the same approach as described
in §3.2. After applying the sentence-based model,
we obtain token labels by assigning the predicted
sentence label to all tokens of the sentence.

3.4 Reproduction Results and Considerations

We consider the mean F1-scores over three runs
from Trautmann et al. (2020) as the benchmark for
the reproduction comparisons. We follow Moore
and Rayson (2018) and provide F1-distributions
reporting the mean and standard deviation from
our experiments. It remains a methodological chal-
lenge to determine a threshold within which a score
can be defined as successfully reproduced. We
follow Reuver et al. (2021) and consider the re-
production successful if given a distribution of re-
produced F1-scores D, the original mean F1-score
falls within two standard deviations from the mean

4We were not able to re-implement the CRF layer for the
sentence-based approach and could therefore not include this.

5Trautmann et al. (2020) also include a third metric:
segment-F1. Given that the description of their implementa-
tion remains underspecified and since the metric is not strictly
relevant to our work, we report the original segment-F1 results
in Appendix A along with our own segment-F1 implementa-
tion.
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token-F1 sentence-F1

setting model
token

-based setup

sentence

-based setup

token

-based setup

sentence

-based setup

BERTLARGE .683 .627 .709 .715
orig

BERTLARGE+CRF .696 .622 .711 .725

BERTLARGE .698 (.003) .614 (.008) .708 (.004) .713 (.012)
in-domain

repr
BERTLARGE+CRF .696 (.003) - .711 (.006) -
BERTLARGE .596 .544 .598 .602

orig
BERTLARGE+CRF .620 .519 .610 .573

BERTLARGE .587 (.008) .529 (.011) .604 (.009) .566 (.017)
cross-domain

repr
BERTLARGE+CRF .578 (.008) - .609 (.007) -

Table 1: Original results (white background) compared to reproduction results (non-white background) on the test
set. Models are divided over an in- and cross-domain setting. Reproduction results show the mean scores from 5
runs, along with the standard deviation (within parentheses). The reproduction scores where the original score falls
within two standard deviations from the mean are given in bold.

of D. We provide all individual decisions on the
test set for a more accurate comparison, since F1-
scores can still stem from different behavior on
sub-populations of the data.

At a first glance, the differences between the
original and replicated results are relatively small
for both token-based and sentence-based models.
One pattern from the original paper is not repro-
duced, namely, the positive effect on performance
by the CRF layer on the token-based model. In
the light of the threshold of two standard devia-
tions, we observe in Table 1 that reproductions are
partially successful. On the test set, 5 out of 6
F1-scores are reproduced in the in-domain setting,
and 4 out of 6 in the cross-domain setting. Success
rate of reproduction does not seem to depend on
training setup either: 6 out of 8 for token-based
versus 3 out of 4 for sentence-based. Scores that
are not reproduced come close as they fall within
half a decimal from the original.6

4 Robustness Testing

We test robustness in a cross-domain setting. By
isolating this problem from topic-dependent con-
tent biases, the models are expected to focus more
on indicators that are representative of a generic
notion of argumentation. While a token-based
model is explicitly instructed that there are fine-
grained argumentative differences within a sen-

6See Table 5 in Appendix A for a complete overview of
the reproduction results. It can be observed that none of
the segment-F1 metrics are reproduced, probably caused by
a slightly different implementation of how these scores are
calculated.

tence, a sentence-based model is not. Therefore,
we expect the sentence-based models to have more
difficulty in predicting the cues that are argumenta-
tive on a micro-level (i.e. tokens, segments), which
translates to difficulties at the macro-level (i.e. the
sentence). Our robustness tests precisely operate
at a micro-level: adding, replacing or removing
segments should impact the sentence-based model
more negatively than the token-based model.

We apply robustness tests to the two cross-
domain token-based models (BERTLARGE,
BERTLARGE+CRF) and the sentence-based model
(BERTLARGE). We investigate robustness for the task
as a binary prediction problem (Argument Unit
Recognition) and remove the stance component:
ARG entails both labels PRO and CON , and
non-ARG corresponds to NON . As anticipated in
§2.2, we categorise the robustness tests according
to two classes: perturbations on the test set (§4.1)
and subpopulations of the test set (§4.2).

4.1 Perturbations on the Test Set

We craft a before-dataset and after-dataset in the
following way. First, artificial candidate test sets
are generated through deletion, recombination or
label-based pre-selection of segments. The seg-
ments are sampled from the original test set. Sec-
ond, we manually label or complete the candidate
examples. We create three types of tests T1, T2
and T3. We report on the impact of the perturba-
tion through ∆acc, i.e. the difference between the
accuracy before and the accuracy after the pertur-
bation has been applied. Hence, each example in
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either the before- or after-dataset has one gold la-
bel (at the sentence-level) on which the models are
evaluated.

T1 - Announcing Segments Observations in
the original test set show that non-ARG segments
can broadly be divided in segments that announce
(ANN) an immediately subsequent ARG segment,
and segments that do not (non-ANN). For instance,
ANN segments are phrases the include literal argu-
ment indicators such as evidence, claim, argument,
reason followed by a copula, and phrases that in-
clude reporting verbs. Examples:

ANN
. . . a major argument against this topic is. . .
. . . he thinks that. . .

non-ANN
. . . this document was written in 2022 and. . .
. . . but. . .

ANN segments are an example of information that
is known to be non-ARG by the token-based model,
but not by the sentence-based model where it falls
under a coarse-grained, sentence-level ARG label.
Since ANN segments mostly co-occur with ARG
segments, the sentence-based model is likely to
mix them up. The token-based model may also
use an ANN segment as signal that an ARG is
following, but has better chances of using informa-
tion from the following segment itself to identify
when this is not the case. We test this by creat-
ing counter-examples that concatenate ANN seg-
ments to a subsequent non-ARG segment. This
results in non-ARG sentence-level labels, for in-
stance, ‘Pro-abortion politicians think that...’ +

‘...the debate has become very delicate.’. If our
theory is correct, the token-based model would
generally be able to classify the two segments sep-
arately as non-ARG, resulting in a non-ARG label
for the sentence, whereas the sentence-model is
more prone to label the sentence as ARG based on
the ANN segment.

concatenation sentence gold

before
ANN non-ARG seg.

+ ARG seg.
ARG

after
ANN non-ARG seg.

+ non-ARG seg.
non-ARG

We first extracted candidate < a, b > pairs,
where a is an ARG segment, b is a non-ARG seg-
ment and a is immediately followed by b in the
same sentence from the original AURC-8 dataset.
Pairs that do not form a full sentence are manually
discarded. Subsequently, we manually labeled the
non-ARG segments as (non-)ANN, until reaching
100 ANN annotations for the gun control topic and
100 for school uniforms. Each ANN segment (e.g.
‘Pro-abortion politicians think that...’) is then man-
ually completed with a novel non-ARG segment
(e.g. ‘...the debate has become very delicate.’) to
form a full non-ARG sentence and is added to the
after-dataset. The respective < a, b > pairs are
added to the before-dataset.

T2 - Concatenate Non-Argumentative Sentence
Here we test robustness by concatenating an ARG
segment with a pure non-ARG sentence. In be-
tween the two segments, the connector ‘and be-
sides,’ is used to create a well-formed sentence.
This results in constructions where the ARG seg-
ment ends up in a context of a relatively high num-
ber of non-ARG tokens. Such a concatenation
would result in e.g.: ‘Uniforms force conformity’+
‘and besides,’ + ‘it’s a great service for parents
as I was able to pick up lots of good stuff for lit-
tle money.’ The token-based model is expected to
classify the two segments as ARG and non-ARG
respectively, resulting in a sentence-wise ARG la-
bel prediction. The sentence-based model might
be more biased by the high ratio of non-ARG to-
kens that are present in the sentence, potentially
resulting in a sentence-wise non-ARG prediction.

concatenation sentence gold

before ARG seg. ARG

after

ARG seg.

+ connector

+ non-ARG sent.

ARG

We populate a candidate dataset with concatena-
tions of an ARG segment, the connector and a pure
non-ARG sentence, in that order. The components
in each concatenation (except for the connector,
which is constant) are on the same topic and are
sampled from the original test set. The ARG seg-
ment should be a full stand-alone sentence. From
this candidate dataset, we then select 50 examples
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for gun control and 50 for school uniforms that are
sound, stand-alone sentences to be added to the
after-dataset. The before-dataset consists of the
respective ARG segments.

T3 - Remove Non-Argumentative Segment In
this test, we remove the non-ARG context around
the remaining ARG segment creating uncontextu-
alised argument units. We expect this perturbation
to have less impact on the token-based model, as its
decision is potentially less informed by the missing
non-ARG segments.

concatenation sentence gold

before

ARG seg.

+ non-ARG seg.

/

non-ARG seg.

+ ARG seg.

ARG

after ARG seg. ARG

We extract pairs consisting of an ARG and a
non-ARG segment from the original corpus. Both
elements of each pair stem from the same source
sentence and are originally adjacent. We manually
check them to ensure that both the pair and the
ARG segment alone form well-formed sentences.
We select a total of 200 examples with an approxi-
mate 50%-50% split of examples where non-ARG
precedes or follows the ARG segment, as well as
an approximate 50%-50% split between the two
topics. The pairs form the before-dataset whereas
the ARG segments alone form the after-dataset.

4.2 Subpopulations of the Test Set

A subpopulation is a group of test instances that is
selected based upon a criterion that is expected to
influence the performance of the model. We take
it a step further: we consider each instance in the
test set a subpopulation on its own and assign it
a value from a continuous variable in the data. In
our case, the continuous variable is a semantic sim-
ilarity score between train and test data, and the
ratio of noisy (non-argumentative) tokens per sen-
tence, two aspects that generally impact language
classification tasks. The point-biserial correlation
coefficient rpb is then calculated between this con-
tinuous variable and the dichotomous prediction
correctness. Thus, rpb is expected to be lower for

a model when the continuous variable forms less
of a bias on its decisions compared to its effect on
another model.

T4 - Similarity Train-Test Same Labels The
outcome of this test provides an indication of the
impact of semantic similarity between training and
test data on the decision of the model. For each of
the mixed-segment sentences in the test set, a pair-
wise semantic similarity coefficient is calculated
in relation to each of the sentences in the training
set. If the maximum semantic similarity coefficient
for one test sentence corresponds to a training in-
stance with the same label (ARG), the test sentence
is stored in the T4-set along with its coefficient.
The correlation between prediction correctness of
mixed-segment sentences from the T4-set and their
respective maximum similarity coefficients is then
computed. We expect the sentence-based model to
be more affected by it than the token-based model,
given that semantic similarity at the macro-level
of the sentence may be a more prominent indica-
tor for the former model. A token-based setup, on
the other hand, should be able to classify segments
within the sentence as it can rely on explicit ARG
vs non-ARG information. This translates to a cor-
relation coefficient that is expected to be higher for
the sentence-based model than for the token-based
model.

The semantic vector representation of a sentence
is given by its averaged token vectors.7 Sentence
similarity corresponds to the cosine similarity be-
tween the two semantic vector representations of a
sentence pair.

T5 - Similarity Train-Test Opposite Labels For
T5, the maximum similarity coefficient is calcu-
lated in relation to the instances in the training
set that have an opposite label (non-ARG) to the
mixed-segment sentences. Similarly to the T4-set,
a T5-set is created accordingly. This aspect is ex-
pected to have more impact on the sentence-based
model than the token-based model, hence yielding
a weaker correlation for the latter.

T6 - Argumentative Token Ratio Through T6,
prediction correctness is correlated with the argu-
mentative token ratio in mixed-segment sentences
from the test set. This ratio is calculated as the
number of ARG tokens over the number of all to-
kens. In line with the expectations in T4 and T5,

7spacy.io/models/en → en_core_web_lg
v3.3.0.

spacy.io/models/en
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the token-based model should be less affected by
this sentence-level aspect, resulting in a weaker cor-
relation coefficient compared to the sentence-based
model.

4.3 Results Robustness Tests

The perturbation results of T1, T2, T3 are collected
in Table 2, where ∆acc quantifies the impact of
each perturbation. Specifically, ∆acc represents
the difference in accuracy by the models on sen-
tences before and after the perturbation has been
applied. It can be observed that an overall negative
∆acc pattern is present across the grid, which is ex-
pected behavior. The maximum absolute negative
impact is ∆acc = −.077, achieved through T3 on
the token-based model without CRF layer. From a
relative point of view, the sentence-based model is
impacted most with -11.7% on T3.

As an answer to our initial expectations, the
token-based model with CRF layer is more robust
to perturbations than the sentence-based model on
two out of three tests: T1 (Announcing Segments)
and T3 (Remove Non-Argumentative Segment).
This is quantified in terms of both absolute ∆acc
(-.022 on T1, -.068 on T3) and relative ∆acc (-
2.5% on T1, -9.2% on T3). In comparison, the
token-based model without CRF is impacted more
heavily than the sentence-based model in absolute
terms (-.043 versus -.027 on T1; -.077 versus -.076
on T3), but is more robust in relative terms on T3
(-10.1% versus -11.7%). Although the CRF layer
has not proven to clearly increase the token-based
model performance (not observable in Table 1, nor
in Table 2), it appears to improve the robustness of
the model.

Interestingly, the token-based model without
CRF layer is the only one to considerably improve
performance on the T2 after-dataset. This behav-
ior is unexpected since all after-sets were meant
to trick the models rather than to help them. A
possible explanation might be that the connector
‘and besides,’ is often included in the annotated
ARG spans in AURC-8 training instances. This
could represent a general downside of token-based
models: picking up a small cue in the sentence as
ARG, therefore predicting the sentence-wise label
as ARG.

The results of subpopulation tests T4, T5 and T6
are given in Table 3. We hypothesised that continu-
ous aspects in the data (such as semantic similarity
between full sentences in training and test or the

argument token ratio of a sentence) would correlate
more strongly with predictions by the sentence-
based model compared to the token-based model.
This hypothesis could not be confirmed. Apart
from being close to 0, which indicates no correla-
tion, the rpb coefficients for the token-based model
are also close to the coefficients for the sentence-
based model on the same tests T4-6, which indi-
cates no difference in bias between the models.
The perturbation results (T1-3), however, provide
an indication that there are differences between sub-
populations. Specifically, both token-based models
achieve a higher accuracy on each single before-
and after-dataset, which are specific subpopula-
tions of the data. This clear difference in perfor-
mance can be explained by the fact that these tests
do not cover pure, non-argumentative sentences on
which the sentence-based model might be stronger
(as can be inferred from the comparable sentence-
F1 scores between the two types of models in Ta-
ble 1). We therefore believe more research on sub-
populations is needed. In particular, we may inves-
tigate alternative implementations of the continu-
ous variables, such as using Sentence-bert (Reimers
and Gurevych, 2019) for representing the seman-
tics of individual instances or also looking at the
number of semantically similar examples in the
training data.

5 Conclusion

In this study, we partially reproduced the results of
Trautmann et al. (2020) and introduced new robust-
ness tests that showed how token-based models are
generally more robust than models trained at a sen-
tence level on an Argument Unit Recognition task.
We applied two type of tests: perturbations and
subpopulations. With regards to the perturbations,
we found that 1) removing the non-ARG segment
from a mixed-segment sentence, and 2) replacing
the ARG segment with a non-ARG segment in an-
nouncing phrases such as ‘Their main argument
is <ARG>’ or ‘Most politicians against gun leg-
islation think that <ARG>’ negatively impact a
sentence-based model more than a token-based
model. We did not find a difference in bias among
the two types of models with regards to seman-
tic similarity between training and evaluation data,
and high argumentative token ratios at the sentence
level. Instead, we showed that the development of
perturbation test sets itself can shed light on spe-
cific subpopulations of the data: our token-based
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T1 T2 T3

model before after ∆acc before after ∆acc before after ∆acc

token-based

BERTLARGE
.875 (.018) .832 (.033)

-.043
-4.8%

.760 (.035) .830 (.037)
+.070
+9.2%

.760 (.022) .683 (.037)
-.077
-10.1%

token-based

BERTLARGE+CRF
.878 (.021) .856 (.024)

-.022
-2.5%

.790 (.015) .760 (.028)
-.030
-3.8%

.740 (.036) .672 (.023)
-.068
-9.2%

sentence-based

BERTLARGE
.835 (.034) .808 (.053)

-.027
-3.2%

.638 (.059) .640 (.064)
+.002
+0.3%

.652 (.047) .576 (.034)
-.076
-11.7%

Table 2: Impact perturbations on cross-domain token-based and sentence-based models. Mean accuracy and standard
deviation (within parentheses) over 5 runs is reported for each model. Accuracy is calculated on the test set before
applying the perturbation (before) and after applying the perturbation (after). ∆acc represents the absolute and
relative (%) difference between before and after.

T4 T5 T6

model rpb rpb rpb

token-based

BERTLARGE
-.068 (.031) .027 (.009) .028 (.023)

token-based

BERTLARGE+CRF
-.031 (.016) .013 (.029) .046 (.010)

sentence-based

BERTLARGE
-.014 (.034) -.037 (.044) .042 (.037)

Table 3: Impact subpopulations on cross-domain token-based and sentence-based models. rpb indicates the point-
biserial correlation coefficient between prediction correctness and a given aspect of the sentence. The range of rpb
is [−1, 1], where the two extremes indicate a perfect negative and positive correlation, respectively. The coefficients
in the table are the means from 5 runs per model, along with the standard deviations (within parentheses).

models performed better on both mixed-segment
sentences and single argumentative segments.

By approaching the task from a challenging,
cross-domain perspective, we isolated the problem
from model reliance on topic-dependent content.
Our analyses reveal that it is difficult to define a
common denominator for the notion of argumen-
tativeness across topics. They highlighted the im-
portance of the type of knowledge we expect to
be learned by a computational model of argumen-
tation. Structural choices in the annotation setup
can lead to systematic gaps in the dataset that allow
the model to take superficial shortcuts (Gardner
et al., 2020). Robustness tests are a means to detect
such gaps and, as a side effect, help in unraveling
conceptual vagueness.
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retrieved from github.com/trtm/AURC,
and we adapted it to train a sentence-
based model through the transformers.
BertForSequenceClassification class,
at huggingface.co. For both, we used the
large cased pre-trained model with whole word
masking at huggingface.co. We used the
same settings across models: learning rate was
kept at 1e-5, dropout rate at 0.1 and the maximum
length of the tokenised BERT input was set at 64
tokens. Optimizer adopted: AdamW. The batch
size was set at 32 and models were trained for a
maximum of 100 epochs with early stopping if the
performance did not improve significantly after the
10th epoch.

Dataset Versioning Trautmann et al. (2020)
published their results based on the AURC-8
dataset, requested and obtained via e-mail
correspondence. A second version at github.
com/trtm/AURC/tree/master/data of
the AURC-8 dataset was uploaded in a later
moment with, cleaner parsing and encoding
(github.com/trtm/AURC#readme, last
consulted on June 16th 2022) but with the same
number of labels and sentences. The two datasets
differ to a low degree: 4.91% of the sentences
are not equal (n = 393). Of this subset, all
elements show a better cleaning of punctuation
tokens compared to the original. To the best of our
knowledge, this is the only difference between the
original and the updated dataset. Therefore, we
prefer using the updated, cleaner version of the
dataset. We remove duplicate sentences within and
across training set, development set and test set,
per split (see resulting counts in Table 4).

Segment-F1 In order to compute the segment-F1
score, we average over all sentence-wise segment-
F1 scores, for each sentence in the evaluation set.
To obtain a sentence-wise segment-F1 score we
consider all pairs < y, ŷ >, where y is the sequence
of true labels for a segment and ŷ is the sequence
of predicted labels for that segment. Let r be the
overlap ratio between y and ŷ:

r =
|y ∩ ŷ|
|y|

(1)

We only compute r for segments where the label
of y is PRO or CON . If r > .5 and labels are the

same, ŷ is considered a true prediction; otherwise,
a false prediction. The sentence-wise segment-F1
is the number of true predictions over all predic-
tions for that sentence. If the sentence does not
contain PRO nor CON segments, and no PRO
nor CON is predicted, the segment-F1 score for
the sentence is 1.0. See Table 5 for a full overview
of the results, including token-F1, segment-F1 and
sentence-F1.

github.com/trtm/AURC
huggingface.co
huggingface.co
github.com/trtm/AURC/tree/master/data
github.com/trtm/AURC/tree/master/data
github.com/trtm/AURC#readme
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in-domain cross-domain

# topic train dev test train dev test

1 abortion 700 99 200 800 0 0

2 cloning 696 100 200 800 0 0

3 marijuana legalization 699 100 200 800 0 0

4 minimum wage 699 100 200 800 0 0

5 nuclear energy 699 100 200 800 0 0

6 death penalty 700 100 200 0 800 0

7 gun control 0 0 0 0 0 1,000

8 school uniforms 0 0 0 0 0 1,000

Table 4: The eight topics from the AURC-8 dataset (Trautmann et al., 2020) along with the number of sentence
instances per data split after duplicates removal.

token-F1 segment-F1 sentence-F1
token

-based setup

sentence

-based setup

token

-based setup

sentence

-based setup

token

-based setup

sentence

-based setup

model dev test dev test dev test dev test dev test dev test

in-domain

BERTLARGE
.732 .683 .671 .627 .749 .709 .599 .567 .738 .709 .759 .715

in-domain

BERTLARGE+CRF
.743 .696 .637 .622 .750 .724 .552 .547 .744 .711 .731 .725

in-domain

BERTLARGE

.717

(.004)

.698

(.003)

.628

(.005)

.614
(.008)

.776

(.011)

.749

(.005)

.514

(.009)

.500

(.004)

.715

(.008)

.708
(.004)

.726

(.007)

.713
(.012)

in-domain

BERTLARGE+CRF

.716

(.003)

.696
(.003)

- -
.766

(.003)

.743

(.008)
- -

.718

(.008)

.711
(.006)

- -

cross-domain

BERTLARGE
.604 .596 .550 .544 .653 .626 .487 .473 .606 .598 .628 .602

cross-domain

BERTLARGE+CRF
.615 .620 .505 .519 .681 .649 .456 .464 .627 .610 .569 .573

cross-domain

BERTLARGE

.581

(.011)

.587
(.008)

.515

(.012)

.529
(.011)

.630

(.007)

.603

(.011)

.424

(.014)

.433

(.004)

.591
(.016)

.604
(.009)

.596

(.010)

.566

(.017)

cross-domain

BERTLARGE+CRF

.584

(.009)

.578

(.008)
- -

.627

(.012)

.593

(.004)
- -

.601

(.011)

.609
(.007)

- -

Table 5: Full overview of the original results (white background) compared to reproduction results (non-white
background). Models are divided over an in-domain setting and a cross-domain setting. Reproduction results show
the mean scores from 5 runs, along with the standard deviation (within parentheses). The reproduction scores where
the original score falls within two standard deviations from the mean are given in bold.


