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Abstract

Neural Machine Translation (NMT) is an open vocabulary problem. As a result, dealing with
the words not occurring during training (a.k.a. out-of-vocabulary (OOV) words) have long been
a fundamental challenge for NMT systems. The predominant method to tackle this problem is
Byte Pair Encoding (BPE) which splits words, including OOV words, into sub-word segments.
BPE has achieved impressive results for a wide range of translation tasks in terms of automatic
evaluation metrics. While it is often assumed that by using BPE, NMT systems are capable of
handling OOV words, the effectiveness of BPE in translating OOV words has not been explicitly
measured. In this paper, we study to what extent BPE is successful in translating OOV words at
the word-level. We analyze the translation quality of OOV words based on word type, number
of segments, cross-attention weights, and the frequency of segment n-grams in the training data.
Our experiments show that while careful BPE settings seem to be fairly useful in translating
OOV words across datasets, a considerable percentage of OOV words are translated incorrectly.
Furthermore, we highlight the slightly higher effectiveness of BPE in translating OOV words for
special cases, such as named-entities and when the languages involved are linguistically close to
each other.

1 Introduction

One of the key challenges of neural machine translation (NMT) (Sutskever et al., 2014; Bahdanau
et al., 2015) is vocabulary sparsity; irrespective of the amount of data available for training.
As a consequence, all NMT models suffer from out-of-vocabulary (OOV) words. Accordingly,
a significant proportion of sentences in the test set have OOV words. Even with millions of
sentence pairs in training data,1 15% of test sentences contain OOV words, while with limited
training data,2 OOV words appear in more than 60% of the test sentences.

Earlier approaches to tackling the OOV problem include using a very large vocabulary (Jean
et al., 2015), backing off to a dictionary look-up (Luong et al., 2015), and copying OOV words
from source to the target sentence (Gülçehre et al., 2016). However, most recent approaches
are based on splitting the words into smaller units and can be divided into: language-specific
approaches (Smit et al., 2014; Huck et al., 2017), language-agnostic approaches (Sennrich et al.,

1Russian-English from WMT
2Kazakh-English from WMT
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2016; Kudo, 2018; Kudo and Richardson, 2018; Costa-jussà and Fonollosa, 2016; Cherry et al.,
2018), and hybrid approaches (Huck et al., 2017; Banerjee and Bhattacharyya, 2018; Pan et al.,
2020) which inject linguistic information into language-agnostic methods.

Nowadays, the mainstream approach to address the open-vocabulary challenge in the context
of NMT is Byte Pair Encoding (BPE Sennrich et al., 2016), due to its simplicity, applicability
to a wide range of languages, and high performance in terms of automatic evaluation metrics.
BPE incrementally merges the frequent bigrams such that it keeps the most frequent words intact
while splitting the rare ones into multiple segments and the granularity of these subword units is
controlled by a hyperparameter. It is often assumed that by using BPE, NMT systems are capable
of handling OOV words 3, since it represents them as a sequence of subword units (Sennrich
et al., 2016; Wu et al., 2016) and as a result there are very few unseen tokens in the test set
thereby implying that the OOV problem has been almost solved (Huck et al., 2017; Banerjee and
Bhattacharyya, 2018; Liu et al., 2019; Luo et al., 2019; Hu et al., 2020).

Previous approaches only analyze and compare BPE and/or other segmentation strategies
based on their effect on the overall translation performance (Huck et al., 2017; Kudo, 2018;
Gallé, 2019; Provilkov et al., 2020; He et al., 2020). To the best of our knowledge, there is no
study to investigate whether BPE solves the OOV problem at the word-level. In this paper, we
aim to explore 1) to what extent OOV words still hurt the translation quality when using BPE, 2)
how useful is BPE in translating different OOV types, and 3) three potential factors that improve
the translation of BPE-segmented OOV words.

We first explore the translation quality of sentences containing OOV words, showing the
negative effect of the presence of OOV words on translation quality, while all of them are
segmented into subword units. We further examine the translation quality of different types of
OOV words, showing the improved ability of BPE in translating named entities for linguistically
close language pairs, compared to moderate to relatively poor translation quality for other types
of OOV words. We also show that OOV words that received strong cross-attention weights,
have high translation qualities. Next, we explore how the granularity of segments impacts the
translation quality of OOV words. Finally, we show that there is no evidence to support the
positive correlation between the translation quality of an OOV word and occurrences of its
n-grams in the training set.

2 Experimental setup

Datasets We use German-English, Russian-English, and Romanian-English as language pairs
for our experiments. The main reasons to select these languages are twofold: the data sizes
are large enough to eliminate the effect of the amount of data on translation quality, especially
for rare words. Also, since two common types of OOVs are inflected and compound words
in general, we choose Russian, Romanian, and German with varying degrees of morphology
and compound words and as a representative of Slavic, Romance, and Germanic languages,
respectively. For the Russian-English direction, we use the Yandex corpus, Common Crawl,
News Commentary, and Wiki Titles from WMT2020. We preprocess the data by limiting the
length of the sentences to 200 tokens and removing sentence pairs with a source/target length
ratio exceeding 1.5, following previous work (Ng et al., 2019). We use the concatenation of
newstest2017, newstest2018, and newstest2019 for evaluation. As German-English training
set we use Europarl, Common Crawl, and News Commentary from WMT2017 and for the
test set we use newstest2014. Also for Romanian-English, we use all available training data
from WMT2016 and newstest2016 for evaluation purposes. The data prepossessing pipeline
for German-English and Russian-English is similar to Russian-English. We end up with 2.64M,
3.95M, and 612K training sentences and 1078 / 1363, 1830 / 2411, and 926 / 1385 OOV word

3Throughout the paper, OOV refers to an actual non-segmented out-of-vocabulary word, unless otherwise stated.
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types / tokens for Russian-English, German-English, and Romanian-English, respectively. In
order to obtain sub-word segmentations, we train a joint BPE model for German-English and
Romanian-English and we train a BPE model separately for the Russian-English as suggested
by Ng et al. (2019). The number of BPE merge operations is reported for different experiments
in later sections.

Translation model We use the Fairseq 4 NMT system to train the transformer-base model.
Since we are dealing with large enough training data, it is not essential to tune the hyper-
parameters (Araabi and Monz, 2020) and we stick to the default set of parameters reported in the
original transformer paper (Vaswani et al., 2017).

3 Data annotation

In order to analyze BPE usability for different OOV words, we randomly sample 400 unique
OOV words from the set of all OOV words for each language. First, we manually label OOV
types. For this annotation process, we employ a highly qualified native annotator for each
language. It is worthwhile mentioning that one given OOV word may belong to more than one
category. Then, we extract their corresponding translation from the reference sentence. Below,
we explain how we extract the translations of OOV words from the hypothesis sentences and
also how we assign quality labels to them in more details .

Translation of OOV words In order to obtain the word-level translation correspondences
of NMT output, one naive approach is to use statistical word alignments (Dyer et al., 2013).
However, their accuracy for OOV words is poor, due to the very low frequency of OOV words.
Inspired by Garg et al. (2019) and Chen et al. (2020), we use the average wights over heads of
the encoder-decoder cross-attention in the penultimate layer of the transformer to obtain the
corresponding output word for a given OOV word based on the maximum attention and then
manually double-check the results. Also, in order to find the ground truth translations of the
OOV words, we manually inspect the reference sentences to extract the corresponding words.

Translation label In order to measure the translation quality of OOV words, we make use of
adequacy and fluency (Koehn and Monz, 2006) as assessment criteria. Given an OOV word, we
manually assign one of the following three labels to its translation:

• Correct: when the translation is the exact same word or a synonym of the ground truth,
such that when replaced in the reference, it does not hurt the fluency nor adequacy. For
example, “throat inflammation” is acceptable for “laryngitis”.

• Partly correct: when the translation only hurts either adequacy or fluency of the sentence,
but not both. For example, when the translation needs a small morphological change to be
considered correct, e.g., “reserves” instead of “reserve”. Also, a single spelling error which
is most likely to happen in named entities or technical words, falls under this category.
While we acknowledge that some translations labeled “partly correct” might be factually
wrong in possibly harmful ways, we choose to be lenient in the annotation, as NMT systems
are susceptible to make such mistakes.

• Wrong: this translation hurts the adequacy and fluency of the sentence such as addition,
omission, or miss-translation of the word or any part of it, e.g., when the model generates
“donated” instead of “imposing”.

4https://github.com/pytorch/fairseq
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Figure 1: Presence of n-grams of BPE segmented OOV in the De-En training set for OOV words
with different number of segments.

4 How does BPE segmentation benefit OOV words?

With the experimental setup described above, we now focus on answering our research questions.
In this section, we first explore lack of which n-gram is responsible for OOV creation. Next, we
measure to what extent the presence of OOVs impacts translation quality, while practically there
is no unknown sub-word token when using BPE. Then, we see how translation quality differs
for various OOV types. Finally, we investigate three potential factors responsible for different
translation quality of OOV words.

4.1 OOV words in BPE segmented data

Before evaluating how OOV words affect translation quality, we explore which n-grams of the
sequence of BPE segments in the training data are responsible for creation of an OOV word
at inference time. In Figure 1, the horizontal axis shows German OOV words with different
BPE lengths and the vertical axis shows the percentage of their n-grams present in the training
set. For example, given OOV words with three segments, obviously all of the unigrams are
present in the training set, only 72% of their bigrams, and interestingly 0.5% of their trigrams
are present in the training set as part of words that have more BPE segments. We observe that
as the number of BPE segments increases, the presence of BPE n-grams in the training data
increases as well. For various lengths of BPE segmented words, unigrams and bigrams of BPE
segments are very frequent in the training data, while the longer n-grams of BPE segmentes are
less frequent. Therefore, we conclude that lack of presence of longer sequences of OOV n-grams
in the training set are responsible for OOV occurrences, while shorter n-grams are seen in the
training data with a higher rate.

4.2 The effect of OOV words on translation quality

Translation quality can be measured either by automatic evaluation metrics such as BLEU or by
human assessments. While it has been shown that automatic MT evaluations usually fall short
of human assessments (Callison-Burch, 2009; Graham et al., 2014), NMT system development
has mainly focused on improving automatic evaluation metrics. Therefore, we use both Direct
Assessment (DA Graham et al., 2013) as a strong human evaluation score as well as the BLEU
score to see to what extent the translation quality is affected by OOV words when BPE is
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#OOV 0 1 2 ≥3

Kazakh 78 74 70 69
Russian 92 90 80 62

Table 1: Median of direct assessment scores for sentences containing various number of OOV
words in Kazakh-English (low-resource) and Russian-English (high-resource). Since the scores
are not normally distributed, we use the median. The higher the better.

applied. In Direct Assessment, sentences are assigned a score between zero and 100 based on
how adequately they express the meaning of the corresponding reference.

We download the available DA scores of TALP-UPC’s submission (Casas et al., 2019)
and Facebook FAIR’s submission (Ng et al., 2019) to WMT19 5 for the Kazakh-English and
Russian-English translation tasks, respectively. The choice of these language pairs is on the
grounds that we require well-performing systems trained on BPE segmented data together with
their available DA scores. Besides, we select Russian-English as a high-resource regime and
Kazakh-English to represent a low-resource setting. Table 1 shows the median of DA scores for
sentences containing various number of OOV words in Kazakh and Russian. In spite of using
BPE which ensures almost no unknown tokens at inference time, translation quality still suffers
from actual OOV words which existed before applying BPE segmentation. In particular, we
observe that as the number of OOV words increases in a sentence, the DA score drops. This
holds for both languages, where Kazakh is considered a low-resource language and Russian as a
high-resource language. This implies that there is an inverse relationship between translation
quality and the number of OOV words. Therefore, although there are no OOV words in the test
sentences after applying BPE, the translation quality is lower for sentences that contain more
OOV words in the absence of BPE.

To investigate the effect of OOV words on translation quality from the BLEU’s point of
view when using BPE, we take the Romanian-English dataset and add more OOV words to the
test set. In particular, we remove the least frequent words occurring in the training set—that
have also occurred in the test set—from the training set by replacing them with “<unk>” token.
It should be noted that having high rates of OOV words (ratio of number of OOV types to
the vocabulary of test set) is a realistic scenario. Given the Romanian training set with 612K
sentences, newstest2016 has an OOV rate of 10% and the Romanian test set from the Flores-
101 (Goyal et al., 2021) as a NMT benchmark has 42% OOV rate. Also, for the Kazakh-English
training set with 100K samples, the OOV rates for newstest2019 and the Flores-101 test set are
19% and 30%, respectively. It is also plausible to have higher OOV rates for extremely low-
resource language pairs with less than 100K training samples. Figure 2 indicates the decrease
in Romanian-English BLEU score by increasing the rate of OOV words for both word-level
and BPE-level models. Word-level is the model trained with vocabulary set of all actual words
without involving any segmentation, while BPE-level models are trained on varying rates of
segmentation.

It is worthwhile to mention that in order to ascertain whether additional “<unk>” tokens
have not the slightest effect on BLEU score, we use the same “<unk>” rates and randomly
replace them in the training set. These experiments confirm that the drop in BLEU score is not
due to the added “<unk>” tokens and it is solely attributable to model failure in translating higher
rates of OOV words. Based on Figure 2, the model trained with smaller numbers of BPE merge
operations, which splits words into more and shorter segments, is less affected by increasing

5www.statmt.org/wmt19/
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Figure 2: Comparing performance drop in word-level and BPE-level systems with different
number of merge operations with increasing OOV rate in the Romanian-English test set. The
horizontal lines show the performance of baselines without added OOV words.

the OOV rate. For example, with an OOV rate of 32%, comparing with the word-level model,
BPE-10K line is very close to its baseline without added OOV words. With a larger number of
BPE merge operations, the performance drop increases and gets closer to the performance drop
of the word-level model. Thus, we can conclude that a smaller number of BPE merge operations
alleviates the OOV problem. In the next section, we examine this conclusion in more detail.

4.3 Translation quality of different OOV types
In the previous section, we showed how OOV words still affect the translation quality and using
a smaller number of BPE merge operations is presumably more effective to tackle OOV problem.
In this section, we manually analyze the translation quality of OOV words for the systems trained
on BPE segmented data with 10K and 37K BPE merge operations. Figure 3 (a) illustrates the
translation quality of OOV words for three language pairs. Our manual analysis is consistent with
Figure 2, confirming that a smaller number of BPE merge operations is beneficial for translating
OOV words. However,there is an apparent contradiction with Figure 2 showing that a smaller
number of BPE merge operations solves the OOV issue of the word-level model, while based on
our manual analysis, BPE is only able to translate roughly 60% of the OOVs. This contradiction
is due to the fact that BLEU tends to neglect local errors (Guillou et al., 2018) and the manual
assessment is the more precise way to analyze the translation quality of OOV words.

Our preliminary analysis shows that OOV words usually fall into six categories: named
entities (NE), compounds (C), morphological variants (MV), spelling errors (SE), technical
words (T), and foreign words (F). In order to see how well a model trained on BPE segmented
data can translate different types of OOV words, we manually label our sample of 400 OOV
words as described in Section 3 for three different language directions. For each language pair,
we only plot the OOV types with more than 10 OOVs in the corresponding sample of 400 OOV
types. As shown in Figure 3 (b-d), for all language directions, the number of wrong translations is
lower for named entities, especially for German-English and Romanian-English presumably due
to their high rate of lexical similarity and the same Latin script (except for Romanian declensions).
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Figure 3: Statistics of translation quality for systems trained with 10k (dotted bars indicate
BPE-10K everywhere) and 37k BPE merge operations for named-entities (NE), morphological
variants (MV), compounds (C), foreign words (F), spelling errors (SE), and technical words (T).
Numbers in the parenthesis show the count of OOV type in the corresponding sample.

Morphological variants have the lowest rate of correct translations in all language pairs, which
is especially problematic for Russian and Romanian as two morphologically rich languages.
Also, for German as a compounding language, only 56% of compound OOVs are translated
accurately. Translation quality of foreign words, spelling errors, and technical words that are
very rare compared to the other three OOV types, is moderate to slightly higher for foreign
words, as they are mostly English words that are translated to English. In the next sections, we
explore some potential reasons for the quality differences of OOV translations.

4.4 The amount of attention received by OOV words
As mentioned earlier, in order to find the word alignments between source and target sentences,
we use the average over heads of the encoder-decoder attention in the penultimate layer of
Transformer. Specifically, for each BPE segment in the source language, the target token with
the maximum value of attention weight is identified as the aligned token (Garg et al., 2019; Chen
et al., 2020). We use this value to explore the amount of attentions received by OOV words. For
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Figure 4: Average of attention weights received by OOV segments from hypothesis token for
OOV words with different translation qualities. Each cross-attention weight is computed based
on the average weights over heads of the penultimate decoder block. Vertical axis indicates the
weight average over the OOV segments. The higher the median, the darker the color.

this purpose, for each OOV, we take the average over the amounts of attention received by its
segments as the amount of attention payed by the corresponding generated segments. It should be
noted that the same also holds for the maximum over segments in addition to average. Figure 4
indicates that OOV words that are translated accurately have received a significantly higher rate
of attention compared to OOV words with wrong translations. Thus, we hypothesize that the
ability of the model to translate segmented OOV words correlates well with the attention received
by its constituents. Also, we observe that correct OOV translations in Romanian-English and
German-English receive stronger attention than correct OOV translations in Russian-English.
Furthermore, Figure 3 highlights the limited ability of BPE to facilitate the translation of Russian
OOVs into English. Therefore, we conjecture there is an inverse relationship between the
distance of languages involved in the translation and the usefulness of the BPE in translating
OOV words. Another conjecture is that BPE is not a good choice for morphologically-rich
languages as Russian. Although, strategies for morphologically driven segmentations fail at
consistently improving overall translation quality over BPE (Huck et al., 2017; Domingo et al.,
2018), no study is yet to explore the effectiveness of these morphology aware methods with the
focus on OOV words.

4.5 Length of BPE segmented OOV word
BPE keeps the most frequent words intact and splits the rare and unseen words into longer
sequences of segments. In order to scrutinize the relationship between the number of BPE
segments for a given OOV word and its translation quality, we use 10K merge operations,
as it is superior in translating BPE segmented OOV words, shown in Section 4.3. Figure 5
depicts the quality of OOV translation based on their length. First of all, we find that there is
no significant correlation between the type of OOV and the length of BPE segmented OOV in
each language. While the shorter lengths seem to have better translations for Russian-English,
the opposite is true for Romanian-English. Also, OOV words with a length of 3 or 4 segments
have a slightly higher rate of correct translations in the case of German-English. Therefore, we
hypothesize splitting OOV words into longer sequences, which is the spirit of BPE, is more
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Figure 5: Translation quality for OOV words with different number of BPE segments.
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Figure 6: Average of cross-attention weights received by OOV segments from hypothesis token
for OOV words with different number of segments. Each cross-attention weight is computed
based on the average weights over heads of the penultimate decoder block. Vertical axis indicates
the weight average over the OOV segments. The higher the median, the darker the color.

effective where there is a higher degree of similarity between language pairs such as Romanian-
English and German-English, while having more BPE segments seems to be less effective
for Russian-English. Accordingly we hypothesize more effectiveness of BPE for linguistically
similar languages which is consistent with the results of Section 4.4. Figure 6 details the attention
weights received by OOV words with different lengths which is in complete agreement with
Figure 5 showing stronger attention where the length of the OOV words has resulted in higher
translation quality.

4.6 Effect of frequency of BPE segments in training data
In this section, we examine if the translation quality is higher where the n-grams of the BPE
segments of an OOV word are more frequent in the training data. We compare the distribution of
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n-gram frequencies for different quality labels using the one-sided Mann-Whitney U test (Mann
and Whitney, 1947), a non-parametric test to compare the distribution of two groups of data
againts each other. Specifically, for unigrams, we compare the frequency distribution of training
unigrams that have occurred in correct and partly correct, correct and wrong, and partly correct
and wrong translations. We repeat this for n-grams with n ∈ {1, 2, 3, 4, 5}. We find that no
two distributions are significantly different (α = 0.1). Thus, there is no evidence in the data to
support that the distribution of frequencies of BPE segments for various n-grams are different
across different translation qualities.

4.7 Target-side OOVs

So far in the paper, the OOV has always referred to the lack of a source-side word in the training
vocabulary at inference time. One can also consider the target-side OOV word which is not
the purpose of this paper. However, we investigate the relationship between the quality of the
translation of a source-side OOV word and the presence of its corresponding reference or correct
translation in the vocabulary. In particular, the question is to what extent the translation quality
of a given source-side OOV word can be affected when its corresponding correct translation or
its corresponding reference in the target side is also an OOV? In our exploration, we observe
that for a significant number of correct translations, the reference or the correct output of the
model is not present in the training set, which highlights the model ability to generate target-
side OOV words. For German-English and Russian-English the number of correct source-side
OOV translations with the target-side OOV words is higher than the correct translations for the
target-side non-OOV words. However, Romanian-English is vice-versa. Therefore, there is not
a consistent behaviour in all language pairs to support that the target-side OOV has a negative
effect on the translation of the source-side OOV.

5 Conclusion

In this paper, we analyze the translation quality of OOV words in BPE segmented datasets.
Our analysis shows that while BPE has brought significant improvements to NMT in terms
of automatic evaluation metrics, the translation quality still suffers from OOV words. Our
experiments show that splitting OOV words into subwords is more effective where there is higher
degree of language similarity. Also, there is a strong correlation between the translation quality
and the amount of attention received by OOV words. On the other hand, there is no evidence to
support that the translation quality is dependent on the frequency of BPE segment n-grams in
the training data. Moreover, we find that the translation quality is better for named entity OOV
words compared to other word types, especially for language pairs with more lexical similarity.
Furthermore, we showed that automatic evaluation metrics such as BLEU are not able to capture
the effectiveness of a word segmentation method for translations of OOVs. Therefore, manual
analysis on the translation quality of OOV words is essential to compare different approaches,
although it needs annotators in each language and it is very laborious. In future work, we
compare suggested approaches for morphologically-rich languages at the word level.
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