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Abstract

Model ensemble is a popular approach to
produce a low-variance and well-generalized
model. However, it induces large memory
and inference costs, which are often not af-
fordable for real-world deployment. Existing
work has resorted to sharing weights among
models. However, when increasing the propor-
tion of the shared weights, the resulting mod-
els tend to be similar, and the benefits of using
model ensemble diminish. To retain ensemble
benefits while maintaining a low memory cost,
we propose a consistency-regularized ensem-
ble learning approach based on perturbed mod-
els, named CAMERO. Specifically, we share
the weights of bottom layers across all mod-
els and apply different perturbations to the
hidden representations for different models,
which can effectively promote the model diver-
sity. Meanwhile, we apply a prediction con-
sistency regularizer across the perturbed mod-
els to control the variance due to the model
diversity. Our experiments using large lan-
guage models demonstrate that CAMERO sig-
nificantly improves the generalization perfor-
mance of the ensemble model. Specifically,
CAMERO outperforms the standard ensemble
of 8 BERT-base models on the GLUE bench-
mark by 0.7 with a significantly smaller model
size (114.2M vs. 880.6M).

1 Introduction

Deep Neural Networks (DNNs) have achieved re-
markable success in various fields and have become
very powerful in learning complicated models (De-
vlin et al., 2018; Brown et al., 2020; He et al., 2020).
However, their remarkable representation powers
come at the expense of large model variance, which
may hurt the model generalization performance.
A popular approach for reducing such variance is
model ensemble, where the weights or predictions
of a set of models are aggregated to produce the

∗Work was done during an internship at Microsoft Azure
AI.

predictions (Yang and Lv, 2021; Dong et al., 2020).
For example, Zhang et al. (2018) show that a simple
2-model ensemble leads to notable improvement
over a single model in computer vision tasks.

Despite such notable benefits, model ensemble
has not been widely applied to large language mod-
els. The major barriers are its enormous storage
and expensive inference cost, which linearly scales
with the size and the number of models. Therefore,
it is often not affordable to ensemble large language
models for deployment using memory-constrained
and low-latency edge devices.

To alleviate the memory burden, recent works
have resorted to a weight-sharing strategy, where
all models share the same set of bottom-layer
weights, on top of which branches out a set of
parallel, un-shared top-layer weights (Lan et al.,
2018; Chen et al., 2020; Li et al., 2020). Since
the shared weights are optimized to accommodate
multiple diverse un-shared branches, they can learn
shared representations with better generalization
(Liu et al., 2020; Luong et al., 2015; Ruder et al.,
2019).

For large models, however, such a weight-
sharing strategy no longer enjoys the same benefits.
Due to memory constraints, a significant propor-
tion of bottom-layer weights need to be shared.
Accordingly, top-layer branches have only limited
capacity, and therefore the resulting models tend
to be similar (Chen et al., 2020; Rame and Cord,
2021; Feng et al., 2020; Yang et al., 2021; Wu and
Gong, 2021) (Figure 1 (Left)). Due to the lack
of the model diversity, their ensemble cannot gain
much improvement in generalization. As shown
in Figure 1 (Right), both the generalization perfor-
mance and model variance of the ensemble model
are similar to those of a single model when the
branch size is small.

To retain a light memory cost while maintain-
ing the ensemble benefits, we propose a new
Consistency-regulArized enseMble lEarning ap-

7162



2 4 6 8 10
Branch Size (Layers)

98
.0

98
.5

99
.0

Pr
ed

ic
tio

n 
A

gr
ee

m
en

t (
%

)

0 2 4 6 8 10
Branch Size (Layers)

92
.8

93
.0

93
.2

93
.4

M
od

el
 A

cc
ur

ac
y

Figure 1: Left: The prediction similarity among
branches with different sizes. Right: The average
generalization performance and variance of ensembled
models over five random seeds. The results are ob-
tained by fine-tuning SST-2 on a BERT-base. A branch
size of 0 corresponds to training a single model.

proach based on peRturbed mOdels – CAMERO.
Specifically, we share the bottom-layer weights
across all models and apply different perturbations
to the hidden representations for different models.
Such a perturbation strategy effectively promotes
the model diversity. Accordingly, the weights at
each layer are optimized to produce consistent out-
puts given diverse input representations from differ-
ently perturbed models. In other words, the shared
weights are essentially an on-the-fly ensemble of
all perturbed models. In the end, we ensemble all
branches on top of the shared weights to produce
the final model, which has both a low variance and
good generalization performance.

Since we apply perturbations in large models
with significant depth, different models’ hidden
representations may end up being extremely di-
verse, especially in upper layers. As a result, op-
timizing the shared weights to accommodate such
perturbations can be very challenging. To prevent
the models from being over-diverse, we apply a
consistency regularizer to reduce variance across
different models. Specifically, such a consistency
regularizer can be viewed as collaborative distil-
lation across models (Guo et al., 2020; Lan et al.,
2018; Zhang et al., 2018; Kim et al., 2021; Chen
et al., 2020; Li et al., 2020). By regularizing the dis-
crepancy between each model’s output logits and
the ensemble of these logits, it encourages all mod-
els to be consistent in their predictions. We thus
adopt consistency regularization to control the per-
turbed models’ diversity from being too large, and
thus ease the optimization of the shared weights.

We conduct thorough experiments to demon-
strate CAMERO’s effectiveness and efficiency in
ensembling large number of models with more
than hundreds of millions of learning parame-
ters. Specifically, our experiments in fine-tuning

the BERT-base model on the GLUE benchmark
achieve 0.7 points of gain in terms of task-
average score with a significantly smaller parame-
ters over the vanilla ensemble approach (114.2M
vs. 880.6M) and achieve 1.2 points of gain with the
same amount of learning parameters over the sin-
gle model. CAMERO also achieves significant im-
provements in neural machine translation on both
low-resource and high-resource language pairs.

Furthermore, we verify that CAMERO can learn
shared layers with better generalization and en-
semble model with smaller variance. We also in-
vestigate the effects of using different types and
strengths of perturbation and consistency regular-
ization techniques. In particular, we observe that
models created with virtual adversarial perturbation
(Jiang et al., 2019a) and neuron dropout (Srivastava
et al., 2014) lead to ensemble models with the best
generalization performance. Lastly, we demon-
strate CAMERO’s effectiveness on a larger-scale
model, RoBERTa-large (Liu et al., 2019), where it
achieves 0.8 and 0.9 points of gain over the vanilla
ensemble approach and single model performance,
respectively. Our codes are released at https:
//github.com/cliang1453/CAMERO.

2 Background

Notations. We use f(·; θ) to denote a mapping
f associated with the parameter θ from the input
sample to an output space, where the output is a
multi-dimensional probability simplex for classifi-
cation tasks and a scalar for regression tasks. We
denote the model’s final logits as g(·; θ), where
f(·; θ) = σ(g(·; θ)) and σ(·) is the Softmax func-
tion. We denote n pairs of data samples of the target
task as {(xi, yi)}ni=1. The training loss of f(·; θ) is
computed as `(f(xi; θ), yi) for any given training
instance (xi, yi) where `(·; ·) denotes the loss func-
tion. We use DKL(P ||Q) =

∑
k pk log(pk/qk) to

denote the KL-divergence of two discrete distribu-
tions P and Q with the associated parameters of
pk’s and qk’s, respectively.
Collaborative Distillation. Collaborative distilla-
tion approaches train two or more models in par-
allel while regularizing the consistency of their
final prediction distributions (Guo et al., 2020;
Lan et al., 2018; Zhang et al., 2018; Kim et al.,
2021; Chen et al., 2020; Li et al., 2020). Specif-
ically, we use {f(·; θj)}mj=1 to denote m individ-
ual models with the same architectures with pa-
rameters by θ1, ..., θm, respectively, and denote

7163

https://github.com/cliang1453/CAMERO
https://github.com/cliang1453/CAMERO


Θ = {θ1, ..., θm}. A typical collaborative distil-
lation approach solves the following optimization
problem:

min
Θ
L(Θ) + αR(Θ),

where α > 0 is a tuning parameter, and L(Θ) and
R(Θ) are defined as

L(Θ) =
1

m

m∑
j=1

`(f(x; θj), y),

R(Θ) =
1

m

m∑
j=1

D(f(x; θj), E(x; Θ)). (1)

For notational simplicity, we will omit the subscript
i throughout the rest of the paper. Here, E(x; Θ) de-
fines a mapping function associated with Θ, which
maps the input sample x to a multi-dimensional
probability simplex or a scalar depending on the
tasks. A commonly adopted ensemble-distillation
approach makes E(·; Θ) = σ(

∑m
j=1wjg(x; θj)) ,

where {wj}mj=1 are non-negative scalars summing
to one. D(·, ·) denotes the distance metric of two
discrete distributions P and Q or two scalars p
and q. D(P,Q) can take the form of symmet-
ric KL-Divergence, 1

2(DKL(P ||Q)+DKL(Q||P )).
D(p, q) or euclidean distance ‖p− q‖22.
Weight-Sharing. Weight-sharing technique has
been adopted in several representation learning sce-
narios, e.g., multi-task learning (Liu et al., 2020;
Luong et al., 2015; Ruder et al., 2019), multi-
domain learning (Britz et al., 2017; Zeng et al.,
2018; Tars and Fishel, 2018; Jiang et al., 2019b)
and multi-lingual tasks (Gu et al., 2018; Aharoni
et al., 2019). Weight-sharing strategy can reduce
the number of free parameters in the model, which
helps prevent overfitting in the training and lead to
better generalization abilities.

3 Method

We introduce CAMERO, a weight-sharing en-
semble learning approach based on consistency-
regularized perturbed models.

3.1 Ensemble Learning w/ Perturbed Models
Based on the multi-layer structures of neural net-
works, we divide each model into two parts: the
bottom-layers and the top-layers. The model pa-
rameters in bottom-layers are shared across all mod-
els. Specifically, the parameters of the j-th model
is denoted as θj = [θ0, θ

′
j ], where θ0 denotes the

Figure 2: Illustration of CAMERO during training.

shared weights in bottom-layers, and θ
′
j denotes

the top-layer weights of the j-th model. Based on
such a compositional structure, the j-th model’s
output can be denoted as

f(x; θj) = fK(fK−1( . . . f1(x; θ
(1)
j )

. . . ; θ
(K−1)
j ); θ

(K)
j ),

where fk(·; θ(k)
j ) is the mapping associated with

the k-th layer parameter θ(k)
j , and θ0 consists of

{θ(k)
j }K

′
k=1 for some K ′ ∈ {1, ...,K}, which shares

across models.
A significant proportion of shared weights leads

to the models’ similarity, which accordingly im-
pairs the ensembled model’s performance. To in-
crease the models’ diversity, we consider perturb-
ing each layer’s hidden representations for different
models during training (Figure 2). Specifically, the
j-th model’s output is denoted as

f(x; θj ,∆j) = fK(fK−1(. . . f1(x; θ
(1)
j )

+ δ
(1)
j . . . ; θ

(K−1)
j ) + δ

(K−1)
j ; θ

(K)
j ),

where δ(k)
j is the perturbation applied at the k-

th layer’s hidden representations, and ∆j =

{δ(k)
j }

K−1
k=1 , which is sampled from a distributionP .

We then train m models with SGD-type algorithms
using the following loss:

L∆(Θ) =
1

m

m∑
j=1

E∆j∼P [

`(f(x; [θ0, θ
′
j ],∆j), y)].

(2)

Remark 1. We can consider a wide variety of per-
turbations for hidden representations, input embed-
dings or data samples, e.g., random perturbation
(Aghajanyan et al., 2020), virtual adversarial per-
turbation (Miyato et al., 2018; Jiang et al., 2019a),
neuron dropout (Srivastava et al., 2014) and word
dropout (Wei and Zou, 2019).
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3.2 Consistency-Regularized Perturbed
Models

In large models with significant depth, different
models’ hidden representations may end up being
extremely diverse, especially in upper layers. As
a result, optimizing the shared weights to accom-
modate such diverse inputs can be very challeng-
ing. To address this issue, we propose to control
model variability through consistency regulariza-
tion. Specifically, we regularize the consistency
among m models’ final prediction distributions by
minimizing the following loss,

R∆(Θ) =
1

m

m∑
j=1

E∆j∼P [

D(f(x; [θ0, θ
′
j ],∆j), E(x; Θ, {∆j}mj=1))],

(3)

where E(x; Θ, {∆j}mj=1) denotes the final pre-
diction distribution produced by some ensem-
ble method applied upon models with per-
turbed representations. For example, com-
monly adopted ensemble methods include log-
its ensemble, where E(x; Θ, {∆j}mj=1) =

σ(
∑m

j=1wjg(x; θj , {∆j}mj=1)). In summary, we
train m models by minimizing the following over-
all loss function:

L∆(Θ) + αR∆(Θ),

where L∆(Θ) is defined in Eq. (2) and R∆(Θ)
is defined in Eq. (3). We adjust the strength of
consistency regularization via α, a non-negative
hyper-parameter.

Remark 2. Different from existing weight-sharing
strategies, which control models’ diversity via
the amount of shared and un-shared weights,
CAMERO controls model diversity via the strength
of perturbation and regularization. Such a differ-
ence renders significant memory benefits. In prac-
tice, we safely share all layers except a single top
layer. Accordingly, the memory storage is reduced
to that of a single model. This allows us to explore
the behaviors of ensemble learning under a larger
number of models.

4 Experiment

We verify the effectiveness of CAMERO on widely
used benchmarks for natural language understand-
ing and neural machine translation.

4.1 Natural Language Understanding

Model and data. We evaluate the fine-tuning per-
formance of BERT-base (110M) (Devlin et al.,
2018) and RoBERTa-large (335M) (Liu et al.,
2019) on the General Language Understanding
Evaluation (GLUE, Wang et al. (2018)) benchmark.
GLUE contains nine NLU tasks, including textual
entailment, question answering, sentiment analysis,
and text similarity. Details about the benchmark
are deferred to Appendix A.1.1.
Baseline methods. We compare CAMERO with
Vanilla, where all models are independently trained
without consistency regularization. We also com-
pare CAMERO with representative collaborative
distillation methods: Deep Mutual Learning (DML,
Zhang et al. (2018)), On-the-fly Native Ensemble
Learning (ONE, Lan et al. (2018)) and Knowledge
Distillation via Collaborative Learning (KDCL,
Guo et al. (2020))1. DML trains two models with
alternating updates while regularizing the consis-
tency between their final prediction distributions.
KDCL extends two models to multiple models,
training all models concurrently while regularizing
the consistency between the prediction distribution
of each individual model and of the ensemble of all
models. ONE adopts the traditional weight-sharing
strategy with a learnable gating factor assigned to
each individual branch, which helps to control the
model diversity.
Perturbation. We demonstrate the effectiveness of
CAMERO using neuron dropout (Srivastava et al.,
2014), one of the most straightforward perturba-
tion techniques which randomly zeros out neurons
based on a small, fixed ratio. In particular, the ratio
adopted in our experiments is 0.1. In Section 5.3,
we further demonstrate that a wide variety of pertur-
bations, including virtual adversarial perturbation
(Jiang et al., 2019a), random perturbation (Agha-
janyan et al., 2020) and word dropout (Wei and
Zou, 2019), can all serve the role.
Consistency regularization. We demonstrate the
effectiveness of CAMERO using the ensemble con-
sistency defined in Eq. (1). In Section 5.4, we fur-
ther investigate the effectiveness of different types
of consistency regularization techniques.
Initialization. To fine-tune the BERT encoder on
downstream tasks, the common initialization ap-
proach is to append a randomly initialized, fully
connected classification layer on top of the encoder

1We do not include the data augmentation technique pro-
posed in KDCL for a fair comparison.
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# of Method MNLI-m/mm QQP QNLI CoLA SST-2 RTE MRPC STS-B Avg. # Param.
Models Acc Acc/F1 Acc Mcc Acc Acc Acc/F1 P/S Corr Score (million)

1 Single 84.5/84.6 91.1/88.1 91.2 58.7 92.9 71.1 86.2/90.4 89.7/89.2 83.2 109.5

Vanilla 84.9/85.2 91.6/88.7 91.8 58.2 93.2 70.6 86.2/90.4 89.8/89.5 83.4 220.1
DML 85.0/85.5 91.6/88.7 91.9 58.2 93.3 71.3 87.1/90.9 89.9/89.5 83.6 220.1

KDCL 85.1/85.6 91.7/88.8 92.0 59.4 93.2 71.8 87.0/90.9 89.9/89.5 83.8 220.1
2 ONE 84.5/84.7 91.1/88.1 91.7 59.2 93.0 70.8 87.0/91.1 89.7/89.3 83.4 110.7

CAMERO 85.2/85.7 91.6/88.8 92.2 59.8 93.2 72.6 87.1/90.9 89.9/89.5 84.0 110.7

Vanilla 85.0/85.2 91.7/88.9 91.8 58.4 93.1 70.8 87.2/91.0 90.0/89.6 83.5 440.3
KDCL 85.0/85.7 91.7/88.8 92.0 58.6 93.3 71.3 87.4/91.1 90.1/89.6 83.7 440.3

4 ONE 84.6/84.9 91.2/88.3 91.8 58.8 93.1 71.1 87.4/91.1 89.8/89.4 83.5 111.9

CAMERO 85.4/86.1 91.8/89.1 92.3 59.5 93.5 72.8 87.2/91.0 90.1/89.7 84.2 111.9

Vanilla 85.1/85.5 91.7/88.8 92.1 59.0 93.2 71.0 87.2/91.0 90.1/89.7 83.7 880.6

8 CAMERO 85.6/86.3 91.9/89.2 92.7 60.5 93.6 72.4 87.4/91.2 90.2/89.8 84.4 114.2

Table 1: Single-task fine-tuning dev results on ensembled BERT-base using the GLUE benchmark. "Single"
denotes single model performance. All results are from our own implementation.

# of Method MNLI-m/mm QQP QNLI CoLA SST-2 RTE MRPC STS-B Avg. # Param.
Models Acc Acc/F1 Acc Mcc Acc Acc Acc/F1 P/S Corr Score (million)

1 Single 90.2/90.2 92.2/- 94.7 68.0 96.4 86.6 90.9/- -/92.4 88.9 356.4

Vanilla 90.8/90.5 92.4/89.8 94.7 68.2 96.5 86.2 91.2/93.6 92.7/92.5 89.0 1425.6

4 CAMERO 91.1/90.9 92.5/90.0 95.3 70.3 97.0 87.7 91.7/94.0 92.8/92.6 89.8 359.6

Table 2: Single-task fine-tuning dev results on ensembled RoBERTa-large using the GLUE benchmark. "Single"
denotes single model performance from Liu et al. (2019); other results are from our own implementation.

(Devlin et al., 2018). For ONE and CAMERO,
we append m differently initialized, parallel clas-
sification layers on top of the encoder. For other
methods, we initialize m individual encoders and
append a differently initialized classification layer
on top of each.
Inference. For ONE and CAMERO, we conduct a
single pass through the encoder and average the pre-
dicted logits of m classification layers. For other
methods, we average the predicted logits ofmmod-
els. All results in the following experiments are
evaluated based on such a logits ensemble.
Implementation details. Our implementation is
based on the MT-DNN code-base2. We follow
the suggested training and hyper-parameters set-
tings from Liu et al. (2020). Specifically, we adopt
Adamax (Kingma and Ba, 2014) as the optimizer
with β = (0.9, 0.999). We tune α in range of
{0.5, 1, 2, 5} for all methods. Comprehensive train-
ing details are reported in Appendix A.1.2.
Results of BERT-base. Table 1 shows the evalua-
tion results of BERT-base on the GLUE develop-
ment set. The results are averaged over five random

2https://github.com/namisan/mt-dnn

seeds, and all gains are statistically significant3.
We have the following observations: 1) With

significantly less learning parameters, CAMERO
achieves a prominent and consistent margin over
Vanilla, DML and KDCL. This suggests that
CAMERO can produce better-generalized ensem-
ble model with higher parameter efficiency. 2)
CAMERO significantly outperforms ONE, suggest-
ing that applying perturbations to models effec-
tively improves the performance of weight-sharing
strategy. 3) As the number of models increases
from 2 to 8, CAMERO’s performance steadily in-
creases for 6 out of 8 tasks, while Vanilla and
KDCL fail to do so.
Results of RoBERTa-large. We further verify
that CAMERO can benefit an even larger model,
RoBERTa-large. As shown in Table 2, CAMERO
achieves consistent gains across all tasks4. Worth
noticing, Vanilla shows limited improvements upon
the single model performance (e.g., the gains are

3All results have passed a paired student t-test with p-
values less than 0.05. The detailed statistics are summarized
in Appendix A.1.3.

4We present the median of five runs following Liu et al.
(2019).
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0.0, 0.1 and −0.4 on QNLI, SST-2 and RTE, re-
spectively). We conjecture that the high model vari-
ance in large models compromises the ensemble
benefits. In contrast, by control the model variance
with regularization, CAMERO achieves gains of
0.6, 0.6 and 1.1 on these tasks.

4.2 Neural Machine Translation
Model and data. We further evaluate CAMERO
on the Transformer-base NMT model (Vaswani
et al., 2017) using widely used IWSLT (Cet-
tolo et al., 2016)5 and WMT (Bojar et al.,
2016)6 datasets. Specifically, we adopt IWSLT’14
En↔De, IWSLT’16 En↔Fr and WMT’14
En↔De. IWSLT En↔De and En↔Fr are low-
resource datasets containing 160k and 236k sen-
tence pairs. WMT En↔De is a rich-resource
dataset containing 4.5M sentence pairs. Model
and dataset details are deferred to Appendix A.2.1.
Implementation details. Our implementation is
based on the fairseq code-base and follows the train-
ing and hyper-parameters settings from Ott et al.
(2018, 2019). Specifically, we use 5 × 10−4 as
the learning rate and employ Adam (Kingma and
Ba, 2014) as the optimizer with β = (0.9, 0.98).
We select α in range of {1, 2, 5}. For ONE and
CAMERO, we randomly initialize multiple paral-
lel decoders’s last layers as the un-shared branches.
Comprehensive training details are reported in Ap-
pendix A.2.2.
Main results. Table 3 shows the BLEU scores
on the IWSLT test set and the SacreBLEU scores
(Post, 2018) with compound splitting on the WMT
test set7. WMT’s corresponding BLEU scores are
reported in Appendix A.2.3.

With a number of learning parameters similar to
a single model, CAMERO achieves around 2 and
1 points upon ONE, and improves around 0.4 and
0.4 points upon KDCL, on low-resource and rich-
resource datasets, respectively. This suggests that
other than fine-tuning, CAMERO also improves
the generalization of training-from-scratch models
in both low-resource and rich-resource datasets.

5 Analysis

We first verify that CAMERO leads to a well-
generalized and low-variance ensemble model. We

5https://wit3.fbk.eu/
6http://data.statmt.org/wmt16/translation-task/
7We evaluate the SacreBLEU score on the average of last

10 checkpoints. The tokenizer version is: nrefs:1 | case:mixed
| eff:no | tok:13a, smooth:exp | version:2.0.0.

then demonstrate how the perturbation and consis-
tency regularization strength influences the model
diversity and performance. Finally, we demonstrate
CAMERO’s effectiveness on various types of per-
turbation and regularization techniques.

5.1 Shared Weights Learn Better
Representations

We verify that CAMERO allows the shared weights
to learn better-generalized representations. Specifi-
cally, we attach a randomly initialized classifier on
top of a BERT-base encoder trained by CAMERO.
We then fix the encoder and fine-tune the attached
classifier only. As shown in Table 4, the encoder
trained by CAMERO learns better representations
than ONE’s consistently across different tasks and
under different numbers of models.

5.2 Ensemble Model Has a Low Variance
Across Random Seeds

We verify that CAMERO produces an ensemble
model that both generalizes well and has a low vari-
ance across different random seeds under a light
parameter budget. Figure 3 plots the prediction
accuracy of 2-model and 4-model ensemble across
five seeds. For example, in MNLI, CAMERO’s 2-
model ensemble (110.7M) achieves similar perfor-
mance to KDCL’s 4-model ensemble (440.2M) and
CAMERO’s 4-model ensemble (111.9M) achieves
an even better performance. Across different tasks,
CAMERO’s ensemble model has a similar or lower
variance than all others. Complete variance statis-
tics are presented in Appendix A.1.3.

5.3 Types and Strength of Perturbations
Types of perturbation. We verify that CAMERO
produces well-generalized ensemble models under
various types of perturbations. Specifically, we
apply virtual adversarial perturbation (Jiang et al.,
2019a) and random noise perturbation (Aghajanyan
et al., 2020) on the first layer input embeddings,
neuron dropout on all layers’ input representations
(Srivastava et al., 2014), and word dropout on the
input sentences (Wei and Zou, 2019). Specifi-
cally, we set the dropout ratio to be 0.1 for neu-
ron dropout and 0.05 for word dropout. We set the
norm constraint ε = 1×10−5 for both virtual adver-
sarial perturbation and random noise perturbation.
The random noise is sampled from a normal distri-
bution. As shown in Table 5, CAMERO leads to
significant margin of improvement under all types
of perturbation. In particular, virtual adversarial
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# of Method IWSLT WMT
Models En-De De-En En-Fr Fr-En Avg. # Param. En-De De-En Avg. # Param.

1 Single 28.5 34.7 38.1 37.7 34.7 54.5 26.9 30.7 28.8 77.6

Vanilla 28.6 34.8 38.2 37.8 34.9 109.1 27.0 31.2 29.1 155.3
DML 30.5 37.4 39.9 39.6 36.9 109.1 27.1 31.8 29.5 155.3
KDCL 30.6 37.2 39.8 39.5 36.7 109.1 27.2 31.9 29.6 155.3

2 ONE 28.9 35.1 38.5 38.2 35.2 58.7 27.0 31.0 29.0 81.8

CAMERO 30.8 37.5 40.2 39.8 37.1 58.7 27.6 32.2 29.9 81.8

Vanilla 28.7 34.9 38.2 37.8 34.9 218.1 27.0 31.2 29.1 310.6
KDCL 30.8 37.4 39.9 39.7 36.9 218.1 27.1 32.0 29.6 310.6

4 ONE 28.8 35.0 38.2 37.9 35.0 67.1 27.1 31.1 29.1 90.2

CAMERO 31.1 37.8 40.3 39.9 37.3 67.1 27.7 32.4 30.1 90.2

Table 3: Test set scores on ensembled Transformer-base on IWSLT tasks (BLEU) and WMT tasks (SacreBLEU).
"Single" denotes single model performance. All results are from our own implementation.

# of Methods MNLI SST-2 MRPC Avg.
Models Acc Acc Acc/F1 Score

1 Single 84.58 92.95 86.88 88.14

2 ONE 84.53 92.94 88.94 88.80
CAMERO 85.41 93.03 89.04 89.16

4 ONE 84.67 93.03 89.07 88.92
CAMERO 85.57 93.46 89.20 89.41

Table 4: Performance of the ensembled BERT-base
encoder using the GLUE dev set. We only fine-tune
the randomly initialized classification layer on top of a
well-trained encoder.
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Figure 3: Performance and variance of the ensembled
BERT-base on the GLUE dev set.

perturbation and neuron dropout perform consis-
tently well on all tasks. Random noise perturbation
performs well on larger tasks (e.g., MNLI, QNLI,
SST-2) while the gains shrink on smaller tasks.
Strength of perturbation. We then verify that a
larger perturbation strength improves the perturbed
models’ diversity during training. As consistency
loss is computed as the average distance between
all perturbed models’ output logits to the ensem-
bled logits at each iteration, it directly reflects the
model diversity during training. As shown in Fig-
ure 4 (Left), a larger neuron dropout ratio leads to
larger consistency loss, thus higher model diversity.

Furthermore, we observe that a larger perturba-
tion strength leads to a lower-variance ensemble
model. As shown in Figure 4 (Right), as the neuron
dropout ratio grows, CAMERO’s ensemble model
variance decreases. In contrast, ONE has a large
variance under all ratios.

5.4 Types and Strength of Consistency
Regularization

Types of consistency regularization. We then in-
vestigate the effects of using different types of con-
sistency regularization techniques. Specifically, we
compare the existing ensemble consistency, as de-
fined in Eq. (1), and a newly proposed pairwise
consistency, which is defined as

R(Θ) =
2

m(m− 1)

m∑
j=1

m∑
p=j+1

D(f(x; θj),

f(x; θp)).

The pairwise consistency measures the average dis-
tance between each pair of models’ output log-
its, thus we expect it to capture the discrepan-
cies among models more accurately. As shown
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Perturbation Types MNLI QNLI SST-2 MRPC CoLA Avg.
Acc Acc Acc Acc/F1 MCC Score

None 84.74 91.76 93.10 89.05 58.75 83.48
Neuron Dropout (Srivastava et al., 2014) 85.73 92.30 93.46 89.09 59.50 84.02
Virtual Adversarial Pert. (Jiang et al., 2019a) 85.76 92.33 93.53 89.19 59.49 84.08
Random Noise Pert. (Aghajanyan et al., 2020) 85.78 92.21 93.42 89.07 59.22 83.94
Word Dropout (Wei and Zou, 2019) 85.61 92.00 93.21 89.06 59.19 83.81

Table 5: CAMERO’s performance under different types of perturbation. "None" corresponds to ONE, which does
not apply different perturbations to different models. We report the 4-model ensembled BERT-base results.
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Figure 4: The effect of perturbation strength on models’ diversity during training (Left) and the variance of the
ensembled model (Right). We fine-tune BERT-base on SST-2 and report the 4-model ensemble results.

Consistency Types MNLI QNLI SST-2 MRPC CoLA Avg.
Acc Acc Acc Acc/F1 MCC Score

None 85.23 91.76 93.30 88.97 58.40 83.48
Ensemble Consistency 85.73 92.30 93.46 89.09 59.50 84.02
Pairwise Consistency 85.73 92.33 93.37 89.40 59.87 84.14

Table 6: CAMERO’s performance under different types of consistency regularization. "None" corresponds to
α = 0, where no regularization is applied. We report the 4-model ensembled BERT-base results.
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Figure 5: The effect of consistency regularization strength on the generalization and variance of the ensembled
model. We fine-tune BERT-base and report the 4-model ensemble results.

in Table 6, CAMERO shows consistent improve-
ments under both types of regularization. In partic-
ular, pairwise consistency shows larger advantages
on smaller tasks (e.g., 0.3 on MRPC and 0.4 on
CoLA).
Strength of consistency regularization. We fur-
ther investigate how the strength of the regulariza-
tion factor α affects the ensemble model’s perfor-
mance. As shown in Figure 5, as α increases, the
generalization performance of the ensemble model
first increases, then decreases. This suggests that
regularization can effectively benefits the general-

ization performance through balancing the model
diversity.

6 Conclusion

We propose CAMERO, a consistency-regularized
ensemble learning approach based on perturbed
models. Such a strategy significantly improves the
parameter efficiency of model ensemble in large
language models, making it an accessible and pow-
erful technique for learning ensemble models with
better generalization performances.
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A Appendix

A.1 Natural Language Understanding
A.1.1 Data
GLUE is a collection of nine NLU tasks. The
benchmark includes question answering (Rajpurkar
et al., 2016), linguistic acceptability (CoLA,
Warstadt et al. 2019), sentiment analysis (SST,
Socher et al. 2013), text similarity (STS-B, Cer
et al. 2017), paraphrase detection (MRPC, Dolan
and Brockett 2005), and natural language inference
(RTE & MNLI, Dagan et al. 2006; Bar-Haim et al.
2006; Giampiccolo et al. 2007; Bentivogli et al.
2009; Williams et al. 2018) tasks. Details of the
GLUE benchmark, including tasks, statistics, and
evaluation metrics, are summarized in Table 12.

All the texts were tokenized using wordpieces,
and were chopped to spans no longer than 512
tokens.

A.1.2 Training Details
Table 7 presents the hyper-parameter configura-
tions to fine-tune BERT-base and RoBERTa-large
models. We apply a linear weight decay rate of
0.01 and a gradient norm clipping threshold of 1
for all experiments. All experiments are conducted
on Nvidia V100 GPUs.

A.1.3 Evaluation Results
Statistics of the dev set results. Table 8 shows the
standard deviation of the dev set results.
Average score computation formula. For dev set
results, we first obtain a score for each task by
averaging the scores of all metrics (e.g., Acc and
F1) and test sets (e.g., MNLI-m and MNLI-mm)
within this task, then compute a task-average score.
For test set results, we directly averages scores of
all reported metrics following Devlin et al. (2018).

A.2 Neural Machine Translation
A.2.1 Data
For IWSLT’14 En-De and De-En datasets, we fol-
low Ott et al. (2019)8 to split the train/dev/test set.
For IWSLT’16 En-Fr and Fr-En, we adopt the de-
fault training set, and use IWSLT16.TED.tst2015
for validation and use IWSLT16.TED.tst2016 for
testing. For WMT’14 En-De and De-En, We use
the standard newstest-2013 and newstest-2014 for
validation and testing, respectively. Table 9 shows
the number of sentence pairs in each dataset.

8https://github.com/pytorch/fairseq/blob/main/examples
/translation/prepare-iwslt14.sh

We tokenize all datasets with byte-pair encoding
(BPE, Sennrich et al. (2015)) with a vocabulary size
of 10k for datasets in IWSLT and 32k for datasets in
WMT. We build a joint dictionary upon all source
and target sentences for all datasets.

A.2.2 Training Details
We adopt the Transformer-base model for all
datasets and share all embeddings. For IWSLT
datasets, we follow the training configurations from
Ott et al. (2019)9. For WMT datasets, we follow
the training configurations from Ott et al. (2018)10.
For all datasets, we use Adam(Kingma and Ba,
2014) as the optimizer with β = (0.9, 0.98). We
use a inverse square root learning rate schedule.
We apply a linear weight decay rate of 1 × 10−4

and a label smoothing ratio of 0.1 for all experi-
ments. All experiments are conducted on Nvidia
V100 GPUs. Table 10 presents the training hyper-
parameter configurations for all datasets.

For evaluation on IWSLT datasets, we report the
BLEU score of the best checkpoint using a beam
size of 5 and length penalty of 1. For evaluation
on WMT datasets, we average the last 10 check-
points, decode with a beam size of 4 and length
penalty of 0.6, then report the SacreBLEU scores
after compound splitting.

A.2.3 BLEU scores for WMT experiments
Table 11 shows the corresponding BLEU scores for
WMT datasets.

9https://github.com/pytorch/fairseq/tree/main/examples
/translation#iwslt14-german-to-english-transformer

10https://github.com/pytorch/fairseq/tree/main/examples
/scaling_nmt#training-a-new-model-on-wmt16-en-de
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Hyper-param Model RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI

Learning Rate BERTBASE 1e-4 1e-4 1e-4 8e-5 1e-4 1e-4 1e-4 8e-5
RoBERTaLARGE 5e-5 1e-4 3e-5 2e-5 5e-5 1e-5 1e-4 3e-5

Epoch BERTBASE 6 6 6 6 6 3 6 3
RoBERTaLARGE 15 6 6 10 10 10 10 3

Batch Size BERTBASE 16 8 32 32 32 32 32 32
RoBERTaLARGE 8 16 32 32 32 32 32 32

Dropout Both 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3

Warmup BERTBASE 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 7: Hyper-parameter configurations for GLUE experiments. “Epoch” refers to the total training epochs;
we adopt early-stopping strategy in practice. “Dropout” refers to classification layer dropout ratio, the encoder
dropout ratio is fixed to be 0.1. “Warmup” refers to the ratio of learning rate linear warmup iterations to total
training iterations.

# of Method MNLI-m/mm QQP QNLI CoLA SST-2 RTE MRPC STS-B
Models Acc Acc/F1 Acc Mcc Acc Acc Acc/F1 P/S Corr

1 Single 0.20 0.25 0.21 1.10 0.33 1.61 0.83 0.20

Vanilla 0.17 0.11 0.16 1.22 0.26 1.72 0.77 0.21
DML 0.14 0.03 0.15 0.76 0.23 1.07 0.69 0.19
KDCL 0.11 0.05 0.16 1.04 0.14 0.68 0.66 0.19

2 ONE 0.13 0.22 0.21 1.00 0.25 1.61 0.88 0.15

CAMERO 0.11 0.05 0.15 1.01 0.12 0.92 0.37 0.11

Vanilla 0.14 0.10 0.09 0.92 0.39 0.82 0.54 0.11
KDCL 0.20 0.12 0.12 1.28 0.31 0.66 0.27 0.06

4 ONE 0.19 0.22 0.25 0.98 0.34 1.44 0.84 0.12

CAMERO 0.11 0.07 0.05 1.03 0.25 0.84 0.19 0.06

Table 8: Standard deviation of the single-task fine-tuning dev results on ensembled BERT-base.

Data Train Dev Test

IWSLT’14 En-De/De-En 160 7283 6750
IWSLT’16 En-Fr/Fr-En 218 1080 1133
WMT’14 En-De/De-En 4.5m 1061 1019

Table 9: The number of parallel sentences in NMT datasets.

Hyper-param IWSLT WMT

Learning Rate 5× 10−4 1× 10−3

Batch size 4096/GPU × 1 GPU 3584/GPU× 8 GPUs × 16 grad. acc. steps

Epoch 250 150

Dropout 0.3 0.1

Warmup 8000 4000

Table 10: Hyper-parameter configurations for NMT experiments. “Warmup” refers to the learning rate linear
warmup iterations.
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# of Method WMT
Models En-De De-En

Single (Vaswani et al., 2017) 27.30 -
1 Single 27.54 31.28

Vanilla 27.62 31.76
DML 27.70 32.22
KDCL 27.84 32.35

2 ONE 27.68 31.43

CAMERO 28.26 32.61

Vanilla 27.67 31.79
KDCL 27.75 32.47

4 ONE 27.78 31.48

CAMERO 28.43 32.78

Table 11: Test set scores on ensembled Transformer-base on WMT tasks (BLEU). The result in "Single (Vaswani
et al., 2017)" is the single model performance reported from Vaswani et al. (2017); Other results are from our own
implementation.

Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 12: Summary of the GLUE benchmark.
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