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Abstract

Numerous analyses of reading time (RT) data
have been implemented—all in an effort to
better understand the cognitive processes
driving reading comprehension. However, data
measured on words at the end of a sentence—or
even at the end of a clause—is often omitted
due to the confounding factors introduced by
so-called “wrap-up effects,” which manifests
as a skewed distribution of RTs for these words.
Consequently, the understanding of the cog-
nitive processes that might be involved in these
wrap-up effects is limited. In this work, we
attempt to learn more about these processes by
examining the relationship between wrap-up ef-
fects and information-theoretic quantities, such
as word and context surprisals. We find that
the distribution of information in prior contexts
is often predictive of sentence- and clause-final
RTs (while not of sentence-medial RTs). This
lends support to several prior hypotheses about
the processes involved in wrap-up effects.

1 Introduction

Reading puts the unfolding of linguistic input in
the hands—or, really, the eyes—of the reader. Con-
sequently, it presents a unique opportunity to gain
a better understanding of how humans comprehend
written language. The rate at which humans choose
to read text (and process its information) should
be determined by their goal of understanding
it. Ergo, examining where a reader spends their
time should help us to understand the nature of
language comprehension processes themselves.
Indeed, studies analyzing reading times have been
employed to explore a number of psycholinguistic
theories (e.g., Smith and Levy, 2013; Futrell et al.,
2020; Van Schijndel and Linzen, 2021).

One behavior revealed by such studies is the
tendency for humans to spend more time1 on
the last word of a sentence or clause. While the

1Longer reading times in self-paced reading studies and
longer fixation times in eye-tracking studies.

existence of such wrap-up effects is well-known
(Just et al., 1982; Hill and Murray, 2000; Rayner
et al., 2000; Camblin et al., 2007), the cognitive
processes giving rise to them are still not fully
understood. This is likely (at least in part) due
to the dearth of analyses targeting naturalistic
sentence-final reading behavior. First, most studies
of online processing omit data from these words
to explicitly control for the confounding factors
wrap-up effects introduce (e.g., Smith and Levy,
2013; Goodkind and Bicknell, 2018). Second,
the few studies on wrap-up effects rely on small
datasets, none of which analyze naturalistic text
(Just and Carpenter, 1980; Rayner et al., 2000;
Kuperberg et al., 2011). This work addresses this
gap, using several large corpora of reading time
data. Specifically, we study whether information-
theoretic concepts (such as surprisal) provide
insights into the cognitive processes that occur
at a sentence’s boundary. Notedly, information-
theoretic approaches have been proven effective for
analyzing sentence-medial reading time behavior.

We follow the long line of work that has
connected information-theoretic measures and
psychometric data (Frank et al., 2015; Goodkind
and Bicknell, 2018; Wilcox et al., 2020; Meister
et al., 2021 , inter alia), employing similar methods
to build models of sentence- and clause-final RTs.
Using surprisal estimates from state-of-the-art lan-
guage models, we search for a link between wrap-
up effects and the information content within a
sentence. We find that the distribution of surprisals
of prior context is often predictive of sentence- and
clause-final reading times (RTs), while not adding
significant predictive power to models of sentence-
medial RTs. This result suggests that the nature
of cognitive processes involved during the reading
of these boundary words may indeed be different
than those at other positions. Such findings lend
support to several prior hypotheses regarding
which processes may underlie wrap-up effects
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(e.g., the resolution of prior ambiguities), while
providing evidence against other speculations (e.g.,
that the time spent at sentence boundaries can be
quantified with a constant factor, independent of
the processing difficulty of the text itself).

2 The Process of Reading

Decades of research on reading behavior have
improved our understanding of the cognitive
processes involved in reading comprehension (Just
and Carpenter, 1980; Rayner and Clifton, 2009 ,
inter alia). Here, we will briefly describe overar-
ching themes that are relevant for understanding
wrap-up effects.

2.1 Incrementality and its Implications

It is widely accepted that language processing is
incremental in nature, i.e., readers process text
one word at a time (Hale, 2001, 2006; Rayner and
Clifton, 2009; Boston et al., 2011 , inter alia). Con-
sequently, much can be uncovered about reading
comprehension via studies that analyze cognitive
processing at the word-level. Many pyscholin-
guistic studies make use of this notion, taking
per-word RTs in self-paced reading (SPR) or eye-
tracking studies to be a direct reflection of the pro-
cessing load of that word (e.g., Smith and Levy,
2013; Van Schijndel and Linzen, 2021). This
RT–processing effort relationship then allows us
to identify relationships between a word’s pro-
cessing load and its attributes (e.g., surprisal or
length)—which in turn hints at the underlying cog-
nitive processes involved in comprehension. One
prominently studied attribute is word predictabil-
ity; a notion naturally quantified by surprisal (also
known as Shannon’s (1948) information content).
Formally, the surprisal of a word w is defined as
s(w)

def
= − log p(w | w<t), i.e., a unit’s negative

log-probability given the prior sentential context
w<t. Notedly, this operationalization provides a
way of quantifying how our prior expectations can
affect our ability to process a linguistic signal.

There are several hypothesis about the math-
ematical nature of the relationship between per-
word surprisal and processing load.2 While there
has been much empirical proof that surprisal es-
timates serve as a good predictor of word-level
RTs (Smith and Levy, 2013; Goodkind and Bick-
nell, 2018; Wilcox et al., 2020), the data observed

2Surprisal theory (Hale, 2001), for instance, posits a linear
relation.

from sentence-final words appears not to follow the
same relationship. Specifically, in comparison to
sentence-medial words, sentence- or clause-final
words are associated with increased RTs in self-
paced studies (Just et al., 1982; Hill and Murray,
2000) and both increased fixation and regression
times in eye-tracking studies (Rayner et al., 2000;
Camblin et al., 2007). Such behavior has also
been observed in controlled settings—for exam-
ple, Rayner et al. (1989) found that readers fixated
longer on a word when it ended a clause than when
the same word did not end a clause.

Such wide-spread experimental evidence sug-
gests sentence-final and sentence-medial reading
behaviors differ from each other, and that other
cognitive processes (besides standard word-level
processing) effort may be at play. Yet unfortunately,
these wrap-up effects have received relatively little
attention in the psycholinguistic community: Most
reading time studies simply exclude sentence-final
(or even clause-final) words from their analyses,
claiming that the (poorly-understood) effects are
confounding factors in understanding the reading
process (e.g., Frank et al., 2013, 2015; Wilcox
et al., 2020). Rather, we believe this data can
potentially provide new insights in their own right.

2.2 Wrap-up Effects

It remains unclear what exactly occurs in the mind
of the reader at the end of a sentence or clause.
Which cognitive processes are encompassed by the
term wrap-up effects? Several theories have been
posited. First, Just and Carpenter (1980) hypoth-
esize that wrap-up effects include actions such as
“the constructions of inter-clause relations.” Second,
Rayner et al. (2000) suggest they might involve
attempts to resolve previously postponed compre-
hension problems, which could have been deferred
in the hope that upcoming words would resolve
the problem. Third, Hirotani et al. (2006) posit the
hesitation when crossing clause boundaries is out
of efficiency (Jarvella, 1971); readers do not want
to have to return to the clause later, so they take the
extra time to make sure there are no inconsistencies
in the prior text.

While some prior hypotheses have been largely
dismissed (see Stowe et al., 2018 for a more
detailed summary) due to, e.g., the wide-spread
support of theories of incremental processing,
most others lack formal testing in naturalistic
reading studies. We attempt to address this gap.
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Concretely, we posit the relationship between
text’s information-theoretic attributes and its
observed wrap-up times can provide an indication
of the presence (or lack) of several cognitive
processes that are potentially a part of sentence
wrap-up. For example, high-surprisal words in the
preceding context may correlate with the presence
of ambiguities in the text; they may also correlate
with complex linguistic relationships of the current
text with prior sentences—which are two driving
forces in the theories given above. Consequently,
in this work, we ask whether the reading behavior
observed at the end of a sentence or clause can be
described (at least partially) by the distribution of
information content in the preceding context,3 as
this may give insights for several prior hypotheses
about wrap-up effects.

3 Language Models as Predictors of
Psychometric Data

Formally, a language model p̂ is a probability dis-
tribution over natural language sentences. In the
case when p̂ is locally normalized, which is the pre-
dominant case for today’s neural language models,
p̂ is defined as the product of conditional probabil-
ity distributions: p̂(y) =

∏|y|
t=1 p̂(yt | y<t), where

each p̂(· |y<t) is a distribution with support over
linguistic units y (typically words) from a set vocab-
ulary V , which includes a special end-of-sequence
token. Consequently, we can use p̂ to estimate in-
dividual word probabilities. Model parameters are
typically estimated by minimizing the negative log-
likelihood of a corpus of natural language strings
C, i.e., minimizing L(p̂) = −

∑
y∈C log p̂(y).

One widely embraced technique in information-
theoretic psycholinguistics is the use of these lan-
guage models to estimate the probabilities required
for computing surprisal (Hale, 2001; Demberg and
Keller, 2008; Mitchell et al., 2010; Fernandez Mon-
salve et al., 2012). It has even been observed that a
language model’s perplexity4 correlates negatively
with the psychometric predictive power provided
by its surprisal estimates (Frank and Bod, 2011;
Goodkind and Bicknell, 2018; Wilcox et al., 2020).
If these language models keep improving at their
current fast pace (Radford et al., 2019; Brown et al.,

3Importantly, the research questions we ask are not con-
cerned with describing the full set of cognitive processes that
occur at the end of a clause or sentence—or even whether
there is a causal relationship between information content and
sentence- and clause-final RTs.

4Perplexity is a monotonic function of the average
surprisal of linguistic units in-context under a model.

Figure 1: Distributions of residuals when predicting
either clause-final or non clause-final times using
our baseline linear models. Models are fit to (the
log-transform of) non clause-final average RTs. Outlier
times (according to log-normal distribution) are ex-
cluded. The top level datasets contain eye-tracking data
while the bottom contain SPR data. Full distributions of
RTs are shown in App. B, where we also show models
fit to regression times, rather than full reading times.

2020), exciting new results in computational psy-
cholinguistics may follow, connecting reading be-
havior to the statistics of natural language.

Predicting Reading Times. In the computa-
tional psycholinguistics literature, the RT–surprisal
relationship is typically studied using predictive
models: RTs are predicted using surprisal estimates
(along with other attributes such as number of char-
acters) for the current word. The predictive power
of these models, together with the structure of the
model itself (which defines a specific relationship
between RTs and surprisal), is then used as
evidence of the studied effect. While this paradigm
is successful in modeling sentence-medial RTs
(Smith and Levy, 2013; Goodkind and Bicknell,
2018; Wilcox et al., 2020), its effectiveness for
modeling sentence- and clause-final times is
largely unknown due to the omission of this data
from the majority of RT analyses.

A priori, we might expect per-word surprisal to
be a similarly powerful predictor of sentence and
clause-final RTs.5 Yet in Fig. 1, we see that when
our baseline linear model (described more precisely
in §4) is fit to sentence-medial RTs, the residuals
for predictions of clause-final RTs appear to be
neither normally distributed nor centered around 0.
Further, these trends appear to be different for eye-
tracking and SPR data, where the latter are skewed
towards lower values for all datasets.6 These re-

5Several works (e.g., Stowe et al., 2018) have argued the
cognitive processes involved in comprehension of clause-final
words are exactly the same as those for sentence-medial words.

6The opposite is true for regression times in eye-tracking
data; see App. B.
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sults provide further confirmation that clause-final
data does not adhere to the same relationship with
RT as sentence-medial data, a phenomenon that
may perhaps be accounted for by additional fac-
tors at play in the comprehension of clause-final
words. Thus, we ask whether taking into account
information from the entire prior context can give
us a better model of these clause-final RTs.

To this end, we operationalize the information
content INF in text w (of length T ) as:7

INF(k)(w)
def
=

∑T
t=1 s(wt)

k (k ≥ 0) (1)

where w may be an entire sentence, or only its first
T words. Notably, the case of k = 0 returns T ;
under k = 1, we get the total information content
of w. For k > 1, moments of high-surprisal will
disproportionately drive up the value of INF(k)(w).
Such words may indicate, e.g., moments of
ambiguity or uneven distributions of information
in text. Thus, how well INF(k)(w) (as a function of
k) predicts model sentence- and clause-final RTs
may indicate which attributes of prior text (if any)
can be linked to the additional cognitive processes
involved in wrap-up effects.

4 Experiments

Data. We use reading time data from 5 corpora
over 2 modalities: the Natural Stories (Futrell et al.,
2018), Brown (Smith and Levy, 2013), and UCL
(SP) (Frank et al., 2013) Corpora, which contain
SPR data, as well as the Provo (Luke and Chris-
tianson, 2018), Dundee (Kennedy et al., 2003) and
UCL (ET) (Frank et al., 2013) Corpora, which con-
tain eye movements during reading. All corpora are
in English. For eye-tracking data, we take reading
time to be the sum over all fixation times on that
word. We provide an analysis of regression (a.k.a.
go-past) time in App. B. We provide further details
regarding pre-processing in App. A.

Estimating Surprisal. We obtain surprisal esti-
mates from three language models: GPT-2 (Rad-
ford et al., 2019), TransformerXL (Dai et al., 2019)
and a 5-gram model, estimated using Modified
Kneser–Essen–Ney Smoothing (Ney et al., 1994).
We compute per-word surprisal as the sum of sub-
word surprisals, when applicable. Additionally,
punctuation is included in these estimates, although
see App. B for results omitting punctuation, which

7We note Meister et al. (2021) used similar operationaliza-
tions to test for evidence in support of the uniform information
density hypothesis.

are qualitatively the same. More details are given
in App. A.

Evaluation. Following Wilcox et al. (2020) and
Meister et al. (2021), we quantify the predictive
power of a variable of interest (INF(k)(w) here) as
the mean difference in log-likelihood ∆LogLik of
a (held-out) data point when using a model with and
without that predictor. In other words, we train two
models to predict RTs—one with and one without
access to INF(k)(w)—the difference in their pre-
dictive power is ∆LogLik. A positive ∆LogLik
value indicates the model with this predictor fits the
observed data more closely than a model without
this predictor. We use 10-fold cross-validation to
compute ∆LogLik values so as to avoid overfitting,
taking the mean across the held-out folds as our
final metric. Our baseline model for predicting per-
word RTs contains predictors for surprisal, unigram
log-frequency, character length, and the interaction
of the latter two. These values, albeit computed on
the previous word, are also included to account for
spill-over effects (Smith and Levy, 2013). Surprisal
from two words back is included for SPR datasets.
Unless otherwise stated, GPT-2 estimates are used
for baseline surprisal estimates in all models.

Results. Here we explore the additional predic-
tive power that INF(k) gives us when modeling
clause-final RTs. In Fig. 2, we observe that often
the additional information provided by INF(k)(w)
indeed leads to better models of clause-final RTs.
In most cases, INF(k) at some value of k > 0 leads
to larger gains in predictive power than k = 0.
Ergo, the information content of the preceding
text is more indicative of wrap-up behavior than
length alone. Further, while often within standard
error, INF(k)(w) at k > 1 provides more predictive
power than at k = 1 across the majority of datasets.
This indicates that unevenness in the distribution
of surprisal is stronger than the total surprisal con-
tent alone as a predictor of clause-final RTs. The
same experiments for sentence-medial words show
these quantities are less helpful when modeling
their RTs. Note that these effects hold above and
beyond the spill-over effects from the window im-
mediately preceding the sentence boundary. The
effect of the distribution of surprisal throughout the
sentence is stronger for eye-tracking data than for
SPR; further, the trends are even more pronounced
when measuring regression times for eye-tracking
data (see App. B).
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(a)

(b)

Figure 2: Mean ∆LogLik as a function of the exponent k in INF(k) for models of sentence and clause-final (top row)
and sentence-medial (bottom row) RTs using surprisal estimates from different language models. Shaded region
connects standard error estimates. Vertical intercepts at k = 0, 1 are for reference. We see that our information-
theoretic predictors contribute much less modeling power to the prediction of sentence-medial RTs in comparison to
sentence- and clause-final RTs.

Notably, we see some variation in trends across
datasets. Due to the nature of psycholinguistic
studies, it is natural to expect some variation due
to, e.g., data collection procedures or inaccuracies
from measurement devices. Another (perhaps more
influential) factor in the difference in trends comes
from the variation in dataset sizes. We see that
with the smaller datasets (e.g., UCL and Provo),
there may not be enough data to learn accurate
model parameters. This artifact may manifest as
the noisiness or a lack of a significant increase
in log-likelihood (on a held-out test set) over the
baseline that we observe in some cases.

When considering prior theories of wrap-up
processes, these results have several implications.
For example, they can be interpreted as supporting
and extending Rayner et al.’s (2000) hypothesis,
which suggests the extra time at sentence bound-
aries is spent resolving prior ambiguities. In this
case, the observed correlation between wrap-up
times and INF(k)(w) may potentially be linked to
two factors: (1) contextual ambiguities increasing
variation in per-word information content; and (2)
contextual ambiguities being resolved at clause
ends. On the other hand, these results provide
evidence against the hypothesis that the cognitive
processes occurring during the comprehension
of sentence-medial and clause-final words are the
same. Further, it also goes against Hirotani et al.’s
(2006) hypothesis (discussed in §2.2), as the dif-
ferences in sentence-medial and clause-final times
cannot be purely quantified by a constant factor.

5 Conclusion

We attempt to shed light on the nature of wrap-up
effects by exploring the relationship between
clause-final RTs and information-theoretic at-
tributes of text. We find that operationalizations of
the information contained in preceding context lead
to better predictions of these RTs, while not adding
significant predictive power for sentence-medial
RTs. This suggests that information-theoretic
attributes of text can shed light on the cognitive
processes happening during the comprehension of
clause-final words. Further, these processes may
indeed be different in nature than those required for
sentence-medial words. In short, our results pro-
vide evidence (either in support or against) about
several theories of the nature of wrap-up processes.

Ethics Statement

All studies involving human evaluations were con-
ducted outside of the scope of this paper. The
authors foresee no ethical concerns with the work
presented in this paper.

Acknowledgments

RC acknowledges support from the Swiss National
Science Foundation (SNSF) as part of the “The
Forgotten Role of Inductive Bias in Interpretability”
project. TP is supported by a Facebook Fellowship
Award. RPL acknowledges support from NSF grant
2121074.

24



References
Marisa Ferrara Boston, John T. Hale, Shravan Vasishth,

and Reinhold Kliegl. 2011. Parallel processing and
sentence comprehension difficulty. Language and
Cognitive Processes, 26(3):301–349.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901.

C. Christine Camblin, Peter C. Gordon, and Tamara Y.
Swaab. 2007. The interplay of discourse congruence
and lexical association during sentence processing:
Evidence from ERPs and eye tracking. Journal of
Memory and Language, 56(1):103–128.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193–210.

Irene Fernandez Monsalve, Stefan L. Frank, and
Gabriella Vigliocco. 2012. Lexical surprisal as a
general predictor of reading time. In Proceedings
of the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
398–408, Avignon, France. Association for Compu-
tational Linguistics.

Stefan L. Frank and Rens Bod. 2011. Insensitivity of the
human sentence-processing system to hierarchical
structure. Psychological Science, 22(6):829–834.

Stefan L. Frank, Irene Fernandez Monsalve, Robin L.
Thompson, and Gabriella Vigliocco. 2013. Read-
ing time data for evaluating broad-coverage models
of English sentence processing. Behavior Research
Methods, 45:1182–1190.

Stefan L. Frank, Leun J. Otten, Giulia Galli, and
Gabriella Vigliocco. 2015. The ERP response to
the amount of information conveyed by words in
sentences. Brain and Language, 140:1–11.

Richard Futrell, Edward Gibson, and Roger P. Levy.
2020. Lossy-context surprisal: An information-
theoretic model of memory effects in sentence pro-
cessing. Cognitive Science, 44:e12814.

Richard Futrell, Edward Gibson, Harry J. Tily, Idan
Blank, Anastasia Vishnevetsky, Steven Piantadosi,
and Evelina Fedorenko. 2018. The Natural Stories
Corpus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation.
European Language Resources Association.

Adam Goodkind and Klinton Bicknell. 2018. Predic-
tive power of word surprisal for reading times is a
linear function of language model quality. In Pro-
ceedings of the 8th Workshop on Cognitive Modeling
and Computational Linguistics, pages 10–18.

John Hale. 2001. A probabilistic Earley parser as a psy-
cholinguistic model. In Second Meeting of the North
American Chapter of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics.

John Hale. 2006. Uncertainty about the rest of the
sentence. Cognitive science, 30(4):643–672.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197, Edinburgh, Scotland. Association for Com-
putational Linguistics.

Robin Hill and Wayne Murray. 2000. Commas and
Spaces: Effects of Punctuation on Eye Movements
and Sentence Parsing, pages 565–590. Elsevier.

Masako Hirotani, Lyn Frazier, and Keith Rayner. 2006.
Punctuation and intonation effects on clause and sen-
tence wrap-up: Evidence from eye movements. Jour-
nal of Memory and Language, 54(3):425–443.

Robert J. Jarvella. 1971. Syntactic processing of con-
nected speech. Journal of Verbal Learning and Ver-
bal Behavior, 10(4):409–416.

Marcel Adam Just and Patricia A. Carpenter. 1980. A
theory of reading: From eye fixations to comprehen-
sion. Psychological Review, 87 4:329–54.

Marcel Adam Just, Patricia A. Carpenter, and Jacque-
line D. Woolley. 1982. Paradigms and processes in
reading comprehension. Journal of Experimental
Psychology: General, 111:228–238.

Alan Kennedy, Robin Hill, and Joel Pynte. 2003. The
Dundee Corpus. In Proceedings of the 12th Euro-
pean Conference on Eye Movements.

Gina R. Kuperberg, Martin Paczynski, and Tali Dit-
man. 2011. Establishing Causal Coherence across
Sentences: An ERP Study. Journal of Cognitive
Neuroscience, 23(5):1230–1246.

Steven G. Luke and Kiel Christianson. 2018. The Provo
Corpus: A large eye-tracking corpus with predictabil-
ity norms. Behavior Research Methods, 50(2):826–
833.

25

https://doi.org/10.1080/01690965.2010.492228
https://doi.org/10.1080/01690965.2010.492228
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.jml.2006.07.005
https://doi.org/https://doi.org/10.1016/j.jml.2006.07.005
https://doi.org/https://doi.org/10.1016/j.jml.2006.07.005
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/https://doi.org/10.1016/j.cognition.2008.07.008
https://aclanthology.org/E12-1041
https://aclanthology.org/E12-1041
https://doi.org/10.1177/0956797611409589
https://doi.org/10.1177/0956797611409589
https://doi.org/10.1177/0956797611409589
https://link.springer.com/article/10.3758/s13428-012-0313-y
https://link.springer.com/article/10.3758/s13428-012-0313-y
https://link.springer.com/article/10.3758/s13428-012-0313-y
https://doi.org/https://doi.org/10.1016/j.bandl.2014.10.006
https://doi.org/https://doi.org/10.1016/j.bandl.2014.10.006
https://doi.org/https://doi.org/10.1016/j.bandl.2014.10.006
http://socsci.uci.edu/~rfutrell/papers/futrell2020lossy.pdf
http://socsci.uci.edu/~rfutrell/papers/futrell2020lossy.pdf
http://socsci.uci.edu/~rfutrell/papers/futrell2020lossy.pdf
https://www.aclweb.org/anthology/L18-1012
https://www.aclweb.org/anthology/L18-1012
https://aclanthology.org/W18-0102/
https://aclanthology.org/W18-0102/
https://aclanthology.org/W18-0102/
https://aclanthology.org/N01-1021
https://aclanthology.org/N01-1021
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0000_64
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0000_64
https://aclanthology.org/W11-2123
https://aclanthology.org/W11-2123
https://doi.org/10.1016/B978-008043642-5/50027-9
https://doi.org/10.1016/B978-008043642-5/50027-9
https://doi.org/10.1016/B978-008043642-5/50027-9
https://doi.org/https://doi.org/10.1016/j.jml.2005.12.001
https://doi.org/https://doi.org/10.1016/j.jml.2005.12.001
https://www.sciencedirect.com/science/article/pii/S0022537171800403
https://www.sciencedirect.com/science/article/pii/S0022537171800403
https://psycnet.apa.org/record/1980-27123-001
https://psycnet.apa.org/record/1980-27123-001
https://psycnet.apa.org/record/1980-27123-001
https://pubmed.ncbi.nlm.nih.gov/6213735/
https://pubmed.ncbi.nlm.nih.gov/6213735/
https://doi.org/10.1162/jocn.2010.21452
https://doi.org/10.1162/jocn.2010.21452
https://doi.org/10.3758/s13428-017-0908-4
https://doi.org/10.3758/s13428-017-0908-4
https://doi.org/10.3758/s13428-017-0908-4


Clara Meister, Tiago Pimentel, Patrick Haller, Lena
Jäger, Ryan Cotterell, and Roger Levy. 2021. Revis-
iting the uniform information density hypothesis. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, Online.
Association for Computational Linguistics.

Jeff Mitchell, Mirella Lapata, Vera Demberg, and Frank
Keller. 2010. Syntactic and semantic factors in pro-
cessing difficulty: An integrated measure. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 196–206,
Uppsala, Sweden. Association for Computational
Linguistics.

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochas-
tic language modelling. Computer Speech and Lan-
guage, 8(1):1–38.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Keith Rayner and Charles Clifton. 2009. Language pro-
cessing in reading and speech perception is fast and
incremental: Implications for event-related potential
research. Biological Psychology, 80(1):4–9.

Keith Rayner, Gretchen Kambe, and Susan A. Duffy.
2000. The effect of clause wrap-up on eye move-
ments during reading. The Quarterly Journal of Ex-
perimental Psychology Section A, 53(4):1061–1080.

Keith Rayner, Sara C. Sereno, Robin K. Morris, A. Réne
Schmauder, and Charles Clifton Jr. 1989. Eye
movements and on-line language comprehension pro-
cesses. Language and Cognitive Processes, 4(3–
4):SI21–SI49.

Claude E. Shannon. 1948. A mathematical theory of
communication. The Bell System Technical Journal,
27(3):379–423.

Nathaniel J. Smith and Roger Levy. 2013. The effect
of word predictability on reading time is logarithmic.
Cognition, 128(3):302–319.

Laurie A. Stowe, Edith Kaan, Laura Sabourin, and
Ryan C. Taylor. 2018. The sentence wrap-up dogma.
Cognition, 176:232–247.

Marten Van Schijndel and Tal Linzen. 2021. Single-
stage prediction models do not explain the magnitude
of syntactic disambiguation difficulty. Cognitive Sci-
ence, 45(6):e12988.

Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu, Peng
Qian, and Roger Levy. 2020. On the predictive power
of neural language models for human real-time com-
prehension behavior. In Proceedings of the 42nd An-
nual Meeting of the Cognitive Science Society, pages
1707–1713. Cognitive Science Society.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

26

https://arxiv.org/abs/2109.11635
https://arxiv.org/abs/2109.11635
https://aclanthology.org/P10-1021
https://aclanthology.org/P10-1021
https://doi.org/https://doi.org/10.1006/csla.1994.1001
https://doi.org/https://doi.org/10.1006/csla.1994.1001
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/https://doi.org/10.1016/j.biopsycho.2008.05.002
https://doi.org/https://doi.org/10.1016/j.biopsycho.2008.05.002
https://doi.org/https://doi.org/10.1016/j.biopsycho.2008.05.002
https://doi.org/https://doi.org/10.1016/j.biopsycho.2008.05.002
https://doi.org/10.1080/713755934
https://doi.org/10.1080/713755934
http://arxiv.org/abs/https://doi.org/10.1080/01690968908406362
http://arxiv.org/abs/https://doi.org/10.1080/01690968908406362
http://arxiv.org/abs/https://doi.org/10.1080/01690968908406362
https://ieeexplore.ieee.org/document/6773024
https://ieeexplore.ieee.org/document/6773024
https://doi.org/https://doi.org/10.1016/j.cognition.2013.02.013
https://doi.org/https://doi.org/10.1016/j.cognition.2013.02.013
https://doi.org/https://doi.org/10.1016/j.cognition.2018.03.011
https://pubmed.ncbi.nlm.nih.gov/34170031/
https://pubmed.ncbi.nlm.nih.gov/34170031/
https://pubmed.ncbi.nlm.nih.gov/34170031/
https://cognitivesciencesociety.org/cogsci20/papers/0375/0375.pdf
https://cognitivesciencesociety.org/cogsci20/papers/0375/0375.pdf
https://cognitivesciencesociety.org/cogsci20/papers/0375/0375.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


A Experimental Setup

A.1 Data Pre-processing
We use the Moses decoder8 tokenizer and punctua-
tion normalizer to pre-process all text data. Some
of the Hugging Face tokenizers for respective neu-
ral models performed additional tokenization; we
refer the reader to the library documentation for
more details. We determine clause-final words as
all those ending in punctuation. Capitalization was
kept intact albeit the lowercase version of words
were used in unigram probability estimates. We es-
timate unigram log-probabilities on WikiText-103
using the KenLM (Heafield, 2011) library with de-
fault hyperparameters. We removed outlier word-
level reading times (specifically those with a z-
score > 3 when the distribution was modeled as
log-linear).

A.2 Surprisal Estimates
We use pre-trained neural language models to com-
pute most surprisal estimates. For reproducibil-
ity, we employ the model checkpoints provided
by Hugging Face (Wolf et al., 2020). Specifi-
cally, for GPT-2, we use the default OpenAI ver-
sion (gpt2); for TransformerXL, we use a ver-
sion of the model (architecture described in Dai
et al. (2019)) that has been fine-tuned on WikiText-
103 (transfo-xl-wt103); for BERT, we use the
bert-base-cased version. Notably, BERT mod-
els the probability of a word given both prior
and later context, which means it can only give
us pseudo estimates of surprisal. Both GPT-2
and BERT use sub-word tokenization. We ad-
ditionally use surprisal estimates from a 5-gram
model trained on WikiText-103 using the KenLM
(Heafield, 2011) library with default hyperparame-
ters for Kneser–Essen–Ney smoothing.

8http://www.statmt.org/moses/

B Additional Results

Figure 3: Distributions of average RTs for clause-final
and non-clause-final words. Outlier times (according to
log-normal distribution) are excluded from averages for
both graphs. The top level datasets contain eye-tracking
data while the bottom contain SPR data.

Figure 4: Version of Fig. 1 where surprisal estimates do
not include the surprisal assigned to punctuation, which
is often a large contributor to clause-final surprisal es-
timates. We see very little qualitative difference with
Fig. 1.

B.1 Regression Times Analysis

(a)

(b)

Figure 5: Version of (a) Fig. 3 and (b) Fig. 1 for regres-
sion times for clause-final and non-clause-final words.
Only applicable for eye-tracking datasets
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(a)

(b)

Figure 6: Same setup as Fig. 2 albeit predicting regression times. Only applicable for eye-tracking datasets. (a)
shows results for predicting clause-final words, while (b) shows results for predicting sentence-medial words.

(a)

(b)

Figure 7: Same setup as Fig. 2 albeit using respective model estimates for the baseline per-word surprisal estimate.
(a) shows results for predicting clause-final words, while (b) shows results for predicting sentence-medial words.
Results follow similar trends to those seen in Fig. 2.
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