
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Student Research Workshop, pages 373 - 382

May 22-27, 2022 ©2022 Association for Computational Linguistics

Pretrained Knowledge Base Embeddings for improved Sentential Relation
Extraction

Andrea Papaluca1, Daniel Krefl2, Hanna Suominen1,3, Artem Lenskiy1

1 School of Computing, The Australian National University, Canberra, ACT, Australia
2 Department of Computational Biology, University of Lausanne, Switzerland

3 Department of Computing, University of Turku, Turku, Finland
{andrea.papaluca, hanna.suominen, artem.lenskiy}@anu.edu.au,

daniel.krefl@unil.ch

Abstract

In this work we put forward to combine pre-
trained knowledge base graph embeddings
with transformer based language models to
improve performance on the sentential Rela-
tion Extraction task in natural language pro-
cessing. Our proposed model is based on a
simple variation of existing models to incor-
porate off-task pre-trained graph embeddings
with an on-task finetuned BERT encoder. We
perform a detailed statistical evaluation of the
model on standard datasets. We provide ev-
idence that the added graph embeddings im-
prove the performance, making such a simple
approach competitive with the state-of-the-art
models that perform explicit on-task training
of the graph embeddings. Furthermore, we ob-
serve for the underlying BERT model an inter-
esting power-law scaling behavior between the
variance of the F1 score obtained for a relation
class and its support in terms of training exam-
ples.

1 Introduction

Besides large quantities of unstructured textual
data, also structured data has become widely avail-
able to machine learning researchers in recent
years. Knowledge Bases (KBs), such as Wikidata
(Vrandečić, 2012) (formerly Freebase Bollacker
et al., 2007; Pellissier Tanon et al., 2016), Yago
(Suchanek et al., 2007) and UMLS (Bodenreider,
2004), organise various kinds of information in
structured form and constantly grow in size and
richness of included information.

They are represented in terms of relations be-
tween entities, forming a graph structure that makes
retrieval and processing of the included information
easier and finds particular application in various
language related tasks, such as question answering
(QA), search engine development and knowledge
discovery. Distant supervision (Mintz et al., 2009)

is another notable example that employs a KB to
improve Relation Extraction (RE). For each pair of
entities found in a sentence, distantly supervised
models check whether a link between the entities
in the KB graph exists, and, if there is a match,
the sentence is then used as a training example for
supervised learning.

Note that the utility of KBs for RE extends be-
yond being just a useful source of supervision la-
bels. A natural question arises whether one can
develop models which combine unstructured tex-
tual data with structured information to further im-
prove performance, for general natural language
processing tasks.

One particular class of approaches that has been
gaining momentum is based on the idea of dynam-
ically learning representations of KB entities si-
multaneously with word representations (Bastos
et al., 2021; Nadgeri et al., 2021; Vashishth et al.,
2018). The motivation behind this class of methods
is whether such combined representations could
improve performance for a downstream NLP task,
due to a more representative embedding.

However, although in theory this could result in
optimally finetuned word and graph representations
for the downstream task, it might be challenging in
practice. On-task training of the graph embeddings
requires significantly more complex models, and
therefore increases the training cost and is more
prone to overfitting.

Therefore, instead of training both, graph and
word embeddings, we investigate in this work
whether combining static pre-trained graph em-
beddings, such as those provided in Lerer et al.
(2019), with on-task learned word embeddings al-
ready achieves a significant performance boost for
downstream tasks. The underlying question being
whether a neural model is able to transfer the topo-
logical information contained in the pre-trained
graph embeddings in a useful manner to the task at

373

hand.

2 Related Work

In the following, we would like to briefly review
three particular works in the literature that make
use of the information contained in a KB to im-
prove classification performance on the RE task,
and explain how our work relates to these previous
works.

In Vashishth et al. (2018) the authors propose to
use KBs as a supplementary source of information
to improve on the multi-instance learning paradigm
for RE. Note that in multi-instance RE one aims
at identifying the relation between two targeted
entities, for a given bag of sentences. In particular,
the authors of Vashishth et al. (2018) match the
relation predicted by the Stanford OpenIE (Angeli
et al., 2015) pipeline with the set of relation aliases
found in the KB. Out of this they obtain a matched
relation embedding, hrel, that is then concatenated
to the sentence representation. Similarly, they build
an entity type embedding, htype, using the entity
type found in the KB, which is concatenated as
well to the sentence encoding.

In Bastos et al. (2021) the authors make use of
the KB information to improve on the sentential RE
task. They propose to construct an Entity Attribute
Context embedding, ho, by processing several en-
tity properties found in the KB with the help of
a BiLSTM (Schuster and Paliwal, 1997) encoder.
Additionally, a triplet context embedding, hr, is
learned for each relation triplet by imposing the
translational property in the embedding space (Bor-
des et al., 2013) to the triplet and its KB neighbours.
Finally, the two different representations obtained
are aggregated with the sentence encodings by a
GP-GNN (Zhu et al., 2019) and fed to a classifier
for relation prediction.

The authors of Nadgeri et al. (2021), however,
suggest that statically adding all the available KB
information might be counterproductive in some
case. They rather propose to dynamically select
the useful information. To do so, for each entity
they extract and encode several KB properties with
a BiLSTM (Schuster and Paliwal, 1997), that are
then combined together with the sentence encod-
ing to form a Heterogenous Information Graph.
The relevant context information is then obtained
by pruning this graph with the help of a combina-
tion of graph convolutional neural network (Kipf
and Welling, 2017), pooling and self-attention lay-

B
E
R
T

m
e
a
n

RE

so
ftm

a
x

h
e
a
d

ta
il

E
n
tity

 Filte
r

Barack

Obama

was

born

in

Hawaii

[CLS]

KB

 Pre-trained
Graph Embeddings

FFN
N

FFN
N

B
iA
ffi

n
e

Figure 1: The RE model we make us of, inspired by
Giorgi et al. (2019). The initial encodings of the sen-
tences are provided by a pre-trained language model.
The encodings corresponding to named entities are ex-
tracted, and averaged in case of multi-token entities.
For the graph embedding augmented model the graph
embeddings are in addition concatenated to the relative
entity encodings. Each entity is then decomposed in
a head-tail representation to form the (h, t) candidate
pairs passed to the Biaffine Attention Layer (Dozat and
Manning, 2017) for relation classification.

ers, and finally aggregated and fed to the relation
classifier, similarly to what is done in Bastos et al.
(2021).

Note that the KB embedding is dynamically
learned in all above cited works. Furthermore, in
these examples, it derives from a wide variety of
entity properties and information retrieved from
the KB, but not directly from the graph structure
itself. The only exception being the triplet-context
embedding hr of Bastos et al. (2021), which comes
closest to the graph embedding (Lerer et al., 2019)
we are going to make use of. However, their em-
bedding is trained only on the downstream task, but
not on the full KB.

Therefore, what is so far missing in the litera-
ture, is the basic baseline of simply adding a pre-
computed topology-based KB embedding in order
to improve the RE task performance. In this work
we aim to fill this gap. We provide a detailed evalu-
ation of such a model, which takes pre-computed
KB embeddings into account. As we will show
below, such a simple model extension is in fact
competitive with the more advanced models men-
tioned above on standard benchmark datasets.

3 Model

To perform RE, we make use of the model intro-
duced in Nguyen and Verspoor (2019); Giorgi et al.
(2019). The only difference being that we do not

374

perform Named Entity Recognition (NER), but in-
stead train the model using gold entities, i.e. the
correct span of the entity mentions is fed to the
model as input. Thereby, we are able to evalu-
ate RE performance without contamination with
wrongly predicted entities. We chose this model
for its relative simplicity, while still providing close
to state-of-the-art performance in RE and its high
modularity that allows for easy modifications and
extensions.

The RE classifier we use resembles the one intro-
duced in Nguyen and Verspoor (2019), except that
it is combined with a pre-trained transformer-based
(Devlin et al., 2019; Vaswani et al., 2017) encoder,
as proposed in Giorgi et al. (2019). For illustration,
the complete model is sketched in Figure 1.

The information flows from left to right and the
errors are free to backpropagate through all the
preceding layers. The input of the model is a sen-
tence of N tokens, w1, w2, ..., wN , containing two
or more known entities, ei = wj , wj+1, ..., wj+k.
The output is one or more triplets (h, t, r) repre-
senting the relations found in the input sentence.
h and t represent the head and the tail of the rela-
tion respectively, while r is the type of relationship
between h and t.

A more detailed description of our model
pipeline is given in the remainder of this section.
For reproducibility, we made our model source
codes available on Github 1.

3.1 Pre-trained Language Model

The pre-trained language model provides the initial
encodings for the tokens contained in the sentence.
We opted to use variants of the BERT (Devlin et al.,
2019; Liu et al., 2019) model (specifically, the
implementation of bert-base-cased and roberta-
base by Huggingface (Wolf et al., 2020)), but in
general the encoder can be replaced by any other
encoder capable of providing context-dependent
embeddings of a sentence. We leave the encoder
unfrozen during training such that the gradients can
propagate through it. Thereby its parameters are
fine-tuned to optimize the token representation for
the specific task at hand.

In more detail, we start with the encoder com-
pletely frozen and gradually unfreeze the last four
layers over the first epochs of training, as suggested
for instance in Araci (2019). It has been shown that

1https://github.com/BrunoLiegiBastonLiegi/Pretrained-
KB-Embeddings-for-RE

such training procedure does not necessary yield
a decrease in accuracy, but it does significantly re-
duce the computational burden, c.f., Araci (2019).

3.2 Entity Filter
The purpose of the entity filter is to filter out each
token that does not compose an entity. Two com-
mon choices for multi-token entities are to keep
either the last token or the average of tokens as
identifier of the complete entity. We tested both
cases and did not find any evidence of one being
superior to the other in our application. Therefore,
we opted to take the average encoding among the
tokens composing the entity as identifier.

Note that for the model augmented by a graph-
embedding, we concatenate to the average encod-
ing obtained for each entity, xBERT

i , the relative
graph embedding xgraph

i of Lerer et al. (2019),
such that we obtain for the final input xi of the
RE module

xi = [xBERT
i ,xgraph

i] . (1)

3.3 RE Module
For details of the RE module we refer to the orig-
inal works (Dozat and Manning, 2017; Nguyen
and Verspoor, 2019; Giorgi et al., 2019). In a nut-
shell, the RE module consists of two steps. Firstly,
the head-tail decompositions of the inputs are con-
structed:

x
h|t
i = Fh|t

(
[xBERT

i ,xgraph
i]

)
, (2)

where xh
i and xt

i, are the representation of the in-
puts viewed as the head or the tail of a relation
triplet (h, t, r). The projection is performed by two
simple feed forward neural networks, Fhead and
Ftail, composed of two linear layers separated by
ReLU activation and dropout (p = 0.1) for regular-
ization.

Secondly, all pairs {(xhead
j ,xtail

k)}j 6=k are con-
structed by combining all the heads with each pos-
sible tail (Miwa and Bansal, 2016; Nguyen and
Verspoor, 2019; Giorgi et al., 2019), and fed to a
biaffine attention layer (Dozat and Manning, 2017;
Nguyen and Verspoor, 2019; Giorgi et al., 2019)
for relation classification. The biaffine layer B(·, ·)
performs a combination of a bilinear transforma-
tion and a linear projection:

B(x1,x2) := x>1 Ux2 + W(x1‖x2) + b , (3)

xRE
i = B(xhead

j ,xtail
k) , (4)

375

https://github.com/BrunoLiegiBastonLiegi/Pretrained-KB-Embeddings-for-RE
https://github.com/BrunoLiegiBastonLiegi/Pretrained-KB-Embeddings-for-RE

where we indicate with ‖ the column-wise concate-
nation. A final softmax activation layer provides
the scores for each of the relation classes. The RE
loss is taken to be the crossentropy,

LRE =
M∑

i=1

expxRE
i,T∑

j 6=T expxRE
i,j

, (5)

where xRE
i,T represents the score assigned to the

correct class.

Note that if a sentence contains ne entities, the
RE module is going to provide 2

(
ne

2

)
= ne!

(ne−2)!
relation predictions. One for each of the possible
entity combinations

(eheadi , etailj)i 6=j i, j = 1, ..., ne

and, therefore, allowing for multiple relations ex-
tracted from a single sentence.

4 Results

In order to quantify the benefit of adding pre-
trained graph embeddings to a RE model, we have
considered two popular RE datasets: the Wikidata
(Sorokin and Gurevych, 2017) and NYT (Riedel
et al., 2010) corpora.

Since we make use of pre-trained graph embed-
dings, we decided to discard all sentences in the
training set containing entities not present in the
graph embedding (Lerer et al., 2019). Note that in
order to be able to fairly compare the models with
and without graph embeddings, we also exclude
these sentences in training the basic model without
graph embeddings. For the test set, we keep all the
sentences regardless of the available embeddings.
In case no embedding for the entity is available, we
simply substitute the graph embedding with a zero
tensor.

For each dataset we train the model with a differ-
ent random initialization ten times with and with-
out the addition of the pre-trained graph embed-
dings. Hence, in total we train twenty models per
experiment. Note that we always use the AdamW
(Loshchilov and Hutter, 2019) optimizer with learn-
ing rate 2 · 10−5. For the implementation of the
optimizer and of the whole model depicted in Fig-
ure 1 we rely on the Pytorch Library (Paszke et al.,
2019).

For evaluation, we compare the performance of
the two models (with and without graph embed-
dings) using Precision, Recall and F1 score. Both,

for each single relation class, and on average with
micro- and macro-averaging. In detail we rely on
the two following evaluation methods:
At first, for each relation class, we collect the F1
score obtained by the ten different trained models
and we plot the complete distribution of the results
as a violin plot. The mean of the ten F1 values
obtained is also reported as a colored dot inside the
violin. The same is done for the global micro- and
macro-average. We do this for both, the model with
added graph embeddings and the baseline model
without graph embeddings.

Then, we generate the micro Precision-Recall
curve for each of the ten models trained. The ten
curves obtained are interpolated and averaged to
form a single mean PR curve both, for the model
provided with the graph embeddings and the base-
line model. At each value of recall we compute
the standard deviation of the precision over the ten
different curves. The deviation is shown in shaded
color around the mean curve.

4.1 Pre-Trained Graph Embeddings

For all examples, we rely on the Wikidata KB
(Vrandečić, 2012) with pre-trained graph embed-
dings of the entities provided by Lerer et al. (2019).
In detail, the authors of Lerer et al. (2019) propose
a memory efficient and distributed implementation
of several popular graph embedding methods, such
as RESCAL (Nickel et al., 2011), TransE (Bordes
et al., 2013) and DistMult (Yang et al., 2015). This
new implementation was specifically developed for
dealing with very large graphs while being com-
petitive with the original implementation of the
state-of-the-art models aforementioned.

The pre-trained embeddings we use were trained
on the so-called “truthy” Wikidata dump dated
2019-03-06, making use of the TransE (Bordes
et al., 2013) approach with embedding dimension
of size 200.

4.1.1 Wikidata
The Wikidata (Sorokin and Gurevych, 2017)
dataset is a RE corpus built by distant supervision
with entities aligned to the Wikidata Knowledge
Base (Vrandečić, 2012). We rely on the dataset
version provided by Bastos et al. (2021). Some
statistics of the dataset are shown together with our
training configuration in Table 1. Note that in the
evaluation we ignore the results for the NA relation
class (i.e. the “no relation” class), as is usually
done in the literature (Bastos et al., 2021; Nadgeri

376

Dataset train trainours test relations KB entities batchsize epochs
Wikidata 372, 059 369, 577 360, 334 353 464, 535 8 1-2

NYT 455, 771 ∼ 453-455, 000 172, 448 58 63, 601 8 3

Table 1: Statistics and training settings for all the datasets considered. trainours indicates the actual number of
training sentences used after discarding part of the data, as described in the main text. Note that for the NYT dataset
the trainours is given as a range, as for each repetition we sampled a different subset of the training and validation
set, as described in Section 4. For the Wikidata dateset, we experimented with training for 1 and 2 epochs.

Micro Macro
P R F1 P R F1

Wikidata

RECON (Bastos et al., 2021) 87.24 87.23 87.23 63.59 33.91 44.23
KG-Pool (Nadgeri et al., 2021) 88.60 88.59 88.60 - - -

Ours
bert-base 85.43 78.37 81.74 51.42 37.24 40.02
roberta-base 85.50 80.30 82.81 49.33 36.77 39.22
roberta-base1e 83.71 83.01 83.35 46.09 34.52 36.38

Oursge
bert-base 88.34 79.19 83.51 55.72 39.62 43.24
roberta-base 87.66 82.07 84.77 54.42 41.64 44.33
roberta-base1e 86.83 83.93 85.36 50.88 38.52 40.57

NYT Ours bert-base 47.13 75.57 57.98 28.35 45.27 33.05
Oursge bert-base 51.13 76.46 61.24 31.66 47.31 36.20

Table 2: Summary of the P, R and F1 scores (averaged over ten runs) obtained in our experiments for the three
datasets considered. We indicate with the subscript ge the results obtained by the model with the graph embeddings
added. For the Wikidata experiment we even specify with the subscript 1e the models that have been trained for
1 single epoch instead of 2. If avaliable, we include the results obtained by others on the same dataset, we leave
blank (-) otherwise. In particular, for the NYT dataset, we are not aware of other works in the literature measuring
the performance under the F1 metric.

P1
7

P1
31 P4

7
P3

1
P6

41 P2
7

P3
61

P2
79

P1
18

P5
77

P1
61 P5

4
P1

9
P1

06
P1

75
P1

36 P3
6

P5
30

P1
55 P3

0
m

icr
o

av
g

m
ac

ro
 a

vg

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1

Figure 2: F1 scores on the Wikidata corpus for each re-
lation. The micro- and macro-averages are also shown.
Only the top 20 relations are plotted, ordered by de-
creasing support. The F1 score distribution of the ten
different trained models is illustrated via violin plots.
The baseline model is shown in blue and the model
with added graph embeddings in orange. The means
of the distributions are indicated by bullet points inside
the violin plots.

P@10 P@30
RESIDE (Vashishth et al., 2018) 73.6 59.5
RECON (Bastos et al., 2021) 87.5 74.1
KG-Pool (Nadgeri et al., 2021) 92.3 86.7
Ours 96.6 83.1
Oursge 97.5 86.8

Table 3: Comparison of the P@10 and P@30 for the
NYT dataset. We indicate with the subscript ge the re-
sults obtained by the model with the graph embeddings
added.

et al., 2021).
For this dataset, in addition to the bert-base-

cased (Devlin et al., 2019) model, we also tested
the roberta-base (Liu et al., 2019) language model.
For the latter, we also experimented with training
for just one epoch instead of two, obtaining slightly
better micro F1, at the cost of lower macro F1.

The F1 score violin plots for the top 20 relation
classes in the dataset are shown in Figure 2. The
illustrated results were obtained with the roberta-
base model as sentence encoder, the whole model
was trained for 1 epoch. Although some relations
do not benefit from the inclusion of graph embed-
dings, the majority of them show a consistent im-
provement. On average, we measure a performance
boost, both, in micro- and macro-averaged F1 score,

377

of around ∼ 2 - 4% depending on the specific lan-
guage model, c.f. Table 2.

Even so the addition of graph embeddings yields
a significant performance boost to the base model,
as discussed above, the boosted model does not out-
perform the current state-of-the-art (Nadgeri et al.,
2021) in the micro-averaged metrics. In particu-
lar, only the micro precision metric (bert-basege:
88.34± 0.33), is statistically in range of the state
of the art model2. However, for macro-averaged
scores, our model (roberta-basege) surpasses the
current state-of-the-art (Bastos et al., 2021), both,
in recall (R) and F1.

4.2 NY Times
Another popular RE dataset built by distant super-
vision is the NYT corpus (Riedel et al., 2010), ob-
tained by aligning a set of over 1.8 million articles
from the NY Times journal to the Freebase Knowl-
edge Base. We made use of the Wikidata SPARQL
query service 3 to obtain the mapping from the old
Freebase id scheme to the new Wikidata one. We
make use of the dataset version provided by Bastos
et al. (2021). In Table 1 are reported some statistics
of the dataset together with the settings we used in
our experiments.

We train on the validation (114, 317 sentences)
and training sets (455, 771 sentences) by randomly
discarding 20% of the sentences for each one of the
ten runs, such that we obtain a number of train sen-
tences comparable to Bastos et al. (2021); Nadgeri
et al. (2021); Vashishth et al. (2018). Note that
we had to further discard between 1, 000 to 3, 000
train sentences, depending on the run, due to the
missing graph embeddings. We train the model
with the settings listed in Table 1, and evaluate the
performance at P@10 and P@30 (precision at fixed
recall 10% and 30%), as proposed in the literature.
As before, we ignore the score of the NA relation
class in averaging.

Figure 3 illustrates the comparison of the perfor-
mance of the two models trained. We observe that
the model with the added graph embeddings shows
a slower decay of the precision with increasing re-
call and, in particular, an improved precision on
average and through the whole curve. The F1 score
calculation confirms this trend, as both micro- and
macro-F1 exhibit an improvement of about ∼ 3%,
as reported in Table 2.

2For reference, we observed standard deviations in the
range ∼ 0.1 - 1 for the results reported in Table 2.

3https://query.wikidata.org/

The comparison with the results obtained by oth-
ers in the literature, reported in Table 3, demon-
strates the solid performance of our model. In
particular, the model is able to surpass the current
state-of-the-art (Nadgeri et al., 2021), both, under
P@10 and P@30.

4.3 Discussion

To better understand under which circumstances
the additional information contained in the graph
embeddings is beneficial, some of the results given
above are analyzed below. We are going to consider
each relation separately, and we will look at four
different variables characterizing them:

• σ2(F1): Variance of the F1 score obtained
across the ten runs.

• F1: Mean F1 score obtained across the ten
runs.

• S: Support, i.e. the amount of training exam-
ples available.

• ∆F1 := F1ge − F1b: Gap between the av-
erage scores obtained by the model with the
additional graph embeddings and the baseline
model.

Note that the Wikidata corpus provides the
largest number of relation classes and thereby fea-
tures a wider statistical variety. Therefore, we fo-
cus on the results for the Wikidata corpus in the
remainder of this section, in particular the ones
obtained by our roberta-base based model trained
for 1 epoch. For some relations we have always
obtained F1 = 0 with zero variance σ2(F1) = 0,
and, surprisingly, not all of them had close to zero
support S. Those with higher support, however,
were usually semantically similar to relations pro-
vided with much larger support that were constantly
preferred by our model. We exclude all these
F1 = 0, σ2(F1) = 0 relations since their iden-
tically null variance is an artifact and thus they do
not provide a good representation of the σ2(F1)
behaviour.

As shown in Figure 2 we observe a large vari-
ance of results for several relations across the ten
different runs. The relationship between the vari-
ance, σ2(F1), and the support S of each relation
is plotted in Figure 4 (left). Note that we take the
log scale for both axis. Both, the baseline, and
the graph embedding augmented models, show an
approximately linear relationship of σ2(F1) with

378

0.0 0.2 0.4 0.6 0.8 1.0
R

0.0

0.2

0.4

0.6

0.8

1.0

P

Average Precision: 0.642
Average Precision: 0.672

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
R

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P

Figure 3: Micro Precision-Recall curves for the baseline model (blue) and the model augmented with graph-
embeddings (orange) trained on the NYT dataset. The right plot gives a more detailed view into the region with
Recall ≤ 0.4. The solid lines represent the average P-R curve for the ten trained models. The shaded regions
represent the corresponding standard deviations of the Precision at given Recall.

2 4 6 8 10
log S

16

14

12

10

8

6

4

2

lo
g

2 (
F1

)

r2 = 0.51
r2 = 0.42

2 4 6 8 10
log S

7

6

5

4

3

2

1

0

lo
g

F1

Figure 4: Distribution of the Wikidata dataset relations according to their score variance σ2(F1) (left) and their
average score F1 (right) against relation support S. Note that each point represents a different relation. The color
of the points indicates from which model the datapoint originates. Blue for the baseline and orange for the graph
embedding augmented model. Both axis are plotted in logarithmic scale. The distributions in the (left) plot are
fitted with the linear regression (6) with the r2 value of the fits reported in the legend. The support S = 1000
threshold is indicated as a dashed line in the (right) plot.

379

0.0 0.2 0.4 0.6 0.8 1.0
MF1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5
F1

Figure 5: Gap ∆F1 for each relation in the Wikidata
dataset plotted against the average score MF1 (8) ob-
tained across the ten runs. The red and green dashed
lines indicate the average and the median gap, respec-
tively, whereas the gray dashed line a gap of zero. The
size of each dot is given by the squareroot of the sup-
port of its corresponding relation.

increasing support, under the log− log transforma-
tion. We infer the following linear relationships
(with and without graph embeddings):4

y = −0.75x− 2.01 ,

y = −0.73x− 2.21 ,
(6)

with standard errors of 0.05 for the slopes and 0.26,
respectively, 0.30, for the intercepts (note that we
have taken y = log σ2(F1) and x = logS).

This implies a power-law scaling behavior of
σ2(F1):

σ2(F1) ∝ S−0.74 , (7)

where we took as exponent the mean of the two
regression coefficients given above.

In Figure 4 (right) the F1 against the support
is plotted using logarithmic scale, as for σ2(F1).
However, we do not observe a linear relationship
in log− log space as before, but rather some non-
linear dependence. In particular, it appears that
the larger the support of a given relation is, the
better the model is able to learn it, as one would
naively expect. The plot indicates that a support
of at least S ≈ 1000 is a sufficient condition for

4The coefficients are rounded off to the first two decimals.

good classification performance with an expected
low variance of performance.

The gap ∆F1 is plotted against the averaged F1
score,

MF1 =
1

2

(
F1ge − F1b

)
, (8)

for each relation in Figure 5. Note first that we
observe a mean and median gap of ∼ +0.05, re-
spectively ∼ +0.025. The performance boost is
inline with the micro- and macro- average based
observation in the previous section. In the plot also
the size of support is indicated for each relation.
We clearly observe that relations with large sup-
port are clustered at high MF1, in accord with the
discussion above.

It is interesting to notice that, both, for very high
MF1 as well as very low MF1 the augmenta-
tion with graph embeddings only gives mild per-
formance gains with low variance. In contrast, for
MF1 ∼ 0.1 - 0.9 we observe a larger variance
of ∆F1, that leads to gaps in the wider range
∼ −0.3 - 0.5.

5 Conclusion

In both the experiments discussed in Section 4, we
measured on average a noticeable improvement
over the baseline for the model with included pre-
trained graph embeddings. Tables 2 and 3 sum-
marize the numeric outcomes of our experiments,
and also include for comparison results of the state-
of-the-art methods obtained by others on the same
datasets. In particular, our model is able to reach
performance close to the current state-of-the-art
in the Wikidata dataset under the micro-averaged
metrics and sets a new state-of-the-art under the
macro F1 metric. Similarly, for the NYT dataset
our model achieves a new state-of-the-art under the
P@10 and P@30 metric.

In common with related works in the literature,
our model rests on the assumption of having the
correct entity identification at hand (gold entities).
Identifying entities in a sentence, however, is itself
a challenging task, usually referred to as Named
Entity Recognition. This task is further complicated
by the need to map the entities to corresponding
nodes in the KB (Entity Linking). This currently
limits the practical applicability of ours, and mod-
els akin to it in the literature, and warrants further
research.

We also analyzed in detail the performance of
our model for each relation of the Wikidata dataset,

380

finding an interesting power-law scaling of the vari-
ance of the F1 score with increasing support of
the relation. In particular, this study provided us
with an estimate of around ∼ 1000 training oc-
curences per relation needed for good prediction
performance with small uncertainty. However, fur-
ther investigation is needed to explore the validity
of this finding in more generality.

Therefore, we like to highlight that we were not
only able to verify that the inclusion of general
pre-trained graph embeddings is helpful for the RE
task, but also that such a simple model extension is
competitive with other state-of-the-art models that
directly perform on-task training of those embed-
dings. This implies that the inclusion of such pre-
trained graph embeddings might be helpful across
a wider spectrum of language related tasks to im-
prove performance at a relatively low additional
cost of complexity and computational burden.

We see this work as giving further support to the
wider adoption of pre-computed graph embeddings
in natural language processing tasks. We envis-
age that their adoption may become comparable
to the popular Glove (Pennington et al., 2014) and
Word2vec (Mikolov et al., 2013) pre-trained word
embeddings.

Acknowledgements

We would like to thank the NCI Australia (Na-
tional Computational Infrastructure) for providing
computing resources, and the anonymous review-
ers for their valuable comments and suggestions.
AP was supported by an Australian Government
Research Training Program International Scholar-
ship. This research was delivered in partnership
with, and funded in part by, Our Health in Our
Hands (OHIOH), a strategic initiative of the Aus-
tralian National University, which aims to trans-
form healthcare by developing new personalized
health technologies and solutions in collaboration
with patients, clinicians, and healthcare providers.

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and

Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
344–354, Beijing, China. Association for Computa-
tional Linguistics.

Dogu Araci. 2019. Finbert: Financial sentiment analy-
sis with pre-trained language models.

Anson Bastos, Abhishek Nadgeri, Kuldeep Singh,
Isaiah Onando Mulang’, Saeedeh Shekarpour, Jo-
hannes Hoffart, and Manohar Kaul. 2021. Recon:
Relation extraction using knowledge graph context
in a graph neural network.

Olivier Bodenreider. 2004. The Unified Med-
ical Language System (UMLS): integrating
biomedical terminology. Nucleic Acids Research,
32(suppl 1):D267–D270.

Kurt Bollacker, Robert Cook, and Patrick Tufts. 2007.
Freebase: A shared database of structured general
human knowledge. In Proceedings of the 22nd Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’07, page 1962–1963.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing
Systems - Volume 2, NIPS’13, page 2787–2795, Red
Hook, NY, USA. Curran Associates Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing.

John Giorgi, Xindi Wang, Nicola Sahar, Won Young
Shin, Gary D. Bader, and Bo Wang. 2019. End-to-
end named entity recognition and relation extraction
using pre-trained language models.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee
Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex
Peysakhovich. 2019. Pytorch-biggraph: A large-
scale graph embedding system.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space.

381

https://doi.org/10.3115/v1/P15-1034
https://doi.org/10.3115/v1/P15-1034
http://arxiv.org/abs/1908.10063
http://arxiv.org/abs/1908.10063
http://arxiv.org/abs/2009.08694
http://arxiv.org/abs/2009.08694
http://arxiv.org/abs/2009.08694
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1912.13415
http://arxiv.org/abs/1912.13415
http://arxiv.org/abs/1912.13415
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1903.12287
http://arxiv.org/abs/1903.12287
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP,
pages 1003–1011, Suntec, Singapore. Association
for Computational Linguistics.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using LSTMs on sequences and tree
structures. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1105–1116, Berlin,
Germany. Association for Computational Linguis-
tics.

Abhishek Nadgeri, Anson Bastos, Kuldeep Singh, Isa-
iah Onando Mulang’, Johannes Hoffart, Saeedeh
Shekarpour, and Vijay Saraswat. 2021. Kgpool: Dy-
namic knowledge graph context selection for rela-
tion extraction.

Dat Quoc Nguyen and Karin Verspoor. 2019. End-to-
end neural relation extraction using deep biaffine at-
tention. Advances in Information Retrieval, page
729–738.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th International Conference on International
Conference on Machine Learning, ICML’11, page
809–816, Madison, WI, USA. Omnipress.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Thomas Pellissier Tanon, Denny Vrandečić, Sebas-
tian Schaffert, Thomas Steiner, and Lydia Pintscher.
2016. From freebase to wikidata: The great mi-
gration. In Proceedings of the 25th International
Conference on World Wide Web, WWW ’16, page
1419–1428, Republic and Canton of Geneva, CHE.
International World Wide Web Conferences Steering
Committee.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Sebastian Riedel, Limin Yao, and Andrew McCal-
lum. 2010. Modeling relations and their mentions

without labeled text. In Machine Learning and
Knowledge Discovery in Databases, pages 148–163,
Berlin, Heidelberg. Springer Berlin Heidelberg.

M. Schuster and K.K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681.

Daniil Sorokin and Iryna Gurevych. 2017. Context-
aware representations for knowledge base relation
extraction. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1784–1789, Copenhagen, Denmark. As-
sociation for Computational Linguistics.

Fabian Suchanek, Gjergji M Kasneci, and Gerhard M
Weikum. 2007. Yago: A Core of Semantic Knowl-
edgeUnifying WordNet and Wikipedia. In 16th in-
ternational conference on World Wide Web, Proceed-
ings of the 16th international conference on World
Wide Web, pages 697 – 697, Banff, Canada.

Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga,
Chiranjib Bhattacharyya, and Partha Talukdar. 2018.
RESIDE: Improving distantly-supervised neural re-
lation extraction using side information. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1257–1266,
Brussels, Belgium. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Denny Vrandečić. 2012. Wikidata: A new platform for
collaborative data collection. In Proceedings of the
21st International Conference on World Wide Web,
WWW ’12 Companion, page 1063–1064, New York,
NY, USA. Association for Computing Machinery.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Huggingface’s transformers: State-of-the-art natural
language processing.

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases.

Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-Seng
Chua, and Maosong Sun. 2019. Graph neural net-
works with generated parameters for relation extrac-
tion. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 1331–1339, Florence, Italy. Association for
Computational Linguistics.

382

https://www.aclweb.org/anthology/P09-1113
https://www.aclweb.org/anthology/P09-1113
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
http://arxiv.org/abs/2106.00459
http://arxiv.org/abs/2106.00459
http://arxiv.org/abs/2106.00459
https://doi.org/10.1007/978-3-030-15712-8_47
https://doi.org/10.1007/978-3-030-15712-8_47
https://doi.org/10.1007/978-3-030-15712-8_47
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/2872427.2874809
https://doi.org/10.1145/2872427.2874809
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.18653/v1/D17-1188
https://doi.org/10.18653/v1/D17-1188
https://doi.org/10.18653/v1/D17-1188
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.18653/v1/D18-1157
https://doi.org/10.18653/v1/D18-1157
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1145/2187980.2188242
https://doi.org/10.1145/2187980.2188242
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
https://doi.org/10.18653/v1/P19-1128
https://doi.org/10.18653/v1/P19-1128
https://doi.org/10.18653/v1/P19-1128

