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Abstract

Transformers have been shown to be able to
perform deductive reasoning on a logical rule-
base containing rules and statements written
in natural language. Recent works show that
such models can also produce the reasoning
steps (i.e., the proof graph) that emulate the
model’s logical reasoning process. Currently,
these black-box models generate both the proof
graph and intermediate inferences within the
same model and thus may be unfaithful. In
this work, we frame the deductive logical rea-
soning task by defining three modular compo-
nents: rule selection, fact selection, and knowl-
edge composition. The rule and fact selection
steps select the candidate rule and facts to be
used and then the knowledge composition com-
bines them to generate new inferences. This
ensures model faithfulness by assured causal
relation from the proof step to the inference
reasoning. To test our framework, we pro-
pose FAIRR (Faithful and Robust Reasoner)
where the above three components are indepen-
dently modeled by transformers. We observe
that FAIRR is robust to novel language pertur-
bations, and is faster at inference than previ-
ous works on existing reasoning datasets. Ad-
ditionally, in contrast to black-box generative
models, the errors made by FAIRR are more
interpretable due to the modular approach. 1

1 Introduction

The field of AI has long pursued the goal of build-
ing systems that can automatically reason over
some given explicit knowledge to generate con-
clusions and provide the reasoning steps involved
in the process (McCarthy, 1959; Newell and Si-
mon, 1956). Recently, Clark et al. (2020) proposed
a modern version of this problem, where the for-
mal representation of knowledge is replaced by
natural language statements in English. Further,

1The source code of FAIRR has been made available at
https://github.com/INK-USC/FaiRR.

fact1: Charlie is blue.
fact2: Charlie is round.
fact3: Erin is kind.
fact4: Dave is round.

rule1: If someone is blue then they are kind.
rule2: Round, kind people are white.

statement: Charlie is white.

conc1: Charlie is kind.

conc2: Charlie 
is white.

fact1 rule1

fact2

conc1

rule2 conc2

Figure 1: Example of a theory, a statement, and a
valid proof graph - An instance contains multiple facts
and rules in blue and yellow respectively, followed by a
statement in red. The proof graph describes the reason-
ing steps required to generate the statement.

they proposed a transformer-based model (Vaswani
et al., 2017) RuleTaker, that can predict if a candi-
date statement is entailed by the natural language
statements, by emulating deductive reasoning. As
shown in Figure 1, in this deductive reasoning task,
facts and rules from the rulebase are combined iter-
atively to generate intermediate inferences which
eventually entails the statement. Note that the rea-
soning process implicitly involves two steps: deter-
mining which rules and facts to combine at each
iteration, followed by using them to generate an
intermediate conclusion.

While RuleTaker focuses on just predicting the
statement entailment, some recent works (Saha
et al., 2020; Tafjord et al., 2021) have further devel-
oped systems that can also generate the reasoning
steps (i.e., proof graph generation). However, these
systems do not explicitly ensure the causality from
the rule/fact selection to generating the intermedi-
ate inferences. Since these systems are inherently
black-box models, it is unclear if such constraints
are implicitly learned by the models without being
enforced externally. This, in turn, questions the
faithfulness of the model’s internal reasoning pro-
cess (Lipton, 2018). Because the model has access
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to the full theory at input, it might use additional
parts of the theory, than just the predicted proof, to
generate the inference.

In this paper, we address these shortcomings
by developing a modularized framework to solve
the deductive reasoning task. While existing meth-
ods generate both proofs and conclusions in a sin-
gle step, in our framework we break this process
into three steps: rule selection, fact selection, and
knowledge composition. The rule selection step
decides the relevant rule to use for an iterative infer-
ence step and fact selection uses this rule to select
the relevant facts. Then, the knowledge composi-
tion step reasons using only the selected rule and
facts to generate the next intermediate inference.
In Figure 2, we show the model schematics for our
system and contrast it with previous methods. No-
tably, we strictly restrict the information accessible
at each step of our framework to make the reason-
ing process more faithful. For example, the fact
selection step depends only on the selected rule,
instead of all the rules in the rulebase. Additionally,
the generated inference depends explicitly on the se-
lected rule and facts, as opposed to all the rules and
facts in prior works. This makes the proof graph a
by-product of the selection steps as we don’t need
to generate any separate proofs. Since we constrain
the inputs to each step, this also makes each sub-
problem easier to learn, leading to an overall more
robust reasoning model.

To model these three steps, we develop FAIRR,
in which each component is a transformer-based
model learning to perform the modular tasks.
Specifically, we use RoBERTa-based models (Liu
et al., 2019) for the two selection tasks and a T5-
based model (Raffel et al., 2020) for the composi-
tion task. Similar to ProofWriter, we use synthetic
rulebases to train FAIRR. To test the deductive
reasoning capabilities in a more comprehensive
way, we experiment with both existing deductive
reasoning datasets and multiple newly-generated
robustness dataset variants. Overall, we find that
FAIRR is more robust to novel language pertur-
bations than baselines. Additionally, our model
is up to three times faster at inference due to the
constrained input and outputs of different modules.
Lastly, we find that the errors made by our model
are more interpretable and easier to debug com-
pared to baseline generative models. This further
demonstrates the faithfulness of our modularized
reasoning framework.

All-at-
once Model

statement

ans; proof

rules facts

conc

Rule 
Selector

Knowledge 
Composer

rules

rule

statement facts

Fact 
Selector

fact

Iterative 
Model

Iterative 
Model

conc; proof

rules facts
(a) (b)

(c)

Figure 2: Reasoning process in different models.
(a): ProofWriter (“All”) directly output the entail-
ment prediction and proof graph for given input. (b):
ProofWriter (“Iter”) iteratively generates the one-step
intermediate conclusions and their proofs. (c): FAIRR
selects a rule, then a fact, and finally combines them to
generate an intermediate inference. Note that the proof
is implicitly determined by the selection steps. Please
refer to Section 3.1 for details.

2 Problem Definition
Notations A theory T consists of a set of facts
F = {f1, f2, . . . , fn} and rules R = {r1, r2, . . . , rm} ex-
pressed in natural language. An example of a the-
ory is depicted in Figure 1. Here, the sentences
in the blue and yellow boxes are facts and rules,
respectively. Further, a proof graph is a directed
graph connecting facts and rules that describe how
a specific inference can be obtained from the the-
ory. In Figure 1, the proof graph shows the steps
involved in generating the inference “Charlie is
white.”. To generate the proof graph we may need
to infer some intermediate conclusions ci. These
inferences are considered as part of the extended
facts in the theory. For example, in Fig. 1, “Charlie
is kind” is an intermediate inference required to
generate the correct proof graph.

Deductive Reasoning The task of deductive rea-
soning is described as follows: given a theory T ,
and a statement s, predict if the theory supports the
statement (entailment prediction) and if so, gen-
erate the proof graph that supports the statement
(proof generation). For the example theory and
statement in Figure 1, we see that the statement is
indeed entailed by the theory and the valid proof
graph is shown for the same. The main goal of this
task is to evaluate if a model can generate valid rea-

1076



soning chains in the form of proof graphs to justify
its entailment prediction.

Reasoning Robustness We consider an auxiliary
task that evaluates the robustness of the reason-
ing abilities used by the model. Let P be a per-
turbation function that modifies a given theory T
(statement s) to a theory T

′ (statement s′), such
that (T ′

, s
′) just has some surface changes in the

natural language form but still requires the sim-
ilar reasoning process as required for (T, s). A
function that alters the subjects in the theory to
unseen subjects is an example of such perturba-
tion function. We perturb each theory statement
pair (T, s) to create an equivalence set defined as
the set E(T,s) = {(T ′

1, s
′
1) . . . (T ′

N , s
′
N)}, where

each (T ′
k, s

′
k) is derived by perturbing the original

theory, and N is the total such perturbations per
theory. Note that it is possible to generate different
(T ′

k, s
′
k) pairs by controlling the stochasticity of P .

The main goal of this task is to evaluate the con-
sistency of the model’s predictions with minimal
variations in the input theory.

Evaluation Protocol We consider three main as-
pects for evaluating the model performance in our
study: (1) Entailment accuracy measures how ac-
curately the model is able to predict the true state-
ment entailment. (2) Proof accuracy measures
how accurately the model can predict a valid proof
for the statement. Following Saha et al. (2020);
Tafjord et al. (2021), we use the strict metric for
proof evaluation, i.e., for a match to count, both
the predicted proof should exactly match a gold
proof and the entailment should be correctly pre-
dicted. (3) Consistency measures if the models
are consistent in the entailment and proof predic-
tion for different perturbation functions. For a
theory statement pair (T, s) and its correspond-
ing equivalence set E(T,s), consistency is defined
as C =

1
N
∑N

k=1 1[f(T, s) = f(Tk, sk)], where
f(⋅) is the model’s prediction. We compute the
average consistency for both entailment and proof
predictions on an equivalence set and further aver-
age across the dataset to report the consistency.

3 The FAIRR Method

3.1 Approach Overview

As illustrated by the example in Figure 1, to reliably
generate a proof graph through deductive reason-
ing, a model needs to generate multiple one-hop

intermediate conclusions. This is the major limita-
tion of models that use the theory to directly predict
the proof (Figure 2 (a)), thus questioning the trust-
worthiness of the reasoning process. Next, it is also
intuitive to see that in order to faithfully generate
these intermediate inferences, a model should first
determine the proof (i.e., know the rules and facts
to use) and then use them to infer the conclusion.
That is, there is a causal relation from determining
the proof to then generating the conclusion. We
note that ProofWriter (“Iter”) lacks in this aspect.
As shown in Figure 2 (b), it first generates the con-
clusion and then the corresponding proof.

Motivated by these points, we propose our causal
reasoning framework which breaks the reasoning
process into three desirable steps. As shown in Fig-
ure 2 (c), in our framework, first a rule r is selected
using the rules and facts in the theory. Following
that, some relevant facts are selected from the fact
list based on the selected rule r. This step does not
use the other rules R\{r} in the theory. Finally, the
selected rule and facts are jointly used to generate a
new conclusion ci. In this framework, the one-step
proof is explicitly determined first via the selection
steps followed by the inference generation, making
the proof a by-product of the whole process. In
contrast, prior works learned to generate the proof
along with intermediate conclusion.

3.2 FAIRR Modules

At a high level, FAIRR is an iterative model in
which the one-hop intermediate conclusions are
generated step-by-step. To model our framework
described in Sec. 3.1, we have four components in
FAIRR as follows.

Rule Selector (RS) The rule selector is a
RoBERTa-based (Liu et al., 2019) classification
model that takes the concatenated statement, facts,
and rules as input, and selects a rule that is used
to generate an intermediate conclusion in the cur-
rent iterative step. It takes the input of the form
[CLS] s [SEP ] F [[SEP ] ri ]m [SEP ] , and gen-
erates a one-hot output vector by classifying the
token embedding from the [CLS] token and [SEP]
tokens in front of the rules, via a linear classifier
layer. Each classification is a binary classification,
but overall only one of the tokens has the posi-
tive class. Here s denotes the statement, F is the
facts and concatenated with any intermediate con-
clusions generated in a prior iteration, and {ri}
denotes the i

th rule in the theory that contains a
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total of m rules. [ ]m denotes continued concate-
nation. An example input and output of the rule
selector is shown in Figure 3. If a [SEP] token is
selected, we select the rule sentence following the
corresponding [SEP] token, otherwise if the [CLS]
token is selected, we decide to stop the iteration.
That is, the [CLS] selection acts as a stop signal
for our iterative model. We note that it is possible
to have more than one likely candidate rule since
there can be multiple one-hop inferences possible
for a given theory. Following Tafjord et al. (2021),
we randomly select one of the possible candidate
rules at each iteration.

Fact Selector (FS) The fact selector is RoBERTa-
based (Liu et al., 2019) token classification model
that takes the statement, the rule selected by
the rule selector, and facts in the theory, and
then predicts a set of candidate facts that can
be used with the rule to generate an intermedi-
ate conclusion. It takes the input of the form
[CLS] s [SEP ] r [[SEP ] fi]n [SEP ] , where s is
the statement, r is the selected rule, and {fi} is the
i
th fact in the theory containing n total facts. Note

that facts also include any previously generated
intermediate conclusions. [ ]n denotes continued
concatenation. The output is generated by classify-
ing each [SEP] token embedding in front of a fact
using a linear layer, to determine if the correspond-
ing fact is selected or not. An example input and
output for the fact selector is depicted in Figure 3.
We note that it is possible to have some rules that
can reason over multiple facts jointly to generate
a conclusion. An example of such a rule is “rule2”
in Figure 1. Hence, this component has the ability
to select multiple facts.

Knowledge Composer (KC) The knowledge
composer is a generative text-to-text transformer
T5 (Raffel et al., 2020) (T5-large) that can compose
a set of facts and a rule to output a novel conclu-
sion. The input to the model is the selected facts
and rule concatenated together, and the output is
the intermediate conclusion. An example input and
output for knowledge composer is shown in Fig. 3.

Solver The final component is the solver that op-
erates after all iterations have finished (i.e., once
the rule selector selects the [CLS] token indicat-
ing to stop the iterative inference generation pro-
cess). Similar to ProofWriter, our solver currently
searches for the statement in the generated inter-
mediate inferences (string matching). If found, it

[CLS] s [SEP] f1 f2 f3 [SEP] r1 [SEP] r2 [SEP]

0 1 0

Rule Selector

[CLS] s [SEP] r1 [SEP] f1 [SEP] f2 [SEP] f3 [SEP]

1 1 0

Fact Selector

f1 f2 r1 <eos>

c1

Knowledge Composer

Figure 3: Overview of components of FAIRR - The
rule selector and fact selectors are classification models
whereas the knowledge composer is a generation model.
The input tokens used for classification by the selectors
are highlighted. Rule selector decides to stop based on
the output prediction of [CLS] token (highlighted in
green). Here, rule r1, and facts f1 and f2 are used to
generate the conclusion c1. Please refer to Section 3.2
for more details.

predicts that the statement is entailed by the theory.
It also search for the negation of the statement 2,
and if found, it predicts not entailed. If none of
these are present, it predicts “Unknown” since it
cannot prove or disprove the statement. The proof
graph is constructed by using the one-hop proofs
generated by the selected rule and facts at each step.
For example, in Figure 1, the red dotted boxes (one-
hop proofs) are stitched together to assemble the
complete proof. For cases where the entailment
is “Unknown”, the proof returned is “None”, since
no proof for the statement exists in the theory. We
note that our solver is not a learnable module.

3.3 Training and Inference

Each component of our model (except the solver,
which is deterministic) is trained separately. We
use the same dataset as ProofWriter to train these
models, but process it such that each model re-
ceives only the relevant inputs according to our
causal framework. More concretely, suppose for a
given theory T = R + F , a possible intermediate
inference is c obtained by using a rule r and a fact
f . Then, a training instance of ProofWriter, which
is a T5 (Raffel et al., 2020) model, uses the input
{R,F} and output {c, r, f}. We process the same

2Following ProofWriter, we perform regex to add/remove
“not” which suffices for this dataset.
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instance to generate three training instances, one
for each of rule selector, fact selector, and knowl-
edge composer, respectively, as follows:

RS Input = {R,F}; RS Output = {r},
FS Input = {r, F}; FS Output = {f},
KC Input = {r, f}; KC Output = {c}.

Our selector models have the statement s as input
to the model. Also, the outputs of rule selector and
fact selectors are converted to class labels instead
of text since our selectors are classification models.
We use cross entropy loss to train the rule selec-
tor, and binary cross entropy loss to train the fact
selector. The knowledge composer is trained on
language modeling loss.

At inference time, the rule selector selects a
rule to be used for generating one-step conclusions.
Then, the fact selector selects some facts based on
the selected rule, which is then collectively passed
on to the knowledge composer to generate a conclu-
sion. This three-step pipeline is run iteratively until
the rule selector predicts a stop signal by selecting
the [CLS] token which exits the iteration. Once
the iteration finishes, the solver uses the generated
intermediate inferences to decide if the statement is
entailed or not, and generates a proof accordingly.

Remark on Computational Complexity A prac-
tical limitation of ProofWriter is that it performs an
exhaustive forward search by enumerating all pos-
sible inferences from a given theory. This leads to
redundant inferences being generated for proving a
particular statement. Additionally, using a text-to-
text transformer model adds to the problem since it
is usually quite expensive to run at inference time.
In FAIRR, we alleviate this by introducing two
changes. First, our causal framework allows only
selected rule and facts as input to the knowledge
composer, thus restricting the input length signif-
icantly. Second, augmenting the question to our
selector inputs helps reduce the candidate space
because these models can learn to prioritize the se-
lection based on the relevance to both the question
and the theory. This ensures that FAIRR does not
perform an exhaustive forward search and priori-
tizes generating relevant inferences over the others.
Both these changes lead to an overall improvement
in inference speed. We perform more quantitative
analysis on this later in Section 5.3.

4 Experimental Setup

Datasets Following (Tafjord et al., 2021; Clark
et al., 2020), we use the D* datasets for our experi-
ments. These are a set of multiple datasets - namely
D0, D1, D2, D3, D0-D3, and D5. The theory in
these datasets are synthetically generated with in-
creasing reasoning depths. For example, D3 dataset
contains statements that require at most 3-hop rea-
soning steps. The D0-D3 contains all theories in
D3 plus ∼ 20% of the D0-D2 training set theories.
We also use the ParaRules dataset (Clark et al.,
2020) that contains around 2k theories expressed
in paraphrased natural language.

Additionally, we generate three datasets that
evaluate the robustness of the reasoning models
as follows:

• Subject robustness: Here, subjects in a
theory are perturbed by using some out-of-
distribution proper and common names. For
example, in Figure 1, “Charlie” can be re-
placed with “Paul” which is not used in the D*
datasets. We generate five new theories cor-
responding to each theory of the D3 dataset,
by repeatedly perturbing all the proper and
common names in the theory.

• Attribute robustness: Here we sample out-
of-distribution attributes. For example, “blue”
in Figure 1 can be replaced with “soft”. As
above, we generate five new theories for each
theory of the D3 dataset.

• Subject+Attribute robustness: This is a com-
bination of subject and attribute robustness
to study model performance when most of
the training vocabulary is replaced by out-
of-distribution words. Each theory has both
novel subject and attribute.

We include more details on the perturbation sets
used in our experiments in Appendix B.

Baselines We compare FAIRR with two variants
of ProofWriter (Tafjord et al., 2021): All-at-once
(PW (“All”)) and Iterative (PW (“Iter”)), wherever
applicable 3. The PW (“All”) model is trained to
predict the entailment and generate proof graph di-
rectly from the theory and statement in a single step.
The PW (“Iter”) generates one-step inferences and
corresponding proofs iteratively, until all possible
inferences are generated, and then stitches the proof

3
The code to reproduce numbers of ProofWriter is not publicly available.

We either copy results directly from the paper or run our own inference on
model checkpoints made available by the authors.
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Entailment Accuracy Proof Accuracy

d PW (“Iter”) FAIRR PW (“Iter”) FAIRR

N/A 99.7 99.6 99.7 99.6
0 100.0 100.0 100.0 100.0
1 99.9 99.7 99.9 99.5
2 99.7 98.9 99.4 97.2
3 99.7 96.6 99.1 95.3

All 99.8 99.2 99.7 98.8

Table 1: Comparison of FAIRR with ProofWriter
(“Iter”) trained and tested on D0-D3. Baseline results
are generated using the checkpoint provided by the au-
thors. For more details please refer to Section 5.1.

graph similar to our method. If not mentioned oth-
erwise, ProofWriter uses a T5-large (Raffel et al.,
2020) model. We omit comparisons with PRover
since it was trained on a different dataset that adds
specific constraints on the proof graph. Please refer
to Appendix J for more details.

5 Experiment Results

We compare FAIRR with ProofWriter variants on
three settings: generalization on D* datasets, ro-
bustness to perturbed theories, and efficiency in
inference computation. We further conduct qualita-
tive analysis to understand the inference errors.

5.1 Performance on Same Depth Reasoning

In this setting, we train and test both models on
D0-D3 dataset. Note, D0-D3 contains statements
with reasoning depths up to 3. This compares the
ability of the models to generalize to seen reason-
ing depths at train time. The results with increasing
depths of reasoning are shown in Table 1. Here,
depth “N/A” refers to statements that cannot be
proven and hence don’t have an exact proof depth
associated with it. We observe that overall both
FAIRR and ProofWriter (“Iter”) performs compa-
rably (last row with depth ’All’). Further, we find
that our model’s performance is lower on d = 3,
indicating that our models tend to perform weaker
with increasing depths. This happens majorly be-
cause the rule selector in FAIRR tends to incor-
rectly select the [CLS] token to indicate a stop
signal instead of generating more possible inter-
mediate inferences. We discuss more about this in
Sections 5.3 and 5.4. Please refer to Appendix C
for more results on unseen reasoning depths.

Robustness
PW (“Iter”) FAIRR

EA PA C EA PA C

Subject 89.6 88.4 87.6 96.8 95.9 96.4
Attribute 97.8 97.4 97.4 96.7 95.6 96.5
Subject+Attribute 94.8 93.4 93.7 95.4 94.3 94.7

Average 94.1 93.1 92.9 96.3 95.3 95.9

Table 2: Comparison of FAIRR with ProofWriter
(“Iter”) when trained on D0-D3 dataset and tested on
different robustness datasets. EA, PA, and C refers to
entailment accuracy, proof accuracy, and consistency,
respectively. Please refer to Section 5.2 for more details.

Entailment Accuracy Proof Accuracy

d PW (“Iter”) FAIRR PW (“Iter”) FAIRR

N/A 98.9 99.3 98.9 99.3
0 99.9 100.0 99.9 100.0
1 79.1 96.0 78.8 95.7
2 76.6 93.4 73.4 91.4
3 72.7 89.8 67.8 85.7

All 89.6 96.8 88.4 95.9

Table 3: Comparison of FAIRR with ProofWriter
(“Iter”) trained on D0-D3 and tested on subject robust-
ness dataset. Baseline results are generated using the
checkpoint provided by the authors. For more details
please refer to Section 5.2.

5.2 Robustness to Perturbed Theories

In this section, we test the robustness of
ProofWriter (“Iter”) and FAIRR on different per-
turbed theories. Since FAIRR focuses on making
deductive reasoning more robust and faithful, per-
formance on these robustness experiments are the
main results of our work. As described in Section
4, we test the robustness on three different pertur-
bations: subject, attribute, and subject+attribute.
We compare the performance of both models after
training on D0-D3 dataset. The consolidated re-
sults are shown in Table 2 and depth-wise results
for subject robustness are shown in Table 3. We
report the entailment accuracy, proof accuracy, and
consistency as defined in Section 2. Please refer
to appendix D for the depth-wise breakdown of
all the datasets. We observe that on subject and
subject+attribute robustness, our models are consis-
tently better than ProofWriter whereas on attribute
robustness both models perform similarly. Fur-
ther, we find that on average, FAIRR is both more
accurate and consistent than the baseline. From
this, we conclude that our model relies less on
spurious correlations based on the subject while
both models likely suffer from similar issues on
attribute perturbations. Since ProofWriter uses the
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theory to generate the intermediate conclusion and
proofs, it has the capacity to exploit some spurious
patterns that can inflate performance. In contrast,
our causal framework restricts this capacity by con-
straining the inputs to each component as described
in Section 3.1. Hence, these robustness evaluations
demonstrate one of the prime benefits of our causal
and modular approach.

5.3 Study on Inference Efficiency

Here we perform several analyses to evaluate the
computational benefits of our method as described
in Section 3.3. Inference efficiency is an impor-
tant aspect of this problem for real-world scenarios
where compute can be limited.

Relevance of generated inferences Here, we
study the relevance of the intermediate inferences
generated by FAIRR and ProofWriter (“Iter”). Let
T be the set of intermediate inferences required for
generating the proof graph for the statement. Fur-
ther, let G be the set of intermediate inferences actu-
ally generated by a model. Then, the precision and
recall are defined as P =

∣T∩G∣
∣G∣ , and R =

∣T∩G∣
∣T ∣

In Figure 4, we plot the precision and recall for
both FAIRR and ProofWriter (“Iter”) with increas-
ing reasoning depths. We find that our model
has close to 1.0 precision at all depths, whereas
ProofWriter has low precision. This demonstrates
that our model is able to successfully prune the
candidate inference space to generate relevant can-
didate inferences almost perfectly. In contrast, we
see that with increasing depths, our model’s re-
call reduces from close to 1.0 to ≈ 0.95 whereas
ProofWriter has a perfect recall at all depths. While
the drop is not very drastic, it indicates that our
model fails to generate some essential inferences at
higher depths. This is mainly because our rule se-
lector decides to stop early and not generate further
relevant inferences for some provable statements.
Overall, we conclude that FAIRR always generates
inferences that are relevant to solving the instance,
although at higher depths it can miss some relevant
conclusions.

Performance under inference budget constraints
We analyze the performance of FAIRR and
ProofWriter under a fixed inference budget con-
straint by restricting the total number of conclu-
sions that can be generated. We perform this anal-
ysis for different reasoning depths and depict the
results in Figure 5. We observe that FAIRR con-

Depth

0.00
0.25
0.50
0.75
1.00

1 2 3 4 5

ProofWriter (''Iter'') FaiRR

(a) Precision

Depth

0.80
0.85
0.90
0.95
1.00

1 2 3 4 5

ProofWriter (''Iter'') FaiRR

(b) Recall

Figure 4: Comparison of ProofWriter (“Iter”) and
FAIRR on precision and recall of generated inferences
with increasing reasoning depths.

Proof Depth Budget

0
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1 3 5 7 10

ProofWriter FaiRR

(a) Depth 1

Proof Depth Budget

0
25
50
75

100

3 5 7 10

ProofWriter FaiRR

(b) Depth 3

Figure 5: Depth-wise comparison of ProofWriter
(“Iter”) and FAIRR on limited inference budgets. Please
refer to Section 5.3 for details.

sistently outperforms ProofWriter on lower bud-
gets. This shows that FAIRR performs a prioritized
generation of conclusions that are relevant to the
statement, which can be useful in scenarios with
limited inference budgets. See Appendix G for
more comparisons.

Inference runtime analysis We next compare
the time taken by both the models to solve the com-
plete D5 dev set. Although FAIRR has three sep-
arate modules that run sequentially, it is 3.5 times
faster than ProofWriter (“Iter”) at inference time on
average. We attribute this to the reduced inference
candidate search space due to question augmenta-
tion, and smaller input size to the T5 component
(refer to Section 3.3 for details). Please refer to
Appendix H for more details.

5.4 Error Analysis

We further analyze the different errors made by
FAIRR and ProofWriter (“Iter”) on 50 randomly
sampled errors for each model, from the D0-D3
and the subject robustness dev splits. We manually
inspect the proof inferences and compare it with
the gold proof to classify the failures. The errors
are broadly categorized as follows:

Early stop errors: This is the most frequent
error type for both models, accounting for 80%
and 50% errors in FAIRR and ProofWriter, respec-
tively. This occurs when a model incorrectly gen-
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Input Output

s1: If someone is blue then they are quiet. s2:
Chris is blue.

Chris is quiet.
(s1, s2)

s1: If someone is blue then they are quiet. s2:
Chris is blue. s3: Steve is blue. Dave is quiet.

(s1, s2)

s1: If someone is blue then they are quiet. s2:
Quiet people are cold. s3: Chris is blue. s4:
Steve is blue. s5: Chris is white.

Dave is quiet.
(s1, s4)

Table 4: Examples of inferences made by ProofWriter.
Blue text denotes incrementally added sentences in the
theory and red text denotes an error. The (⋅) is the
generated proof. Refer to Section 5.5 for more details.

erates the stop signal and fails to generate all the
required inference to prove a statement. We find
that our model makes the majority of the mistakes
due to early stopping. This can be possibly fixed
by improving the rule selector architecture to better
model the stop criteria.

Wrong inference: This is the second error type,
where the inferred conclusion is incorrect based
on the predicted proof. This accounts for 20%
and 30% errors in FAIRR and ProofWriter, respec-
tively. We observe that our knowledge composer
is makes lesser errors on average compared to the
ProofWriter generative model.

Other generation errors: ProofWriter makes
around 20% errors where the model generated out-
put does not make sense. For example, it can hal-
lucinate facts that are not present in the theory.
Such errors are not interpretable and questions the
model’s inner-working. FAIRR shows no such er-
ror, since the proofs are always interpretable in our
model due to the causal framework.

Overall, we find that the errors made by FAIRR
are more interpretable than ProofWriter, since we
can pin-point which module is at fault. Whereas,
in ProofWriter, it is sometimes hard to understand
the source of errors. This feature also makes our
framework easier to debug to potentially fix some
components with techniques like data augmenta-
tion. Please refer to Appendix I for more discussion
and examples of errors.

5.5 ProofWriter Input Ablation

A key goal of FAIRR is to explicitly ensure causal-
ity from the rule/facts selection step (proof gen-
eration) to the reasoning step (intermediate infer-
ence generation). This is essential for a reasoning
method using forward chaining to solve a deduc-

tive reasoning task 4. To understand if ProofWriter,
which uses forward chaining, implicitly does this
“select-then-reason” within the model, we perform
the following case study: We sample theories from
our subject perturbation dataset where ProofWriter
made errors, and manually evaluate the model
on inputs with all irrelevant rules/facts deleted.
Next we sequentially start adding back the deleted
rules/facts to see if the output still remains valid.
As shown in Table 4, we see that ProofWriter gen-
erates a correct inference for the first row which
uses just the essential part of the theory required to
generate the conclusion, and starts making errors as
more sentences are included. Some more examples
are shown in Table 16 in Appendix. This shows
that internally ProofWriter is unable to faithfully
perform the “select-then-reason” steps for larger
theories. In contrast, FAIRR explicitly separates
these steps, leading to a faithful reasoning model.

6 Related Works

Reasoning in Text Reasoning in text is a well
studied problem in NLP. Natural Language Infer-
ence (NLI) (Dagan et al., 2006) is one of the most
prominent tasks that require reasoning over text to
answer if a statement is entailed, contradicted, or
neutral, given a hypothesis. More recently, datasets
like HotpotQA (Yang et al., 2018), bAbI (Weston
et al., 2016), QuaRTz (Tafjord et al., 2019), ROPES
(Lin et al., 2019), CLUTRR (Sinha et al., 2019),
etc., have studied different aspects of reasoning
over textual inputs. These tasks usually require
implicit reasoning, where the model needs to in-
ternally infer the rules required to solve the task.
In contrast, RuleTaker (Clark et al., 2020) deals
with explicit reasoning (also known as deductive
reasoning).

Proof Generation Recently, some works have
been addressing the problem of proof generation
from an NL-based theory. Prover (Saha et al., 2020)
trains a RoBERTa-based model that predicts nodes
and edges of the proof graph. ProofWriter (Tafjord
et al., 2021) is a T5-based (Raffel et al., 2020)
model, that iteratively generates one-hop conclu-
sions and proofs from a theory. Another work Mul-
tiProver (Saha et al., 2021), generates multiple pos-
sible proofs for a statement. While we study the
same problem of proof generation similar to these

4Forward chaining is described as repeated application of
modus ponens (Hinkelmann, 2004), which requires at least
two premises to then logically conclude an inference.
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works, we develop a more faithful and robust model
designing a modular system for proof generation.

Formal Reasoning There are some prior works
that try to solve the problem of entailment predic-
tion by first parsing the formal language from text.
Neural Theorem Prover (Rocktäschel and Riedel,
2017; Weber et al., 2019) uses neural networks to
parse the formal logic from natural language and
then reason over them. While this approach is more
symbolic, it can lead to many challenges while pars-
ing (Kamath and Das, 2019). The proof generation
setting considered here bypasses this step and di-
rectly reasons over the given natural language text
making it more useful in downstream applications.

Model Interpretability With the advent of pre-
trained language models (BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), etc.), there has
been an increasing trend on solving various reason-
ing tasks with high accuracy. Faithfulness of such
models (Jacovi and Goldberg, 2020) aims to under-
stand whether the models are actually learning to
solve the task or rather depending on some shortcut
patterns. Saliency-based explanations (Sundarara-
jan et al., 2017; Lundberg and Lee, 2017; Murdoch
et al., 2018; Sanyal and Ren, 2021) mainly focus on
identifying the important phrases in the input text
that helped the model in solving a task. In contrast,
the task of proof generation focuses on generating a
deductive chain of reasoning from the given theory
to the concluded statement. Thus, proof chains are
easier to understand for end users, making it more
useful to debug any systematic model errors.

Causal Reasoning The study of causality and
causal reasoning models (Pearl, 2000, 2004;
Schölkopf, 2019) has been prevalent in machine
learning. It has been applied in various domains
such as algorithmic fairness (Loftus et al., 2018),
gender bias mitigation (Vig et al., 2020), robust-
ness from spurious correlations (Bühlmann, 2020;
Veitch et al., 2021), counterfactual explanations
(Feder et al., 2021b), etc. Causality in NLP is par-
ticularly important to learn models that go beyond
exploiting correlations and to improve their overall
faithfulness (Feder et al., 2021a).

7 Conclusion
In this paper, we proposed FAIRR, a faithful and
robust deductive reasoning model based on three
modular components: rule selection, fact selec-
tion, and knowledge composition. FAIRR ensures

causality from proof generation to entailment pre-
diction by design. We established the effectiveness
of our approach through experiments on testing ro-
bustness to language variations and demonstrating
the interpretability of the errors made by our model.
We also show that FAIRR is faster and more precise
at deductive reasoning than prior baselines.
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Dataset Split Number
of Theo-

ries

Number
of Ques-

tions

Number of
Conclusions
per Theory

(min/mean/max)

train 18889 69906 0/0.81/18
D0 dev 2700 10070 0/0.81/14

test 5389 20024 0/0.8/12

train 9008 69616 1/1.69/13
D1 dev 1318 10188 1/1.7/14

test 2607 20210 1/1.7/12

train 6330 70076 2/3.15/14
D2 dev 909 10094 2/3.09/12

test 1794 19840 2/3.11/14

train 4816 69388 3/4.81/16
D3 dev 719 10302 3/4.73/14

test 1405 20346 3/4.72/15

train 3322 69810 5/9.12/21
D5 dev 482 10190 5/9.13/21

test 948 20030 5/9.08/21

train 1681 28010 3/4.25/14
Pararules dev 240 4004 3/4.53/13

test 482 8008 3/4.24/11

Table 5: Statistics of datasets introduced by Tafjord
et al., 2021 with the number of theories, questions and
conclusions per theory for all three splits of each dataset.
The splits are kept the same as the original dataset.
Please refer to Appendix A for more details.

A Depth Dataset Details

For training and evaluation of FAIRR and
ProofWriter, we use the D* datasets and the
ParaRules dataset (Clark et al., 2020). The statis-
tics of these datasets are shown in Table 5 which
includes the number of theories, the total number
of questions across all theories, and the number
of conclusions per theory. The statistics are bro-
ken down split wise. We use the same splits of
train/dev/test as provided in the original datasets
(Clark et al., 2020; Tafjord et al., 2021). All the
dataset sources are properly cited and used accord-
ing to the release license.

B Robustness Dataset Details

The robustness dataset is created by replacing
all subjects (attributes, subject+attributes) in the
D3 dataset with unseen subjects (attributes, sub-
ject+attributes) to create the subject (attribute, sub-
ject+attributes) robustness set. For this, we first
curate new sets of subjects and attributes to be used
as a global pool to sample from while replacing ex-
isting subjects and attributes from the theory. These

Dataset Split Number
of Theo-

ries

Number
of Ques-

tions

Number of
Conclusions
per Theory

(min/mean/max)

train 28896 416328 3/4.81/16
Subject dev 4314 61812 3/4.73/14

test 8430 122076 3/4.72/15

train 28866 415848 3/4.81/16
Attribute dev 4314 61812 3/4.73/14

test 8415 121836 3/4.73/15

Subject+Attribute
train 28866 415848 3/4.81/16
dev 4314 61812 3/4.73/14
test 8415 121836 3/4.73/15

Table 6: Statistics of datasets introduced in this paper
with the number of theories, questions and conclusions
per theory for all three splits of each dataset. We use
these datasets to quantify the robustness of FAIRR and
compare it with baselines. Please refer to Appendix B
for more details.

sets are detailed below:

Subject proper name pool: {‘George’, ‘Paul’,
‘Ronald’, ‘Emma’, ‘Magnus’, ‘Timothy’, ‘Chris’,
‘Molly’, ‘Diana’, ‘Joseph’, ‘Becky’, ‘Kurt’, ‘Ivan’,
‘Steve’, ‘Laura’, ‘Oliver’, ‘Adam’, ‘Larry’}

Subject common name pool: {‘mother’, ‘fa-
ther’, ‘baby’, ‘child’, ‘toddler’, ‘teenager’, ‘grand-
mother’, ‘student’, ‘teacher’, ‘alligator’, ‘cricket’,
‘bird’, ‘wolf’, ‘giraffe’, ‘dinosaur’, ‘thief’, ‘soldier’,
‘officer’, ‘artist’, ‘shopkeeper’, ‘caretaker’, ‘jani-
tor’, ‘minister’, ‘salesman’, ‘saleswoman’, ‘run-
ner’, ‘racer’, ‘painter’, ‘dresser’, ‘shoplifter’}

Attribute pool: {‘maroon’, ‘brown’, ‘black’,
‘orange’, ‘cordial’, ‘friendly’, ‘adorable’, ‘old’,
‘soft’, ‘violent’, ‘intelligent’, ‘square’, ‘warm’,
‘large’, ‘cylindrical’, ‘spherical’, ‘tiny’, ‘micro-
scopic’, ‘brilliant’, ‘noisy’, ‘playful’, ‘tender’, ‘gra-
cious’, ‘patient’, ‘funny’, ‘hilarious’, ‘thorny’, ‘sen-
sitive’, ‘diplomatic’, ‘thoughtful’}

Then, for each theory in the D3 dataset, we re-
place all the subjects in the theory with randomly
sampled subjects (without replacement) from the
candidate set to create a perturbed theory. We per-
form this replacement operation to generate five
different perturbed theories. These perturbed theo-
ries are called equivalence set. Note that the only
change in each theory in an equivalence set is the
subjects being replaced by some randomly sampled
subjects. For example, “cat” in the original theory
might be replaced by “child” in one perturbation,
and with “teacher” in yet another perturbation. We
follow the same procedure to create attribute and
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Entailment Accuracy Proof Accuracy

d PW (“All”) PW (“Iter”) FAIRR PW (“All”) PW (“Iter”) FAIRR

N/A 97.4 99.2 99.4 97.4 99.2 99.4
0 100.0 100.0 100.0 100.0 100.0 100.0
1 99.9 99.1 99.5 99.3 97.5 99.2
2 99.7 98.9 98.5 97.6 96.4 96.1
3 99.7 98.4 93.4 91.2 95.5 85.5
4 99.5 97.5 88.8 46.9 93.4 77.4
5 98.9 96.5 79.2 24.4 82.3 68.1

All 98.7 98.8 95.9 85.6 96.4 92.7

Table 7: D5 dataset depth-wise performance compar-
ison of FAIRR trained on D0-D3 with ProofWriter
(“All”) and ProofWriter (“Iter”) trained on D3 and
D0-D3 respectively. Baseline results are copied from
Tafjord et al. (2021). Refer to Section 5.1 and Appendix
C for more details.

subject+attribute robustness sets.
The statistics for these robustness datasets are

shown in Table 6 which includes the dataset name
depicting the perturbation type (subject, attribute
or subject+attribute), number of theories, the total
number of questions across all theories, and the
number of conclusions per theory. Please note that
one theory has multiple questions in general, and it
is possible to have conclusions that are not a part
of these questions, but can be deduced from the
given theory. Each split of the original dataset is
perturbed separately as described above, to create
the new datasets.

C Generalization to Reasoning Depths

In this section, we experiment with a setting where
models are trained on depths less than or equal to 3
(i.e., d ≤ 3) and tested on D5 dataset that contains
statements that require reasoning up to depth 5 (i.e.,
d ≤ 5). Here, we test the generalization of the mod-
els to reasoning depths that are unseen at training
time. These results are shown in Table 7. From
this table, we observe that overall our model per-
forms significantly better than ProofWriter (“All”)
on proof accuracy (+7.5%), but has a lower per-
formance compared to ProofWriter (“Iter”) (−3%).
This shows that compared to ProofWriter (“Iter”),
our models are weaker at generalizing to unseen
reasoning depths. This happens majorly because
our rule selector tends to stop the inference iter-
ations earlier, which means some essential infer-
ences are not generated by the model. Thus, this
leads to lower performance with increasing reason-
ing depths.

But, we make another interesting observation
here. The drops in entailment and proof accuracy
with increasing depths are similar for FAIRR. For

Entailment Accuracy Proof Accuracy

d PW (“Iter”) FAIRR PW (“Iter”) FAIRR

N/A 98.9 99.3 98.9 99.3
0 99.9 100.0 99.9 100.0
1 79.1 96.0 78.8 95.7
2 76.6 93.4 73.4 91.4
3 72.7 89.8 67.8 85.7

All 89.6 96.8 88.4 95.9

Table 8: Comparison of FAIRR with ProofWriter
(“Iter”) trained on D0-D3 and tested on subject robust-
ness dataset. Baseline results are generated using the
checkpoint provided by the authors. For more details,
please refer to Appendix D.

Entailment Accuracy Proof Accuracy

d PW (“Iter”) FAIRR PW (“Iter”) FAIRR

N/A 99.6 99.1 99.6 99.1
0 100.0 100.0 100.0 100.0
1 96.4 96.0 96.2 95.6
2 95.1 93.7 94.1 91.3
3 93.9 89.5 92.1 84.1

All 97.8 96.7 97.4 95.6

Table 9: Comparison of FAIRR with ProofWriter
(“Iter”) trained on D0-D3 and tested on attribute ro-
bustness dataset. Baseline results are generated using
the checkpoint provided by the authors. For more de-
tails, please refer to Appendix D.

instance, considering the performance drops be-
tween d = 4 to d = 5, FAIRR has ∼ 9.5% drop
in both entailment and proof accuracy. In contrast,
ProofWriter (“All”) and ProofWriter (“Iter”) drops
approximately 22% and 11%, respectively in proof
accuracy for a mere 1% drop in entailment accu-
racy. This raises some concern on the causality of
the proof generation process used for entailment
prediction in these models, since it seems like the
answer prediction and proof generation are not de-
pendent via the same reasoning paths. In contrast,
our causal framework grounds the entailment pre-
diction to the proofs and this leads to more consis-
tent performance variations in FAIRR.

D Robustness to Perturbed Theories

Here, we show the detailed depth-wise perfor-
mance of FAIRR and ProofWriter (“Iter”) trained
on D0-D3 dataset and evaluated on different ro-
bustness datasets as described in Section 4. The
results for subject, attribute, and subject+attribute
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Entailment Accuracy Proof Accuracy

d PW (“Iter”) FAIRR PW (“Iter”) FAIRR

N/A 98.6 98.9 98.6 98.9
0 100.0 100.0 100.0 100.0
1 91.3 94.0 90.9 93.6
2 89.2 90.3 85.9 87.8
3 85.9 85.9 80.0 80.5

All 94.8 95.4 93.4 94.3

Table 10: Comparison of FAIRR with ProofWriter
(“Iter”) trained on D0-D3 and tested on subject+attribute
robustness dataset. Baseline results are generated using
the checkpoint provided by the authors. For more de-
tails, please refer to Appendix D.
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Figure 6: Proof Accuracy of FAIRR when tested on
ParaRules while using limited amount of ParaRules along
with D0-D3 for training. See Appendix E for more details.

robustness evaluations are shown in Tables 8, 9,
and 10, respectively. We observe that ProofWriter
(“Iter”) performs significantly worse compared to
FAIRR on subject robustness. The results on sub-
ject+attribute robustness are mostly comparable,
while in attribute robustness our model performs
worse. The drop in performance show that both
the models are sensitive to attributes in the theory
to varying degree. But the strong sensitivity of
ProofWriter (“Iter”) to the subject perturbations is
questionable, since the causality of the model’s rea-
soning process seems to be compromised because
the model learns some spurious correlations using
the subjects.

In another setting, we train different components
of our model on the robustness data and check if
that leads to some performance gains. These re-
sults are reported in Table 11. We find that it is
indeed possible to improve the performance of in-
dividual components of our model by robust data
augmentation. This also indicates that our indi-
vidual components are flexible to intervention by
data augmentation. Such abilities are lacking in
ProofWriter.

Trained module Subj Perturbation Attr Perturbation

EA PA EA PA

Base (trained on D0-D3) 96.8 95.9 96.7 95.6

Rule selector (RS) 97.3 96.7 96.1 95.3
Fact selector (FS) 96.7 95.8 96.6 94.6
Knowledge composer (KC) 98.5 97.6 98.2 97.1
RS + FS + KC 99.1 98.5 98.7 97.2

Table 11: Comparison of variants of FAIRR where dif-
ferent components (RS, FS, KC) and their combinations
are trained and tested on subject robustness datasets. EA
and PA refers to entailment accuracy and proof accu-
racy respectively. Please refer to Appendix D for more
details.

Entailment Accuracy Proof Accuracy

d PW (“All”) [T5-11B] FAIRR PW (“All”) [T5-11B] FAIRR

0 99.9 100.0 99.9 100.0
1 99.3 99.6 99.3 99.6
2 98.3 97.6 97.7 97.4
3 98.2 95.4 96.5 95.1
4 91.5 91.6 83.1 91.6

All 99.1 98.7 98.5 98.6

Table 12: Comparison of FAIRR with ProofWriter
(“All”) [T5-11B] when trained on D3+ParaRules and
tested on ParaRules. Results for ProofWriter (“All”)
[T5-11B] are copied from the paper. Please refer to
Appendix F for more details.

E Generalization to paraphrased theories

Here we test the ability of our model to gener-
alize to unseen language in ParaRules by using
limited training supervision. To test this, we first
train our model on D0-D3 dataset and test it on
the ParaRules dataset. This is a zero-shot evalu-
ation on an unseen language form. In Figure 6
we observe that the performance is significantly
worse on this setting as expected. We also evalu-
ated a checkpoint of ProofWriter (“Iter”) trained
on D0-D3 which achieves a similar performance
of 62.13% entailment accuracy 5. Next, we gradu-
ally start adding portions of ParaRules, along with
the D0-D3 data, to the training dataset. We find
that FAIRR can quickly achieve reasonable perfor-
mance using even 10% additional data. This shows
that our modularized approach is also efficient in
adapting to unseen theories with limited data super-
vision. For more comparisons with models trained
on ParaRules, please refer to Appendix F.

5data-augmented training results for ProofWriter are not
reported in the figure since the training code is not available
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F Results on ParaRules training

Following (Tafjord et al., 2021), we compare the
performance of ProofWriter (“All”) and FAIRR
on the ParaRules dataset, when trained on a com-
bined partition of D3 and ParaRules train set. The
ParaRules dataset contains complex linguistic ex-
pressions in the theories that are more realistic than
D* dataset theories, making it a more challenging
dataset. These results are shown in Table 12, with a
reasoning depth breakdown as before. We note that
numbers for ProofWriter (“Iter”) are not reported
in the paper, and no trained checkpoint is avail-
able either, so we omit it from our comparisons.
Also, the reported results for ProofWriter (“All”)
are from evaluating a T5-11B model while ours
is a T5-large model. Here, we see that our model
performs better at higher depths compared to the
baseline which demonstrates that FAIRR is better
at handling paraphrases.

G Inference Budget Analysis

In the inference budget analysis, we compare the
performance of FAIRR and ProofWriter under an
inference budget constraint, i.e., we restrict the to-
tal number of intermediate conclusions that can be
produced by both models. We perform this analy-
sis on three different depth datasets (d = {1, 3, 5})
and upper bound the number of inferences by
B = {1, 3, 5, 7, 10}. We ensure that the budget
is at least equal to the depth of the statements under
consideration since proving a statement requires a
model to generate inferences equal to at least the
depth. From Figure 7 we observe that for all depths
FAIRR consistently outperforms ProofWriter on
lower budgets. Only when the budget increases
to 10, ProofWriter compares with or sometimes
outperforms our model. This analysis demon-
strates that FAIRR performs a prioritized gener-
ation of conclusions that are relevant to the state-
ment, which can be useful in scenarios with limited
inference budgets.

H Runtime Analysis

For inference runtime analysis, we time the evalua-
tion of both FAIRR and ProofWriter (“Iter”) on D5
dev set. Note that D5 dataset contains statements
that require at most five reasoning steps to gener-
ate an answer. The runtime for both methods are
shown in Table 13. These results were obtained
by running the inference algorithm on NVIDIA

Proof Depth Budget

0
25
50
75

100

1 3 5 7 10

ProofWriter FaiRR

(a) Depth 1
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Figure 7: Depth-wise comparison of ProofWriter
(“Iter”) and FAIRR (both trained on D0-3 dataset) on
limited inference budgets. Please refer to Appendix G
for details.

GeForce RTX 2080 Ti GPUs for both models. We
observe that ProofWriter (“Iter”) has an almost con-
stant runtime since it always generates all possible
inferences for a theory. In contrast, our runtime
increases almost linearly with increasing depth. On
average, FAIRR is 3.5 times faster at inference than
ProofWriter (“Iter”).

I Error Analysis

This is a follow-up of Section 5.4, where we delve
deeper into the error analysis by discussing dif-
ferent error examples and their potential reasons.
First, the stop errors are easy to understand. These
are cases where the model just decides to stop in-
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d ProofWriter (“Iter”) FAIRR

0 1.01 0.12
1 1.01 0.20
2 1.00 0.28
3 1.01 0.36
4 1.01 0.46

Avg 1.01 0.28

Table 13: Evaluation runtime (in hours) of FAIRR and
ProofWriter (“Iter”). Please refer to Appendix H for
more details.

stead of generating any further conclusions. For
our model, this can happen if the rule selector is
under confident while selecting rules and it learns
that a safer fallback is to stop generating rules. This
aspect can probably be improved by a better mod-
eling of the rule selector. We plan to explore this
in future works.

Next we look at some of the wrong inferences
generated by both models in Tables 14 and 15. We
observe that errors made by FAIRR are rather naive
with small mistakes in the final conclusion (shown
in red in Table 15). In contrast, ProofWriter tends
to generate an invalid conclusion with no relation
to the generated proof (rows 1 and 2 in Table 14).
It also makes many non-interpretable generation er-
rors where the model’s output format is completely
violated or the model seems to hallucinate some
facts (rows 3-6 in Table 14). Thus, we observe
the benefit of our causal framework as the errors
are interpretable and more believable. In contrast,
errors made by ProofWriter clearly show that its in-
ference reasoning process can often not rely on the
proof at or, or even the generated proof sometimes
doesn’t make sense.

J Comparison with Baselines

In this work we compare FAIRR with baselines
introduced by (Tafjord et al., 2021). We omit com-
parisons with both PRover (Saha et al., 2020) and
multiPRover (Saha et al., 2021), since they were
trained on a different dataset that makes a closed-
world assumption (CWA), whereas we use datasets
that make an open-world assumption (OWA). One
essential difference between these two datasets are
that OWA allows for predicting the truth values
as one of {True,False,Unknown} while in CWA,
any fact that cannot be deduced from the theory is
assumed to be false. As a result, in CWA, there
are only two possible truth values {True,False} for

a given statement. This CWA assumption also
leads to a specific constraint in the generated proof
graphs, where special NAF nodes need to be con-
sidered. Please refer to Saha et al. (2020) for more
details on this. Additionally, multiPRover (Saha
et al., 2021) has a goal that is different from ours.
Specifically, their focus is on generating multi-
ple possible proofs for a given rulebase, and for
this their training examples contain multiple gold
proofs per instance. In FAIRR and ProofWriter
(Tafjord et al., 2021), only one gold proof needs to
be generated, making the comparisons a bit unfair.
Following Tafjord et al. (2021), we report single
run numbers for every experiment.

K Hyperparameters

We use RoBERTa-large models (Liu et al., 2019)
to model the rule selector and fact selector in
FAIRR. For selecting the best hyperparameters for
both these components, we selected the max train-
ing epochs in: {10, 15, 20}, warmup updates in:
{0.05, 0.1}, weight decay in: {0.1, 0.01, 0.001},
learning rate in: {3e-6, 5e-6, 1e-6}, and batch size
in {16, 32}.

We use T5 (Raffel et al., 2020) (T5-large) to
model the knowledge composer in FAIRR and train
it using the default hyperparameters available in
the Hugging Face transformers library (Wolf et al.,
2020). All models were trained on Nvidia Quadro
RTX 8000 GPUs. Training a FAIRR on a single
GPU takes around 20 hours on average.
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Error Type Input ( format: complete theory) Output ( format: $answer$ =
conclusion ; $proof$ = # rule &
facts)

Wrong inference $answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: Cold people are red. sent2: If someone
is quiet then they are cold. sent3: Smart, blue people are quiet.
sent4: If Paul is blue then Paul is furry. sent5: If someone is blue
then they are quiet. sent6: If Steve is furry and Steve is smart then
Steve is white. sent7: If Chris is red and Chris is furry then Chris
is blue. sent8: Quiet people are cold. sent9: Chris is blue. sent10:
Chris is white. sent11: Ronald is red. sent12: Paul is quiet. sent13:
Paul is smart. sent14: Steve is blue. sent15: Steve is furry. sent16:
Steve is red. sent17: Steve is smart. sent18: Steve is white.

$answer$ = Dave is quiet. ;
$proof$ = # sent5 sent9

Wrong inference $answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: Cold people are red. sent2: If someone
is quiet then they are cold. sent3: Smart, blue people are quiet.
sent4: If Paul is blue then Paul is furry. sent5: If someone is blue
then they are quiet. sent6: If Steve is furry and Steve is smart
then Steve is white. sent7: If Chris is red and Chris is furry then
Chris is blue. sent8: Quiet people are cold. sent9: Chris is blue.
sent10: Chris is white. sent11: Ronald is red. sent12: Paul is quiet.
sent13: Paul is smart. sent14: Steve is blue. sent15: Steve is furry.
sent16: Steve is red. sent17: Steve is smart. sent18: Steve is white.
sent19: Dave is quiet.

$answer$ = Dave is not a cat. ;
$proof$ = # sent2 sent19

Generation error -
output format vio-
lated

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: If someone likes the grandmother then
the grandmother eats the artist. sent2: If someone eats the artist
then the artist is young. sent3: If the artist eats the grandmother
then the artist is cold. sent4: If someone eats the artist and the
artist eats the grandmother then the grandmother eats the artist.
sent5: If someone is red and big then they like the grandmother.
sent6: If someone visits the grandmother then they are red. sent7:
If someone is rough then they eat the grandmother. sent8: If some-
one likes the artist then they visit the grandmother. sent9: The
artist likes the grandmother. sent10: The grandmother eats the
artist. sent11: The grandmother is big. sent12: The grandmother
is cold. sent13: The grandmother is young. sent14: The grand-
mother likes the artist. sent15: The grandmother visits the artist.
sent16: The artist is young.

$answer$ = The red sent6 sent15

Generation error -
hallucinating facts

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: All young things are smart. sent2: All
smart, young things are nice. sent3: If something is young and
nice then it is quiet. sent4: Becky is big. sent5: Becky is green.
sent6: Becky is young. sent7: Larry is big. sent8: Larry is quiet.
sent9: Larry is red. sent10: Larry is young. sent11: Bob is smart.

$answer$ = Bob is nice. ;
$proof$ = # sent2 & sent11
sent16

Generation error -
repeated facts

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: If Adam is green then Adam is big.
sent2: Green things are rough. sent3: If Joseph is cold then Joseph
is big. sent4: All blue things are cold. sent5: All green things
are rough. sent6: All big things are kind. sent7: If something is
rough and big then it is green. sent8: All kind, blue things are
cold. sent9: Joseph is blue. sent10: Adam is blue. sent11: Molly
is cold. sent12: Joseph is cold. sent13: Charlie is cold.

$answer$ = Charlie is sent13
sent13

Generation error -
output format vio-
lated

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: Nice things are green. sent2: If Ivan is
smart then Ivan is blue. sent3: Green things are smart. sent4: All
cold things are nice. sent5: Big things are blue. sent6: If Ronald
is nice then Ronald is big. sent7: If something is green and big
then it is not kind. sent8: If something is smart and nice then it is
kind. sent9: Ronald is smart. sent10: Larry is cold. sent11: Laura
is nice. sent12: Ivan is kind. sent13: Larry is nice. sent14: Larry
is green. sent15: Bob is smart.

$answer$ = Bob is kind. ;
$proof$ = # sent8 & sent9 sent-
nice

Table 14: Examples of inference errors made by ProofWriter (“Iter”). Please refer to Appendix I for more details.

1091



Error Type Input ( format: [facts], rule) Inference

Wrong inference [the racer needs the janitor.], if someone needs the janitor then the
janitor likes the racer.

the janitor likes the
race.

Wrong inference [oliver is big.], big people are young.
the oliver is young.

Wrong inference [the shoplifter needs the shoplifter., the shoplifter needs the di-
nosaur.], if something needs the dinosaur and it needs the shoplifter
then it is round.

the shop is round.

Table 15: Examples of inference errors made by FAIRR while composing rules and facts using the knowledge
composer. Please refer to Appendix I for more details.
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Input ( format: complete theory) Output ( format: $answer$ =
conclusion ; $proof$ = # rule &
facts)

Output
✓:correct
✗:incorrect

Example 1

$answer$ ; $proof$ ; $question$ = What is one single-hop inference? ;
$context$ = sent1: If someone is blue then they are quiet. sent2: Chris is
blue.

$answer$ = Chris is quiet. ;
$proof$ = # sent1 sent2

✓

$answer$ ; $proof$ ; $question$ = What is one single-hop inference? ;
$context$ = sent1: If someone is blue then they are quiet. sent2: Chris is
blue. sent3: Steve is blue.

$answer$ = Dave is quiet. ;
$proof$ = # sent1 sent2

✗

$answer$ ; $proof$ ; $question$ = What is one single-hop inference? ;
$context$ = sent1: If someone is blue then they are quiet. sent2: Quiet
people are cold. sent3: Chris is blue. sent4: Steve is blue. sent5: Chris is
white.

$answer$ = Dave is quiet. ;
$proof$ = # sent1 sent4

✗

Example 2

$answer$ ; $proof$ ; $question$ = What is one single-hop inference? ;
$context$ = sent1: If someone likes the artist then they visit the grandmother.
sent2: The grandmother likes the artist.

$answer$ = The grandmother vis-
its the grandmother. ; $proof$ =
# sent1 sent2

✓

$answer$ ; $proof$ ; $question$ = What is one single-hop inference? ;
$context$ = sent1: If someone is red and big then they like the grandmother.
sent2: If someone visits the grandmother then they are red. sent3: If
someone likes the artist then they visit the grandmother. sent4: The artist
likes the grandmother. sent5: The grandmother eats the artist. sent6: The
grandmother is big. sent7: The grandmother is cold. sent8: The grandmother
likes the artist.

$answer$ = The artist visits the
grandmother. ; $proof$ = # sent3
sent4

✗

$answer$ ; $proof$ ; $question$ = What is one single-hop inference? ;
$context$ = sent1: If someone likes the grandmother then the grandmother
eats the artist. sent2: If someone eats the artist then the artist is young. sent3:
If the artist eats the grandmother then the artist is cold. sent4: If someone eats
the artist and the artist eats the grandmother then the grandmother eats the
artist. sent5: If someone is red and big then they like the grandmother. sent6:
If someone visits the grandmother then they are red. sent7: If someone
is rough then they eat the grandmother. sent8: If someone likes the artist
then they visit the grandmother. sent9: The artist likes the grandmother.
sent10: The grandmother eats the artist. sent11: The grandmother is big.
sent12: The grandmother is cold. sent13: The grandmother is young. sent14:
The grandmother likes the artist. sent15: The grandmother visits the artist.
sent16: The artist is young.

$answer$ = The red sent6 sent15 ✗

Example 3

$answer$ ; $proof$ ; $question$ = What is one single-hop inference? ;
$context$ = sent1: All young things are smart. sent2: All smart, young
things are nice. sent3: Bob is smart. sent4: Bob is young

$answer$ = Bob is nice. ;
$proof$ = # sent2 & sent3 sent4

✓

$answer$ ; $proof$ ; $question$ = What is one single-hop inference? ;
$context$ = sent1: All young things are smart. sent2: All smart, young
things are nice. sent3: If something is young and nice then it is quiet. sent4:
Becky is big. sent5: Becky is green. sent6: Becky is young. sent7: Larry
is big. sent8: Larry is quiet. sent9: Larry is red. sent10: Larry is young.
sent11: Bob is smart.

$answer$ = Bob is nice. ;
$proof$ = # sent2 & sent11
sent16

✗

Table 16: Some more examples of inference errors made by ProofWriter (“Iter”). We see that having extra
information in the theory than what is required to prove the conclusion leads to errors (shown in red). Having
limited information in the theory reduces errors. Sentences in blue depict the sentences which are added to the
theory with respect to the row above. Please refer to Section 5.5 for more details.
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