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Abstract

Recent studies in automatic readability assess-
ment have shown that hybrid models — mod-
els that leverage both linguistically motivated
features and neural models — can outperform
neural models. However, most evaluations on
hybrid models have been based on in-domain
data in English. This paper provides further
evidence on the contribution of linguistic fea-
tures by reporting the first direct comparison
between hybrid, neural and linguistic models
on cross-domain data. In experiments on a
Chinese dataset, the hybrid model outperforms
the neural model on both in-domain and cross-
domain data. Importantly, the hybrid model ex-
hibits much smaller performance degradation
in the cross-domain setting, suggesting that the
linguistic features are more robust and can bet-
ter capture salient indicators of text difficulty.

1 Introduction

Automatic Readability Assessment (ARA) predicts
how difficult it is for the reader to understand a
text. Traditional machine learning approaches for
ARA typically train statistical classifiers with hand-
crafted features (Pitler and Nenkova, 2008; Sung
et al., 2015). Similar to other NLP tasks, neural
approaches have recently achieved superior perfor-
mance (Tseng et al., 2019; Azpiazu and Pera, 2019;
Martinc et al., 2021). Combining linguistic fea-
tures and neural models has been found to benefit
a variety of NLP tasks (Lei et al., 2018; Strubell
et al., 2018). While these ‘hybrid’ models have also
been applied in ARA, there have been varying re-
sults ranging from no effect (Deutsch et al., 2020),
marginal improvement (Filighera et al., 2019), to
significant improvement (Lee et al., 2021).

Past studies comparing hybrid and neural mod-
els have mostly been conducted in an in-domain
setting, with the training and test data drawn from
the same source. However, real-word applications
of ARA models are often targeted at cross-domain

or cross-corpus data. Consider the task of retriev-
ing extra-curricular reading materials for language
learning from web texts, which likely diverge in
style and content from the training data. In-domain
evaluation therefore may not accurately reflect the
actual performance on such tasks.

This paper focuses on the task of predicting
the grade level of an input text. We present the
first comparison between hybrid, neural and lin-
guistic models on this task in the cross-domain
setting. Our contribution is two-fold. First, we
show that the hybrid model outperforms the neural
model both in-domain and cross-domain in Chinese
datasets, providing further evidence on the contri-
bution of linguistic features. Second, the hybrid
model exhibits much smaller performance degrada-
tion on cross-domain data, suggesting their robust-
ness and ability to capture more salient indicators
of text difficulty.1

After a review of previous work (Section 2), we
present our datasets (Section 3). We then outline
our approach (Section 4) and report experimental
results (Section 5).

2 Background

2.1 Hybrid model design

Statistical classifiers can be trained on a variety of
features, capturing lexical, syntactic and semantic
characteristics of a text, to determine its readability
or grade level (Dell’Orletta et al., 2011; François
and Fairon, 2012; Sung et al., 2015). While these
classifiers lend themselves to more explainable and
linguistically-motivated results, neural models can
achieve superior performance and do not require
feature engineering (Tseng et al., 2019; Martinc
et al., 2021).

Various methods for combining these ap-
proaches have been investigated. For example,

1Our implementation is available at
https://github.com/hhlim333/ALTA2022Readability



a Bi-LSTM can incorporate part-of-speech infor-
mation (Azpiazu and Pera, 2019). A statistical
classifier can directly use sentence embeddings as
features (2021). It can also incorporate the deci-
sion of the neural model as a single numeric fea-
ture (Deutsch et al., 2020), or ‘soft’ labels express-
ing the probabilities of each grade as predicted by
the neural model (Lee et al., 2021). Our experi-
ments will directly compare the performance of
these three approaches.

2.2 In-domain vs. cross-domain evaluation

There can be a mismatch between ARA training
datasets and the texts on which the ARA model is
deployed. Domain adaptation techniques can be
applied to address differences between native and
non-native texts. For example, scores from an ARA
ranking model trained on graded texts for native
speakers can help estimate the CEFR level of a text
for non-native learners (Xia et al., 2016).

Another type of mismatch is caused by cross-
domain or cross-corpus data, which has been in-
vestigated in the ranking task in ARA. When rank-
ing models are trained on Newsela, they suffered
a performance degradation when tested on On-
eStopEnglish and Vikidia (Lee and Vajjala, 2020).
For the grade prediction task, however, cross-
domain evaluation has been reported mainly in
terms of correlation (Chen and Meurers, 2016).
This may be due to the fact that different grade
scales are adopted in the major benchmarks, such
as Newsela, OneStopEnglish and WeeBit. In this
work we leverage two comparable datasets in Chi-
nese (Section 3) to conduct cross-domain evalua-
tion on hybrid models to assess the contribution of
linguistic features in the grade prediction task.

3 Data

Since the benchmark ARA corpora adopt different
grade scales (Section 2.2), we utilize two datasets
of Chinese-language textbook materials, graded
under comparable scales but drawn from different
sources.

Mainland China texts (in-domain): Drawn
from textbooks for Chinese language used in
Mainland China (Lee et al., 2020), this dataset
consists of 7.15M characters distributed in
4,831 passages in 12 grades (Cheng et al.,
2020).

Hong Kong texts (cross-domain): Chinese-

Grade # text # char
1 50 4793
2 50 9042
3 50 15107
4 50 22191
5 50 28345
6 50 32776
7 50 35957
8 42 32859
9 46 44906
10 35 31179
11 13 22703
12 16 18686

Table 1: Statistics on the corpus of Hong Kong texts

language textbooks in Hong Kong follow
similar language proficiency standards as
those in the Mainland. They are however com-
piled independently from different sources
and use traditional rather than simplified
characters, thus providing a challenging
cross-domain scenario. We constructed a
corpus of 298K characters distributed in 502
passages in 12 grades, all taken from current
textbooks in Hong Kong.

4 Approach

We compared the following ARA models for pre-
dicting the grade (1-12) of an input text.

4.1 Baseline: Neural Model

We fine-tuned2 MacBERT (Cui et al., 2020),
RoBERTa (Cui et al., 2020), BERT (Devlin et al.,
2019) and BERT-wwm (Cui et al., 2020) on the
Mainland dataset for grade prediction.3

4.2 Baseline: Linguistic Model

We trained a statistical classifier on the 221 linguis-
tic features provided by ChiLingFeat 4, an open-
source toolkit that extracts most features used in
previous Chinese ARA studies (Sung et al., 2015;
Lu et al., 2020). We evaluated SVM, Random
Forest (RF), and XGBoost (XGB) using the imple-
mentation in scikit-learn (Pedregosa et al., 2011).

2We used the code by Lee et al. (2021) in default pa-
rameters for fine-tuning, accessed from https://github.com/
yjang43/pushingonreadability_transformers

3We used macbert-large, chinese-roberta-wwm-ext, bert-
base-chinese, and chinese-bert-wwm, respectively.

4https://github.com/ffliu6/ChiLingFeat



Trans- Hybrid In- Cross-
former model type domain domain
BERT Hard labels 0.312 0.288

Soft labels 0.342 0.290
Sent. Embed. 0.322 0.269

BERT- Hard labels 0.295 0.283
wwm Soft labels 0.341 0.278

Sent Embed. 0.318 0.283
RoBERTa Hard labels 0.301 0.285

Soft labels 0.341 0.301
Sent Embed. 0.318 0.287

MacBERT Hard labels 0.305 0.283
Soft labels 0.353 0.309
Sent. Embed. 0.329 0.269

Table 2: Accuracy of the three hybrid model types (Sec-
tion 4.3)

We applied Variance Threshold algorithm in scikit-
learn for feature selection, but obtained the best
result with the full feature set.

4.3 Hybrid Model
Following Lee et al. (2021), we adopted the simple
approach of wrapping linguistic features and neural
model output in a non-neural, statistical classifier.
We evaluated three types of hybrid models:

Hard labels (Deutsch et al., 2020): The grade of
the input text, as predicted by the neural model
(Section 4.1) serves as an additional feature in
the classifier.

Soft labels (Lee et al., 2021): The probabilities of
each grade, as predicted by the neural model
(Section 4.1), serve as additional features.

Sentence Embeddings (Imperial, 2021): The sen-
tence vectors, produced by SBERT (Reimers
and Gurevych, 2019) from the sentences in
the input text, serve as additional features.

5 Experiments

In-domain evaluation used stratified 5-fold cross-
validation on the Mainland Chinese dataset, based
on a train:dev:test split of 8:1:1. Cross-domain
evaluation used the entire Mainland China corpus
as training data, and the entire Hong Kong corpus
as test data. Among the three classifiers, RF out-
performed SVM and XGB in most settings and
metrics. The rest of the paper will refer to results
based on RF.

5.1 Metrics
We use accuracy, F1, adjacent accuracy and
quadratic weighted kappa (QWK) as our metric
for the experiment. For adjacent accuracy, the sys-
tem is considered correct if the predicted label is
within one grade higher or lower than the gold
grade. QWK also helps capture the distance be-
tween gold and predicted grades. These metrics
give a comprehensive evaluation of model perfor-
mance from different perspectives.

5.2 Hybrid model types
Table 2 reports the performance of the three hybrid
model types (Section 4.3). For in-domain evalua-
tion, hybrid models with soft labels outperformed
those with hard labels and sentence embeddings, re-
gardless of the transformer. For cross-domain eval-
uation, that was also the case for BERT, RoBERTa
and MacBERT. The only exception was BERT-
wwm, for which hard labels and embeddings per-
formed slightly better (0.283), but still less accurate
than the other transformers. The results presented
below will be based on soft labels.

5.3 In-domain evaluation
Baselines. As shown in Table 3, the Linguistic
Model yielded 0.276 accuracy in the in-domain set-
ting. It was outperformed by the Neural Model
regardless of the transformer used. MacBERT
achieved the best performance for the Neural
Model on accuracy (0.333) and all other metrics.

Hybrid Model. The Hybrid Model trained on
MacBERT attained the highest accuracy (0.353)
and F1, while RoBERTa led to the best adjacency
accuracy and QWK (tied with BERT). Regardless
of the choice of transformer or metric, the Hybrid
Model outperformed both baselines. The absolute
accuracy gains over the Neural Model ranged from
2.0% (MacBERT) to 4.8% (RoBERTa).5 Consis-
tent with previous results on English datasets (Lee
et al., 2021), linguistic features enhance the perfor-
mance of neural models on the Chinese datasets.

5.4 Cross-domain evaluation
Baselines. As expected, model performance de-
graded in the cross-domain setting. MacBERT pro-
duced the best-performing Neural Model in terms
of all four metrics. Unlike the in-domain evalua-
tion, the Linguistic Model outperformed the Neural

5The improvement is statistically significant for all four
models at p < 0.01 according to McNemar’s Test with conti-
nuity correction.



Metric Linguistic Model (RF) Neural Model Hybrid Model
In- Cross- Transformer In- Cross- In- Cross-

domain domain domain domain domain domain
Acc. 0.276 0.263 BERT 0.303 0.197 (-0.106) 0.342 0.290 (-0.052)

(-0.013) BERT-wwm 0.308 0.196 (-0.112) 0.341 0.278 (-0.063)
RoBERTa 0.293 0.196 (-0.097) 0.341 0.301 (-0.040)
MacBERT 0.333 0.239 (-0.094) 0.353 0.309 (-0.044)

Adj. 0.596 0.561 BERT 0.618 0.504 (-0.114) 0.690 0.656 (-0.034)
Acc. (-0.035) BERT-wwm 0.627 0.485 (-0.142) 0.688 0.639 (-0.049)

RoBERTa 0.599 0.488 (-0.111) 0.699 0.683 (-0.016)
MacBERT 0.644 0.563 (-0.081) 0.685 0.677 (-0.008)

F1 0.259 0.221 BERT 0.273 0.154 (-0.119) 0.338 0.262 (0.076)
(-0.038) BERT-wwm 0.280 0.154 (-0.126) 0.337 0.249 (-0.088)

RoBERTa 0.256 0.147 (-0.109) 0.335 0.273 (-0.062)
MacBERT 0.307 0.198 (-0.109) 0.348 0.276 (-0.072)

QWK 0.739 0.475 BERT 0.759 0.633 (-0.126) 0.841 0.817 (-0.024)
(-0.264) BERT-wwm 0.755 0.612 (-0.143) 0.833 0.782 (-0.051)

RoBERTa 0.731 0.597 (-0.134) 0.841 0.822 (-0.019)
MacBERT 0.768 0.712 (-0.056) 0.829 0.832 (+0.003)

Table 3: Performance of the Hybrid Model and the two baselines. The gap between in-domain and cross-domain
performance is shown in brackets

Training Linguistic Model (RF) Neural Model Hybrid Model
dataset In- Cross- In- Cross- In- Cross-
size domain domain domain domain domain domain
20% 0.281 0.247 (-0.034) 0.267 0.231 (-0.036) 0.325 0.294 (-0.031)
60% 0.286 0.259 (-0.027) 0.307 0.236 (-0.071) 0.337 0.299 (-0.036)
100% 0.276 0.263 (-0.013) 0.333 0.239 (-0.106) 0.353 0.309 (-0.044)

Table 4: Model accuracy at different training dataset size, expressed in percentage of the full dataset. The gap
between in-domain and cross-domain performance is shown in brackets

Model in terms of accuracy (0.263 vs. 0.239) and
F1, though worse in terms of adjacent accuracy
and QWK. Its competitive performance can be at-
tributed to the robustness of linguistic features in
the face of dissimilar materials. While the Lin-
guistic Model degraded only slightly (-0.013) in
accuracy on cross-domain data, the Neural Model
suffered a much more substantial drop (-0.094).

Hybrid Model. The Hybrid Model outperformed
both baselines in all metrics and all transformers.6

MacBERT again led to the best performance in
terms of accuracy (0.309), F1 and QWK, but was
slightly worse than RoBERTa in adjacent accuracy.

The superior performance of the Hybrid Model
resulted from its smaller degradation on cross-
domain data. This can be seen by the gap be-

6The improvement of the hybrid model over the neural
model is statistically significant for BERT, BERT-wwm and
RoBERTa at p < 0.00001 according to McNemar’s Test.

tween in-domain and cross-domain performance,
shown in brackets in the “Cross-domain” column
in Table 3). For all transformers and all metrics,
the gap was substantially smaller with the Hybrid
Model. For example, the gap was only 0.044 cross-
domain but more than doubled (0.094) in-domain
for MacBERT. This suggests that some textual char-
acteristics learned by the Neural Model may be
only accidentally correlated with readability in the
training corpus, while the Hybrid Model benefits
from linguistic features that are more generally rel-
evant to readability and therefore transferable to
new domain.

Our hypothesis can be corroborated with the
analysis on various dataset sizes in Table 4. When
trained on only 20% of the dataset, all three mod-
els exhibited a similar gap between in-domain and
cross-domain performance. With additional train-
ing data, the Neural Model became more accurate



in-domain (0.267 to 0.333). However, the improve-
ment hardly carried over cross-domain, leading to
a growing performance gap (-0.036 to -0.106), pos-
sibly indicating overfit to corpus-specific textual
characteristics. In contrast, the gap shrank for the
Linguistic Model, and remained relatively stable
for the Hybrid Model, even as it improved steadily
in accuracy.

6 Conclusions

We have presented the first cross-domain compar-
ison of hybrid, neural and linguistic models for
ARA. Results on a Chinese dataset show that the
hybrid model outperforms the neural model both
in-domain and cross-domain. Analyses on the gap
between in-domain and cross-domain performance
further demonstrate the robustness of linguistic fea-
tures. While the gap grows for the neural model as
more training data becomes available, it remained
more stable for the hybrid model. These results are
expected to inform future ARA research by show-
ing that linguistic features can help neural models
capture more generalizable characteristics for text
difficulty, especially in the cross-domain context.
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