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Abstract
Certainty calibration is an important goal on
the path to interpretability and trustworthy AI.
Particularly in the context of human-in-the-
loop systems, high-quality low to mid-range
certainty estimates are essential. In the pres-
ence of a dominant high-certainty class, for
instance the non-entity class in NER problems,
existing calibration error measures are com-
pletely insensitive to potentially large errors in
this certainty region of interest. We introduce
a region-balanced calibration error metric that
weights all certainty regions equally. When low
and mid certainty estimates are taken into ac-
count, calibration error is typically larger than
previously reported. We introduce a simple
extension of temperature scaling, requiring no
additional computation, that can reduce both
traditional and region-balanced notions of cali-
bration error over existing baselines.

1 Introduction

Calibrating the certainty estimates of neural net-
works is of the utmost importance for interpretabil-
ity of results and building trust in AI systems. Ide-
ally, if a model outputs some prediction with an as-
sociated probability, we would like to interpret that
quantity as the probability of a correct prediction
(i.e. as a meaningful certainty estimate) (Zadrozny
and Elkan, 2001; Niculescu-Mizil and Caruana,
2005). However, contemporary models are consis-
tently over-confident in their output probabilities
(Guo et al., 2017).

Guo et al. (2017) demonstrates that over-
confident models can arise by overfitting to the
Negative Log-Likelihood (NLL) loss, without over-
fitting to the classification accuracy. Many cal-
ibration methods involve modulating the output
logits somehow, according to a prescribed func-
tional form. The parameters of the modulation
function are learned on the associated validation
set by minimizing the NLL loss (thereby correcting
the overfit). Guo et al. (2017), as well as many

subsequent studies (e.g. Müller et al., 2019; Gupta
et al., 2021), showcase the surprising effectiveness
of temperature scaling, a single-parameter modula-
tion function.

The calibration error is reported as a single quan-
tity computed on the associated test set. Typically,
the error is composed of a sum of observed errors
across the certainty landscape, visualized using a
reliability diagram (DeGroot and Fienberg, 1983;
Niculescu-Mizil and Caruana, 2005). However, not
all regions contribute equally, especially in the case
of class-imbalanced datasets. Consider an output
with a predicted certainty of 99.9% vs. an expected
actual certainty of 99.8%. In terms of human in-
terpretability and intervention, this difference is
negligible. Now consider 79% predicted certainty
vs. 71% expected certainty. Clearly the second case
is one we should care more about correcting. How-
ever, as we will discuss in the following section,
the presence of a dominant high-certainty class can
cause the first discrepancy to contribute more to
the reported calibration error than the second. High
quality mid-certainty estimates are most impact-
ful for human-in-the-loop applications, yet current
error measures are not sensitive to this region.

Here we take NER (Grishman and Sundheim,
1996; Yadav and Bethard, 2018; Li et al., 2020) as
a case study for class-imbalanced token classifica-
tion. Naturally, the “outside” or non-entity class
dominates the dataset. In the following section, we
introduce a region-balanced calibration error. We
then introduce region-dependent temperature scal-
ing, a calibration method that further reduces error
over traditional temperature scaling, across various
NER scenarios, without additional computation.

2 Region-balanced expected calibration
error

The most popular calibration error metric is the ex-
pected calibration error (ECE) (Naeini et al., 2015).
A test set is partitioned into certainty bins, each
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(a) Sample reliability diagram for the case of consistently good
certainty estimates across all regions.
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(b) Sample reliability diagram for the case of low-quality cer-
tainty estimates in the mid-certainty region.

Figure 1: Reliability diagrams contrasting two cases with equal ECE values. Both cases have the same support
distribution (yellow), where 90% of all samples have an estimated certainty above 0.95. In each bin, the confidence
(blue) is defined as the mean certainty of samples in the bin (i.e. the predicted certainty). The accuracy (red) is
the proportion of samples with a correct prediction (i.e. the actual certainty). The calibration error per bin is the
difference in predicted and actual certainty. In case (a), calibration error is consistently low across all certainty
regions. In case (b), calibration error is high across the mid-certainty regions. However, because of the dominant
support in the highest certainty bin, this error is undetected by the ECE measure.

containing samples with a certainty score h within
the bin boundaries. The uncalibrated certainty h
for a given sample is simply the output probability
associated with the predicted class for that sam-
ple. Within each bin, we compare the actual and
predicted certainty:

ECE =
∑
i

ni

N
|acc(Bi)− conf(Bi)| (1)

where conf(Bi) is the predicted confidence score
(the mean h of samples in bin Bi), and acc(Bi) is
the actual accuracy (proportion of correct predic-
tions in bin Bi). Each bin error is weighted by the
bin support, where ni is the number of samples in
Bi. If a very high proportion of all samples have a
high certainty estimate, only the final bin error has
a non-negligible contribution to the overall ECE.
Refer to Figure 1 for an illustrated example.

One extension of ECE is to find bin partitions
adaptively (Nixon et al., 2020), such that each bin
contains an equal number of samples, and each bin
contributes equally to the overall error. The result
is that many more bins exist in the high certainty
region, each of which are narrower in width. Essen-
tially, adaptive-ECE reports the exact same error
quantity as ECE in theory, but estimates the quan-
tity using a finer-toothed comb. Neither metric is
informative on lower or mid-certainty regions if

support is dominated by a high-certainty class.
Maximum expected calibration error (MECE)

(Naeini et al., 2015) partially tells the story of low-
certainty regions by reporting the maximum bin
error. However, MECE is overly sensitive to outlier
bins. For example, if a single sample happens to
fall in the 0-5% certainty bin, and it has the correct
predicted class, we have MECE > .95, which is
clearly an unusable characterization of the calibra-
tion error as a whole.

Here we consider Region-balanced ECE (RB-
ECE) as a way to characterize calibration error
weighted evenly across certainty regions. Simply,

RBECE =
1

|Θ|
∑
Bi∈Θ

|acc(Bi)− conf(Bi)|.

(2)

The error in each bin Bi contributes to the error
equally, subject to some threshold support require-
ment ni > θ (to ensure acc(Bi) is well-defined).
The set of bins that meet this requirement is de-
noted by Θ.

Alternative threshold requirements such as vari-
ance in conf(Bi) vs. bin size could be explored in
the future. Another possible extension is custom
bin-weighting according to a certainty region of
interest for your application (e.g. for human-in-the-
loop systems with an intervention criterion).
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3 Region-dependent temperature scaling

The idea underlying all calibration methods is gen-
erally to modulate overconfident predictions. In
traditional temperature scaling (TS), a higher tem-
perature means stronger modulation. Temperature
is taken to be a constant, meaning all samples are
treated with the same modulation strength.

The idea underlying region-dependent tempera-
ture scaling (RD-TS) is simply that the most con-
fident predictions likely need greater modulation
than less confident predictions, and therefore tem-
perature should depend on the uncalibrated cer-
tainty. If we consider the hypothetical limit of a 0%
confidence score, it is intuitive that this does not
need any modulation. To investigate this idea em-
pirically, we apply TS to subsets of the OntoNotes
dataset, partitioned according to uncalibrated confi-
dence scores. For each confidence region, the ideal
temperature is shown in Figure 2. As expected,
temperature increases as a function of confidence.
A linear fit sufficiently describes the dependence.
Within uncertainty, the intercept is equal to the ex-
pected value of 1 (T (h = 0) = 1, corresponding
to no modulation).

To apply RD-TS, uncalibrated logits a⃗ are scaled
as q⃗ = a⃗/T (h) to obtain calibrated logits q⃗. Tem-
perature is now a function of confidence T (h) =
mh+1, where h = max(softmax(⃗a)) is the proba-
bility estimate for the predicted class on each sam-
ple. The slope m is the single parameter controlling
modulation strength.

To estimate m, one could repeat temperature
scaling on multiple data subsets, collect data points,
and fit the slope as in Figure 2. However, this
method increases computational overhead. Instead,
let us estimate m from the original TS constant
T0 and some knowledge of the validation dataset
which was used to compute T0. Each sample in
the validation set has an ideal temperature, here
taken to be in the form Ti = mhi + 1. Assuming
each sample contributed to the found T0 equally,
T0 = 1

N

∑N
i (mhi + 1). Given access to the vali-

dation set, this sum can be computed exactly to
find m. However, we can further approximate
the sum by loosely assuming that the data has a
high proportion of samples (say ≈ 90%) with very
high certainty estimates (say ≈ .99 on average).
Then the sum is dominated by the first leading
term, T0 ≈ .9(.99m + 1). This quick sketch is
sufficient to achieve good error reduction over the
baseline TS method. The numerical exactness is
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Figure 2: The OntoNotes 5.0 validation set is split into
14 bins according to uncalibrated confidence scores
h. For each subset, regular temperature scaling is ap-
plied to find the ideal T0 as a function of average con-
fidence. Blue: Linear regression fit of empirical data
(m = .402 ± .108, b = .943 ± .073 with a 95% con-
fidence interval). Red: Region-dependent temperature
scaling parameter T (h) as determined by our protocol
(see points 1-3). Both methods produce equivalent re-
sults within the uncertainty.

not too important, but rather the general signature
of a high proportion of high-certainty samples is
sufficient. We take this further approximation to
gain the advantage that nothing specifically needs
to be known about the calibration dataset. I.e. If
a large pre-trained model has been calibrated on
a large or private dataset, and the corresponding
temperature T0 is known, RD-TS can be applied to
your model outputs without access to the calibra-
tion data or further computation.

In summary, the RD-TS method is performed as
follows:

1. Perform regular temperature scaling to obtain
T0, or obtain a previously published T0 for
your model.

2. Find the linear dependence parameter m =
(T0 − .9)/.89.

3. Apply calibration to logits a⃗ as q⃗ = a⃗/T (h),
T = mh+ 1.

RD-TS is a simple extension of temperature scal-
ing which requires no additional training. Like
temperature scaling, RD-TS cannot change the pre-
dicted class or model accuracy (unlike some other
generalizations, vector and matrix scaling).
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Scenario Uncal. TS VS MS WTS RD-TS
Classic .09328 .02543 (T0 = 1.28) .07040 .06940 .05236 .02151 (m = .426)
Rare & emerging .09878 .05777 (T0 = 1.39) .07490 .04932 .11559 .03549 (m = .550)
Fine-grained .05333 .02179 (T0 = 1.12) .03440 .04628 .03278 .01263 (m = .243)
Specialized .07088 .04147 (T0 = 1.29) .03844 .03590 .03820 .02781 (m = .439)
Sparse training .09683 .07820 (T0 = 1.10) .11653 .09528 .06279 .04110 (m = .229)
Differing sources .05730 .05960 (T0 = 1.09) .10824 .08470 .05551 .04019 (m = .214)

Table 1: Region-balanced expected calibration error (RBECE); refer to eq. 2.

Scenario Uncal. TS VS MS WTS RD-TS
Classic .02001 .00862 (T0 = 1.28) .01359 .01083 .00962 .00155 (m = .426)
Rare & emerging .04278 .02323 (T0 = 1.39) .02585 .01580 .04712 .00949 (m = .550)
Fine-grained .02287 .00783 (T0 = 1.12) .01587 .01786 .01462 .00839 (m = .243)
Specialized .01555 .00617 (T0 = 1.29) .00608 .00573 .00631 .00651 (m = .439)
Sparse training .03267 .02190 (T0 = 1.10) .03113 .02599 .01645 .01798 (m = .229)
Differing sources .00950 .00723 (T0 = 1.09) .01211 .01344 .01020 .00383 (m = .214)

Table 2: Expected calibration error (ECE); refer to eq. 1.

Dataset h|(P = .9) P |(h = .99)

OntoNotes .998 .964
W-NUT 17 .997 .953
Few-nerd .972 .801
BC2GM .997 .968
OntoNotes (tc) .999 .978

Table 3: The mean certainty h of the top .9 most certain
samples, h|(P = .9), and the proportion of samples we
need to take such that the mean certainty is .99, P |(h =
.99). All datasets refer to the corresponding validation
set, which is used for calibration. As shown, all datasets
have the general signature of a high proportion of high-
certainty samples, yet the exact numerical values can
deviate from our sketch.

4 Experimental results

4.1 Baseline methods

As RD-TS is a simple extension of regular tem-
perature scaling, we focus comparison on similar
post-training parametric calibration methods:

Temperature scaling (TS): Uncalibrated logits a⃗
are scaled by a single constant T0 (as q⃗ = a⃗/T0)
before softmax is applied to obtain calibrated prob-
ability estimates over all classes (Guo et al., 2017).

Vector (generalized Platt) scaling (VS): A gen-
eralization of TS such that logits are scaled by 2k
learned parameters, q⃗ = v⃗ ◦ a⃗+ b⃗, where k is the
number of classes (Platt, 1999; Niculescu-Mizil
and Caruana, 2005; Guo et al., 2017).

Matrix scaling (MS): A further generalized linear

transformation such that logits are scaled by k2 +
k learned parameters, q⃗ = Ma⃗+ b⃗ (Guo et al.,
2017).

Weighted temperature scaling (WTS): TS us-
ing a class-weighted NLL loss during convergence
(Obadinma et al., 2021).

4.2 Datasets

We take the NER task as a case study. Datasets
represent several important scenarios in token clas-
sification settings more broadly:

Classic: The OntoNotes 5.0 NER dataset
(Weischedel et al., 2013) represents a baseline
“classic” scenario involving plentiful training and
calibration data from robust sources.

Rare and emerging named entities: The W-NUT
NER dataset1 (Derczynski et al., 2017) is gathered
from noisy social media data which contains dif-
ficult entities (e.g. “kktny") due to informal and
evolving language.

Fine-grained and few-shot: Few-nerd2 (Ding
et al., 2021) is a challenging few-shot NER dataset
with 66 fine-grained entity types (e.g. “art-film").

Specialized language: The BioCreative II Gene
Mention Recognition (BC2GM) dataset3 (Smith
et al., 2008) is composed of scientific text where
named entities are gene mentions.

1huggingface.co/datasets/wnut_17
2huggingface.co/datasets/dfki-nlp/few-nerd
3huggingface.co/datasets/bc2gm_corpus
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Sparse training data: OntoNotes telephone call
data is used for training while the full OntoNotes
dataset is used for calibration and evaluation. The
telephone call data subset is a sparse representa-
tion since it is very heavily skewed to the non-
entity outside class, and entity mentions are con-
centrated on “person" and “location", compared to
the full OntoNotes dataset (generally containing
much richer entity mentions from news sources).

Differing language sources: OntoNotes broadcast
news data is used for training, and telephone call
data is used for calibration and evaluation. Broad-
cast news language is professional and grammat-
ically correct. Telephone call language is casual,
fragmented and incoherent at times.

4.3 Implementation notes

All NER models use DistilBERT4 (Sanh et al.,
2019) as the base pre-trained model, fine-tuned
for NER using the train dataset for each scenario as
described above. Further details and performance
on the NER task are provided in Appendix A.

Calibration is performed using the uncalibrated
logits of the associated validation set as model in-
puts. Calibration parameters are learned by min-
imizing the NLL (or weighted NLL) loss for 50
epochs (using SGD with 0.01 learning rate, and
0.9 momentum). Calibration error is computed
on the associated test set. To compute both ECE
(eq. 1) and RBECE (eq. 2), the number of bins
is set to 20. To compute RBECE, the threshold
for support per bin is set to θ = 40. The code
needed to reproduce these results is made publicly
available5. All datasets are publicly available with
preset train/validation/test data splits.

4.4 Results

Experimental results are summarized in Tables 1
and 2. When low and mid-certainty regions are
taken into account by the RBECE, calibration error
is larger than previously thought (as reported by
ECE). In all scenarios, RD-TS produces the small-
est RBECE (in many cases quite substantially). Ad-
ditionally, RD-TS improves the traditional ECE in
the majority of scenarios. The results show that
RD-TS is an effective extension of TS across a
range of temperature (T0) values.

Recall in Section 3, we sketch a way to estimate
the modulation parameter m, and this approxima-

4huggingface.co/transformers/model_doc/distilbert.html
5github.com/hillary-dawkins/RegDepTempScaling

tion follows from assuming that a high proportion
of all samples in the calibration set (say ≈ .9) have
a high certainty estimate (say ≈ .99 on average).
We claim that the numerical exactness of these
values is not too important (and therefore RD-TS
outperforms TS across a range of datasets). This
claim is supported empirically (Table 3).

5 Discussion and Conclusion

Good quality mid-range certainty estimates are es-
sential for productive human-model interactions.
Despite this, existing calibration error measures
can be insensitive to all but the highest certainty
regions. We propose a region-balanced error metric
to probe this unreported information. When low
and mid-certainty regions are taken into account,
greater calibration errors are revealed.

Further, we explore the idea of a certainty-
dependent temperature. While previous general-
izations of TS, such as vector and matrix scaling,
allow certainty dependence by increasing the num-
ber of learned parameters, these methods are gener-
ally outperformed by TS (Guo et al., 2017). Rather
than allowing a complicated certainty dependence,
we enforce a simple linear dependence (motivated
by intuition and an empirical example) without
introducing any learnable parameters. Unlike vec-
tor and matrix scaling, RD-TS cannot change the
relative ranking of logits, and therefore model ac-
curacy is retained (in single-label settings). One
line of future work could be to apply RD-TS on top
of weighted temperature scaling, a method known
to decrease variance in calibration error among
classes (Obadinma et al., 2021). Another line of
work would be to investigate whether improved
certainty estimates can increase model accuracy
(in multi-label settings where predictions are ap-
plied by meeting a certainty threshold), especially
in out-of-domain problems.

Finally, it is important to note that our discus-
sion of a region-balanced error measure, as well as
our sketch derivation of the RD-TS method, have
been generally applicable to any problem with a
dominant proportion of high-certainty predic-
tions. This situation does arise in any token clas-
sification problem with a dominant “easy” class,
as is the case in NER, however this situation can
equally occur in class-balanced situations. There-
fore, region-dependent temperature scaling can find
utility beyond NER, token classification, or class-
imbalanced situations.
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Ethical Considerations

We proposed a novel method to calibrate class-
imbalanced token classifiers, and demonstrated the
method for NER models. This calibration method
is a step toward responsible use of AI by offer-
ing a measure of reliability, but also has risks that
should be considered from an ethical point of view.
Calibrated scores are a measure of transparency,
and users can interpret a well-calibrated model bet-
ter. However, all transparency methods expose AI
systems to malicious attacks by providing more
information about the internal workings of the sys-
tem. This risk should be taken into account in
sensitive tasks, e.g. when an NER model is used to
extract personally identifiable information for pri-
vacy reasons. Also, users should be warned that a
low calibration error does not guarantee robustness
in out-of-domain settings. Therefore, in the case of
safety-critical tasks such as medical applications of
NER, a low calibration error should be interpreted
with caution.

Further, low calibration errors should not be used
to justify inherently unethical tasks or those out of
the scope of the capabilities of NLP technologies.
Every task should be evaluated in terms of feasi-
bility and ethical use regardless of reliability and
transparency of trained models. It is also impor-
tant to keep in mind that a well-calibrated model
can become miscalibrated as the data changes, and
continuous calibration is needed to deal with the
ever-changing nature of language.
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A NER performance

NER models were obtained by fine-tuning Distil-
BERT, using the default configuration, for 3 epochs
(with learning rate of 2e-5, and weight decay of
0.01). The performance of all NER models is pro-
vided in Table A.1 for reference.
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BC2GM .802 .844 .822 .965
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Table A.1: For all datasets that were used to train an
NER model, we report the precision (P), recall (R),
F -score (F) and accuracy (A) of the model on the corre-
sponding test set.

544

https://doi.org/10.1186/gb-2008-9-s2-s2
https://doi.org/10.1186/gb-2008-9-s2-s2
https://doi.org/10.35111/xmhb-2b84
https://aclanthology.org/C18-1182
https://aclanthology.org/C18-1182
https://aclanthology.org/C18-1182

