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Abstract
In recent years, a flurry of morphological
datasets had emerged, most notably UniMorph,
a multi-lingual repository of inflection tables.
However, the flat structure of the current mor-
phological annotation schema makes the treat-
ment of some languages quirky, if not impossi-
ble, specifically in cases of polypersonal agree-
ment, where verbs agree with multiple argu-
ments using true affixes. In this paper we pro-
pose to address this phenomenon, by expanding
the UniMorph annotation schema to hierarchi-
cal feature structure that naturally accommo-
dates complex argument marking. We apply
this extended schema to one such language,
Georgian, and provide a human-verified, ac-
curate and balanced morphological dataset for
Georgian verbs. The dataset has 4 times more
tables and 6 times more verb forms compared
to the existing UniMorph dataset, covering all
possible variants of argument marking, demon-
strating the adequacy of our proposed scheme.
Experiments with a standard reinflection model
show that generalization is easy when the data
is split at the form level, but extremely hard
when splitting along lemma lines. Expanding
the other languages in UniMorph to this schema
is expected to improve both the coverage, con-
sistency and interpretability of this benchmark.

1 Introduction

In recent years, morphological (re)inflection tasks
have gained a lot of attention in NLP.1 Sub-
sequently, several multi-lingual morphological
datasets have emerged to allow for the supervised
training of morphological models, most notably
UniMorph (McCarthy et al., 2020), that organizes
words into inflectional tables, annotating each in-
flected word-form with its respective feature-set.

While western languages are widely represented
in UniMorph, many morphologically rich lan-
guages (Tsarfaty et al., 2010, 2020) exhibit rich

1Cf. the series of SIGMORPHON shared tasks: https:
//sigmorphon.github.io/sharedtasks/

and diverse inflection patterns that make them less
compatible with the flat feature-sets in the Uni-
Morph schema. Concretely, in some cases it is
completely impossible to annotate parts of the in-
flectional paradigm with a flat bundle, as is the
case with case stacking, and in other cases, such as
polypersonal agreement, the annotation solutions
provided are unnatural, non-transparent, and are
barely used in practice. As a result, languages ex-
hibiting such phenomena are under-represented in
UniMorph, and when they are, the inflection tables
for these languages are often incomplete.

In this paper we propose a general solution
for annotating such structures, thus extending the
UniMorph annotation schema to fully cover a
wider range of morphologically-complex argument-
marking phenomena. Following Anderson (1992),
we propose a so-called layered annotation of fea-
tures, where the inflectional features take the form
of a hierarchical structure, in the spirit of formal
linguistic frameworks as that of Johnson (1988);
Pollard and Sag (1994); Shieber (2003); Bresnan
et al. (2015). We organize the features of multiple
arguments in a hierarchical structure, rather than
the current flat structure that accommodates only
subject concords. This schema shift allows for an
adequate annotation of polypersonal agreement and
of possessed nominals, where a word has multiple
number and gender features, as well as forms with
case stacking, where a word has multiple cases.

We apply the suggested solution to Georgian,
an agglutinative language with a convoluted ver-
bal system, that indicates both subjects and objects
with true affixes (rather than clitics that are omit-
table from the inflection tables). We create a new
human-verified dataset for Georgian, that covers
most of the grammatical phenomena in Georgian
verbs, and includes 118 lemmas, adding up to about
21k verb forms, compared with the 47 lemmas and
3.3k verb forms, some of which are erroneous, cur-
rently available in the Georgian UniMorph.
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gagi˝vebt (gagišvebt)
ga- g- i- ˝v -eb -t
ga- g- i- šv -eb t
FUT O2SG TRANS LET GO THEME S1PL
We will let you(sg.) go

Table 1: A typical Georgian verb. Note the 2 argument
markers, one object (tagged with O) and one subject (S).

We use the new dataset to train a standard
morphological reinflection model (Silfverberg and
Hulden, 2018) and show that training on the Geor-
gian inflections currently available in UniMorph
is not sufficient for generalizing to the more in-
clusive set of inflections that are allowed by the
new scheme. We conclude that our annotation ap-
proach provides a more complete representation of
linguistic behaviors, and that our proposed Geor-
gian dataset provides a much better depiction of
the morphological phenomena that exist in the data
and the computational challenge reflected therein.

We therefore call to apply layered annotation to
all currently existing morphological data in Uni-
Morph, to more consistently and transparently cap-
ture the linguistic reality and morphological com-
plexity reflected in the worlds languages.

2 The Problem: Multiple Arguments

Models of morphological reinfection are trained to
generate forms within a lemma L, given another
form and the features of sourcei and targetj forms:(

⟨featLi , formL
i ⟩, ⟨featLj , ___⟩

)
7→ formL

j

For example, for the Russian lemma ЛЕТЕТЬ:
reinflecting from (PRS;1;SG,лечу) to
(IMP;2;SG,лети) will be represented as:(

⟨PRS;1;SG, лечу⟩, ⟨IMP;2;SG, ___⟩
)
7→ лети

Standardly, the data for training morphologi-
cal models (e.g., Wu et al., 2020; Makarov and
Clematide, 2018) is taken from UniMorph (Mc-
Carthy et al., 2020), a multilingual morphological
dataset in which words are grouped by lemma into
inflection tables, each word is tagged with an un-
ordered set of morphological features. The features
list is shared across languages. The inflection ta-
bles are meant to be exhaustive, i.e., covering all
possible forms of a lemma, regardless of usability.

Although the features were designed to apply
cross-lingually, some blind-spots exist. Most rele-
vant to our work is the assumption that every fea-
ture set includes at most one pronominal feature
bundle (i.e., person-gender-number).

However, this assumption does not apply to
verbs with object concords, as exhibited in Geor-
gian (see Table 1), Inuit and many Bantu languages
inter alia, nor does it apply to possessed nouns that
mark the features of both the possessor and the
possessee. Examples (1a)–(1d) illustrate this:

(1) a. Georgian: gagišvebt ‘We will let you go’
(SUBJ-1PL, OBJ-2SG)

b. Turkish: kedisisin ‘you are his cat’
(NOUN-SG, SUBJ-2SG, POSS-3SG)

c. Swahili: ninakupenda ‘I love you’
(SUBJ-1SG, OBJ-2SG)

d. Hebrew: emdata ‘her position’
(NOUN-SG, POSS-3SG-FEM)

The solution proposed in UniMorph to annotat-
ing these phenomena is via concatenating several
properties into a single string, lacking any internal
structure; e.g., ARGAC2S indicates a form with a
2nd person singular accusative argument (Sylak-
Glassman, 2016). However, there are at least two
shortcomings to this solution. First, it is not suffi-
ciently transparent. ARGAC2S is an opaque string,
that does not decompose into the known features
licensed by the UniMorph features list (i.e., ACC,
2, SG). Secondly, and possibly due to this lack of
transparency, this annotation hack is hardly ever
used in practice. Hence, from all examples in (1),
only the Hebrew form is included in UniMorph,
and tagged as N;SG;FEM;PSS3S with multiple pos-
sessor features merged into the flat string PSS3S.

The crux of the matter is that in the current
annotation schema, complex features assigned to
additional arguments are treated as a single non-
decomposable feature, that lack any internal struc-
ture, unlike the features of the main (so-called ‘in-
ternal’) argument, that are individually spelled out.
We argue that the lack of transparency and usability
are due to the misrepresentation of the inherently
hierarchical and compositional structure of the fea-
tures in such forms. We suggest to explicitly anno-
tate these forms with features that are all explicitly
composed of the same primitive features.

All in all, the lack of a sufficiently expressive an-
notation standard leads to a data distribution that is
skewed, unrealistically simple, and, when language-
specific annotation solutions are painfully needed,
they suffer from inconsistencies and ad-hoc deci-
sions. For these reasons, we set out to extend the
UniMorph annotation schema to accommodate all
such cases and to enable a proper coverage of lan-
guages, such as Georgian and many others.
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3 The Proposed Schema

We propose to extend the UniMorph annotation
schema to cover multiple pronominal feature-
bundles in the same word-form, via a layering ap-
proach, originally proposed for morphological sys-
tems by Anderson (1992). Anderson suggests to
arrange the morphosyntactic representation (MSR)
of words in a hierarchy (dubbed layers) of features,
in the sense that every element of the unordered set
of features can be composed of another unordered
set of features. That is, a general feature annotation
looks as in (2a). A specific transitive verb annota-
tion could be as depicted in (2b):

(2) a. [f1, f2, ..., [Fi : fi1 , fi2 , ...[Fj : fj1 ..]]]
b. [V, Tense,

[nom : Per,Num,Gen],
[acc : Per,Num,Gen]]

This hierarchical feature structure is reminiscent of
unification grammars or attribute-value grammars
(Shieber, 2003; Johnson, 1988) that are extensively
used in syntactic theories such as GPSG, HPSG,
and resemble the f-structures in LFG (Gazdar et al.,
1989; Pollard and Sag, 1994; Bresnan et al., 2015).

Here we employ these structures to organize the
features of morphologically-marked arguments hi-
erarchically, so an argument is characterized by
a feature composite of all features pertaining to
that argument. That is, each argument’s feature-
bundle os specifically marked with the argument
it belongs to, and is decomposed into the primi-
tive features licensed by the UniMorph scheme. It
also homogeneously annotates the different kinds
of arguments, in contrast with the current schema
where the subject features are assigned to the
verb directly. Thus, the English form thinks previ-
ously annotated as V;PRS;3;SG will be annotated as
V;PRS;NOM(3;SG). In languages that mark multi-
ple arguments, different kinds of arguments can be
marked with their feature-bundles without conflicts.
The proposed schema thus facilitates the annota-
tion of the poorly-treated or untreated phenomena
as illustrated in (1). These are, respectively:

(3) a. Georgian: gagišvebt ‘We will let you go’
V;FUT;NOM(1;PL);ACC(2;SG)

b. Turkish: kedisisin ‘you are his cat’
N;SG;NOM(2;SG);POSS(3;SG)

c. Swahili: ninakupenda ‘I love you’
V;PRS;NOM(1;SG);ACC(2;SG)

d. Hebrew: emdata ‘her position’
N;SG;POSS(3;SG;FEM)

Table 2 compares the annotation of these exam-
ples in the current UniMorph schema compared
with our proposed annotation schema.2 The hierar-
chical structures, beyond being more transparent,
opens the door further for future study on composi-
tional generalization in morphology.

The resemblance of our proposed schema to
ideas in other fields of theoretical linguistics, most
prominently to the f-structure in LFG (Bresnan
et al., 2015) and to the nested Attribute-Value ma-
trices in HPSG (Pollard and Sag, 1994), points to a
natural interface with further syntactic and seman-
tic annotations downstream.

4 A Case Study from Georgian

Linguistic Background Georgian is an aggluti-
native language with a verbal system that makes
a vast use of affixes to convey a wide array of
meanings, both inflectional and derivational (see
Table 1). The Georgian verbal paradigm is di-
vided into 5 classes known as: transitive, intran-
sitive, medial, indirect and stative (Hewitt, 1995).
The verbs are inflected to reflect 12 Tense-Aspect-
Mood (TAM) combinations (traditionally known
as screeves) sorted into 4 series: present and future,
aorist, perfective, and the imperative. Each series
has its own morpho-syntactic characteristics, most
notably split-ergativity is manifested in the aorist.

The characteristic most essential to this work is
that Georgian verbs always agree on person and
number with the direct and indirect objects, on top
of the subject-verb agreement. The Georgian data
in UniMorph follows the convention of including
objects only in third person singular — thus failing
to provide a comprehensive coverage of the word-
forms that can be attested in the language.

Additional issues with the current morphological
data in UniMorph for Georgian verbs are: sparsity,
as it includes only 47 inflection tables; lack of di-
versity, as all table are from the transitive class; and
lack of accuracy, as the data was produced automat-
ically without verification by native speakers.

Data Annotation A key contribution of this work
is the creation of a new dataset for Georgian that
follows the layered annotation schema and ad-
dresses the other shortcomings just described. We
selected a list of 118 verb lemmata from all differ-

2Although not explicitly shown here, annotation of case
stacking is also possible with our approach, while non-
hierarchical annotations do not account for such cases. For ex-
ample, Korean교사에게이 can be tagged as N;SG;NOM(DAT).
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Flat structure Hierarchical Structure
Georgian: gagišvebt

V

FUT ARGNO1P ARGAC2S

V

FUT NOM

1 PL

ACC

2 SG

Trans: ‘We will let you go’
Args: SUBJ-1PL, OBJ-2SG

Turkish: kedisisin
N

SG ARGNO2S PSS3S

N

SG NOM

2 SG

POSS

3 SG

Trans: ‘you are his cat’
Args: NOUN-SG, SUBJ-2SG, POSS-3SG

Swahili: ninakupenda
V

PRS ARGNO1S ARGAC2S

V

PRS NOM

1 SG

ACC

2 SG

Trans: ‘I love you’
Args: SUBJ-1SG, OBJ-2SG

Hebrew: emdata
N

SG PSS3S FEM

N

SG POSS

3 SG FEM

Trans: ‘her position’
Args: NOUN-SG, POSS-3SG-FEM

Table 2: Examples for word-forms with multiple argument agreements. On the left we present the flat structure
currently employed in UniMorph. All examples save Hebrew are not included in the UniMorph inflection tables,
presumably due to their lack of transparency. On the right we present our proposed hierarchical structure, which is
more transparent, and also ammenable for compositional generalization.

ent classes.3 Every verb was manually annotated
with its stem, its thematic affix and principal parts,
to automatically generate the full inflection tables.

This automatic generation of Georgian verbs is
prone to some errors, for instance, in accounting
for idiosyncratic phonologically-conditioned stem
changes. Hence, we ran our data through 3 native
Georgian speakers to assert its correctness, or fix
when needed. In cases where speakers were un-
sure we used a Georgian morphological analyzer
(Doborjginidze and Lobzhanidze, 2012) for consul-
tation. In cases of disagreement, we used a majority
vote among the speakers. On average, at least one
speaker was uncertain in about 5% of the forms,
but a disagreement that necessitated a majority vote
occurred only on about 0.7% of the cases.

Table 3 summarizes the statistics over our anno-
tated data. In total, we produced 21,054 verb forms,
of 118 lemmata. The data is quite evenly balanced
across the classes, with more verbs drawn from the
more frequent transitive class. For comparison, the
current UniMorph data has fewer lemmas, 3,300
forms, and includes only verbs that are transitive.4

3We based the list of verbs on those whose inflection tables
appear on Hewitt (1995) and added some commonly-used
verbs suggested by native speakers.

4All our data is publicly available at https://github.
com/Onlp/GeorgianMorphology.

Trans. Intrans. Med. Indi. Stat.
#Infl. Tables 40 21 29 16 12
#Verb Forms 12506 2560 3132 2626 230

Table 3: Distribution of the Georgian verbs over classes.

5 Experiments

To assess the usability of our dataset, we trained
a standard reinflection model, the character-level
LSTM of Silfverberg and Hulden (2018), on our
data.5 We sampled from our data 2 datasets for
training morphological reinflection models, con-
taining train, validation and test sets in sizes 8k, 1k
and 1k examples, respectively. Following Goldman
et al. (2021), one dataset employed an easier form-
split, i.e., no forms appear in both train and test,6

and the other with the more challenging lemma-
split, where lemmas from train, dev and test are
disjoint. To assess the generalization capacity we
varied the sources of both the train and test sets.7

We report 2 evaluation metrics: accuracy over exact
matches, and average edit distance from gold.

5For hyper-parameters tuning see Appendix C.
6This is the splitting method used in SIGMORPHON’s

shared tasks on reinflection (e.g., Cotterell et al., 2018).
7We harmonized the train and test features vocabulary, so

that the old data bears the new scheme. So the only difference
between Original and New is in which forms are included.
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Train Set Test set Form Split Lemma Split
Acc Avg ED Acc Avg ED

New New 94.9% 0.15 1.3% 4.66
New Original 84.7% 0.3 0.3% 4.39
Original New 35.2% 1.36 0.0% 6.22
Original Original 99.3% 0.01 0.0% 6.13

Table 4: Accuracy (Acc, higher is better) and Average
Edit Distance (Avg ED, lower is better) for morphologi-
cal reinflection on different train-test combinations.

Results and Analysis Table 4 presents the
model’s performance for all train-test combina-
tions. It shows that the model’s performance on
the new data (top line combination) is largely on
par comparing to its performance over training and
testing on UniMorph’s original data (bottom com-
bination). However, the model generalizes poorly
from the original partial data to the forms in our
test set which reflect the entire Georgian inflec-
tional system. Generalization from our data to Uni-
Morph’s set is a lot better. The results also show
that the splitting method is crucial for success of
the model, as it inflects easily to unseen forms,
but much harder when inflecting forms in a pre-
viously unseen lemma.8 These results corroborate
the results of Goldman et al. (2021) regarding the
difficulty of lemma-split data. Although the accu-
racy over the lemma split data is negligible, the
average edit distance in that case points again to
the conclusion that generalization from UniMorph
to our data is harder that the other way around.

Error Analysis To provide insights into the chal-
lenge of reinflecting morphologically complex
forms, we manually sampled the erroneous output
of the model trained and tested over our lemma-
split data, to draw insights on the points of failure.
In many cases the model succeeded in copying and
modifying the verb stem, but failed to output the
other morphemes correctly. Sometimes the errors
were due to inflection to an incorrect TAM com-
bination of the same lexeme, and sometimes the
inflection was done to the correct TAM but to a dif-
ferent derivationally-related lemma (e.g. change of
voice in addition to the change of TAM). We con-
clude that the fact that our datasets include lemmas
from diverse classes that may have derivational rela-
tions makes the inflection task significantly harder.
Interestingly, the model managed to predict the
correct subject and object affixes most of the time.

8For learning curves on the splits see Appendix A.

6 Conclusion

This paper proposes a transition of the UniMorph
annotation standard to a layered hierarchical anno-
tation of features. This revised schema caters for
complex marking phenomena including multiple
pronominal agreement. We apply it to Georgian,
and construct a corresponding new dataset that is
large, balanced, complete with respect to grammat-
ical phenomena in the Georgian verb system and
verified by native-speakers. Our experiments with
a standard reinflection model on the old and new
Georgian datasets shows that the old UniMorph
dataset does not generalize well to the new test-
set, due to its partial coverage. This work is in-
tended to encourage the community to extend the
annotation of different languages to include phe-
nomena such as polypersonal agreement and others
that can be dealt with using a hierarchical anno-
tation, ultimately leading to more complete and
consistent benchmarks for studying non-trivial and
less-explored areas of computational morphology.
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A Learning Curves

Fig. 1 exemplifies the sufficiency of our dataset
for training an inflection model on form-split data
as doubling the data amount from 4,000 to 8,000
yields relatively minor improvement. It also shows
that for the lemma-split data, the model completely
fails. It starts improve marginally with more than
2,000 examples, although its performance remains
far from satisfactory. This leaves room for explo-
ration of bootstrapping and augmentation methods
or more sophisticated modeling to improve results.

Figure 1: Inflection accuracy over form-split and lemma-
split test sets as a function of train set size.

B Tech-Spec

All algorithms described in the paper were executed
on a single machine equipped with one NVIDIA TI-
TAN Xp GPU, 16 Intel i7-6900K(3.20GHz) CPUs
and 126GB RAM. Since the LSTM algorithm was
implemented on DyNet, there was no need of the
GPU, and all the calculations were done using only
the CPU.

C Hyper Parameters

1. Embedding size = 100
2. Hidden state size = 100
3. Attention size = 100
4. Number of LSTM layers = 1

During training, we experimented with several val-
ues for the hyper-parameters detailed above. How-
ever, for all the combinations we tried, the results
barely changed both at the form-split setting and
the lemma-split setting.
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