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Abstract

Simultaneous Machine Translation is the task
of incrementally translating an input sentence
before it is fully available. Currently, simul-
taneous translation is carried out by translat-
ing each sentence independently of the previ-
ously translated text. More generally, Stream-
ing MT can be understood as an extension of
Simultaneous MT to the incremental transla-
tion of a continuous input text stream. In this
work, a state-of-the-art simultaneous sentence-
level MT system is extended to the stream-
ing setup by leveraging the streaming history.
Extensive empirical results are reported on
IWSLT Translation Tasks, showing that lever-
aging the streaming history leads to significant
quality gains. In particular, the proposed sys-
tem proves to compare favorably to the best
performing systems.

1 Introduction

Simultaneous Machine Translation (MT) is the task
of incrementally translating an input sentence be-
fore it is fully available. Indeed, simultaneous MT
can be naturally understood in the scenario of trans-
lating a text stream as a result of an upstream Au-
tomatic Speech Recognition (ASR) process. This
setup defines a simultaneous Speech Translation
(ST) scenario that is gaining momentum due to the
vast number of industry applications that could be
exploited based on this technology, from person-to-
person communication to subtitling of audiovisual
content, just to mention two main applications.

These real-world streaming applications moti-
vate us to move from simultaneous to streaming
MT, understanding streaming MT as the task of
simultaneously translating a potentially unbounded
and unsegmented text stream. Streaming MT poses
two main additional challenges over simultaneous
MT. First, the MT system must be able to lever-
age the streaming history beyond the sentence level
both at training and inference time. Second, the

system must work under latency constraints over
the entire stream.

With regard to exploiting streaming history, or
more generally sentence context, it is worth men-
tioning the significant amount of previous work
in offline MT at sentence level (Tiedemann and
Scherrer, 2017; Agrawal et al., 2018), document
level (Scherrer et al., 2019; Ma et al., 2020a; Zheng
et al., 2020b; Li et al., 2020; Maruf et al., 2021;
Zhang et al., 2021), and in related areas such as lan-
guage modelling (Dai et al., 2019) that has proved
to lead to quality gains. Also, as reported in (Li
et al., 2020), more robust ST systems can be trained
by taking advantage of the context across sen-
tence boundaries using a data augmentation strat-
egy similar to the prefix training methods proposed
in (Niehues et al., 2018; Ma et al., 2019). This
data augmentation strategy was suspected to boost
re-translation performance when compared to con-
ventional simultaneous MT systems (Arivazhagan
et al., 2020).

Nonetheless, with the notable exception
of (Schneider and Waibel, 2020), sentences in
simultaneous MT are still translated indepen-
dently from each other ignoring the streaming
history. (Schneider and Waibel, 2020) proposed
an end-to-end streaming MT model with a Trans-
former architecture based on an Adaptive Com-
putation Time method with a monotonic encoder-
decoder attention. This model successfully uses the
streaming history and a relative attention mecha-
nism inspired by Transformer-XL (Dai et al., 2019).
Indeed, this is an MT model that sequentially trans-
lates the input stream without the need for a seg-
mentation model. However, it is hard to interpret
the latency of their streaming MT model because
the authors observe that the current sentence-level
latency measures, Average Proportion (AP) (Cho
and Esipova, 2016), Average Lagging (AL) (Ma
et al., 2019) and Differentiable Average Lagging
(DAL) (Cherry and Foster, 2019) do not perform
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well on a streaming setup. This fact is closely
related to the second challenge mentioned above,
which is that the system must work under latency
constraints over the entire stream. Indeed, current
sentence-level latency measures do not allow us to
appropriately gauge the latency of streaming MT
systems. To this purpose, (Iranzo-Sánchez et al.,
2021) recently proposed a stream-level adaptation
of the sentence-level latency measures based on
the conventional re-segmentation approach applied
to the ST output in order to evaluate translation
quality (Matusov et al., 2005).

In this work, the simultaneous MT model based
on a unidirectional encoder-decoder and train-
ing along multiple wait-k paths proposed by (El-
bayad et al., 2020a) is evolved into a streaming-
ready simultaneous MT model. To achieve this,
model training is performed following a sentence-
boundary sliding-window strategy over the paral-
lel stream that exploits the idea of prefix training,
while inference is carried out in a single forward
pass on the source stream that is segmented by a
Direct Segmentation (DS) model (Iranzo-Sánchez
et al., 2020). In addition, a refinement of the uni-
directional encoder-decoder that takes advantage
of longer context for encoding the initial positions
of the streaming MT process is proposed. This
streaming MT system is thoroughly assessed on
IWSLT translation tasks to show how leveraging
the streaming history provides systematic and sig-
nificant BLEU improvements over the baseline,
while reported stream-adapted latency measures
are fully consistent and interpretable. Finally, our
system favourably compares in terms of transla-
tion quality and latency to the latest state-of-the-art
simultaneous MT systems (Ansari et al., 2020).

This paper is organized as follows. Next section
provides a formal framework for streaming MT to
accommodate streaming history in simultaneous
MT. Section 3 presents the streaming experimental
setup whose results are reported and discussed in
Section 4. Finally, conclusions and future work are
drawn in Section 5.

2 Streaming MT

In streaming MT, the source stream X to be trans-
lated into Y comes as an unsegmented and un-
bounded sequence of tokens. In this setup, the
decoding process usually takes the greedy decision
of which token appears next at the i-th position of

the translation being generated

Ŷi = argmax
y∈Y

p
(
y
∣∣ XG(i)

1 , Y i−1
1

)
(1)

where G(i) is a global delay function that tells
us the last position in the source stream that was
available when the i-th target token was output, and
Y is the target vocabulary. However, taking into
account the entire source and target streams can be
prohibitive from a computational viewpoint, so the
generation of the next token can be conditioned to
the last H(i) tokens of the stream as

Ŷi=argmax
y∈Y

p
(
y
∣∣ XG(i)

G(i)−H(i)+1, Y
i−1
i−H(i)

)
. (2)

Nevertheless, for practical purposes, the concept
of sentence segmentation is usually introduced to
explicitly indicate a monotonic alignment between
source and target sentences in streaming MT. Let
us consider for this purpose the random variables
a and b for the source and target segmentation of
the stream, respectively. Variables a and b can be
understood as two vectors of equal length denoting
that the n-th source sentence starts at position an,
while the n-th target sentence does so at position
bn.

In the next sections, we reformulate simultane-
ous MT in terms of the more general framework of
streaming MT. This reformulation allows us to con-
sider opportunities for improvement of previous
simultaneous MT models.

2.1 Simultaneous MT with streaming history

In the conventional simultaneous MT setup, the
aforementioned variables a and b are uncovered at
training and inference time, while in streaming MT
a and b are considered hidden variables at infer-
ence time that may be uncovered by a segmentation
model. In fact, in conventional simultaneous MT
the history is limited to the current sentence being
translated, while in streaming MT we could exploit
the fact that the history could potentially span over
all the previous tokens before the current sentence.

To this purpose, the global delay function G(i)
introduced above would replace the sentence-level
delay function g(i) commonly used in simultane-
ous MT. However, it should be noticed that we
could express g(i) as G(i) − an with bn ≤ i <
bn+1. Delay functions are defined as a result of
the policy being applied. This policy decides what
action to take at each timestep, whether to read
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a token from the input or to write a target token.
Policies can be either fixed (Ma et al., 2019; Dalvi
et al., 2018) depending only on the current timestep,
or adaptive (Arivazhagan et al., 2019; Ma et al.,
2020b; Zheng et al., 2020a) being also conditioned
on the available input source words. Among those
fixed policies, the sentence-level wait-k policy pro-
posed by (Ma et al., 2019) is widely used in simul-
taneous MT with the simple local delay function

g(i) = k + i− 1. (3)

This policy initially reads k source tokens with-
out writing a target token, and then outputs a target
token every time a source token is read. This is
true in the case that the ratio between the source
and target sentence lengths is one. However, in
the general case, a catch-up factor γ computed as
the inverse of the source-target length ratio defines
how many target tokens are written for every read
token, that generalises Eq. 3 as

g(i) =

⌊
k +

i− 1

γ

⌋
. (4)

The wait-k policy can be reformulated in stream-
ing MT so that the wait-k behaviour is carried out
for each sentence as

G(i) =

⌊
k +

i− bn
γ

⌋
+ an − 1 (5)

where bn ≤ i < bn+1.
In streaming MT, we could take advantage of the

streaming history by learning the probability distri-
bution stated in Eq. 2, whenever streaming samples
would be available. However, training such a model
with arbitrarily long streaming samples poses a se-
ries of challenges that need to be addressed. Firstly,
it would be necessary to carefully define G(i) and
H(i) functions so that, at each timestep, the avail-
able source and target streams are perfectly aligned.
Given that the source-target length ratio may vary
over the stream, if one uses a wait-k policy with a
fixed γ, there is a significant chance that source and
target are misaligned at some points over the stream.
Secondly, every target token can potentially have
a different G(i) and H(i), so the encoder-decoder
representation and contribution to the loss would
need to be recomputed for each target token at a sig-
nificant computational expense. Lastly, current MT
architectures and training procedures have evolved
conditioned by the availability of sentence-level

parallel corpora for training, so they need to be
adapted to learn from parallel streams.

To tackle the aforementioned challenges in
streaming MT, a compromise practical solution
is to uncover the source and target sentence seg-
mentations. At training time, parallel samples are
extracted by a sentence-boundary sliding window
spanning over several sentences of the stream that
shifts to the right one sentence at a time. In other
words, each sentence pair is concatenated with its
corresponding streaming history that includes pre-
vious sentence pairs simulating long-span prefix
training. Doing so, we ensure that source and tar-
get streams are properly aligned at all times, and
training can be efficiently carried out by consid-
ering a limited history. The inference process is
performed in a purely streaming fashion in a single
forward pass as defined in Eq. 2 with H(i) being
consistently defined in line with training, so that
the streaming history spans over previous sentences
already translated.

2.2 Partial Bidirectional Encoder

In simultaneous MT, the conventional Transformer-
based bidirectional encoder representation (of the
l-th layer) of a source token at any position j is
constrained to the current n-th sentence

e
(l)
j = Enc

(
e
(l−1)
an:G(i)

)
(6)

where an ≤ j ≤ G(i), while the decoder can only
attend to previous target words and the encoding
of those source words that are available at each
timestep

s
(l)
i = Dec

(
s
(l−1)
bn:i−1, e

(l−1)
an:G(i)

)
. (7)

As a result, the encoder and decoder representa-
tions for positions j and i, respectively, could be
computed taking advantage of subsequent positions
to position j up to position G(i) at inference time.
However, at training time, this means that this bidi-
rectional encoding-decoding of the source sentence
has to be computed for every timestep, taking up to
|y| times longer than the conventional Transformer
model.

To alleviate this problem, (Elbayad et al.,
2020a) proposes a wait-k simultaneous MT model
based on a modification of the Transformer archi-
tecture that uses unidirectional encoders and mul-
tiple values of k at training time. In this way, the
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model is consistent with the limited-input restric-
tion of simultaneous MT at inference time. The
proposed unidirectional encoder can be stated as

e
(l)
j = Enc

(
e
(l−1)
an:j

)
, (8)

that is more restrictive than that in Eq. 6, and it
consequently conditions the decoder representation,
since G(i) in Eq. 7 depends on the specific k value
employed at each training step.

As mentioned above, the unidirectional encoder
just requires a single forward pass of the encoder at
training time, and therefore there is no additional
computational cost compared with a conventional
Transformer. However, it does not take into ac-
count all possible input tokens for different values
of k. Indeed, the encoding of the j-th input to-
ken will not consider those tokens beyond the j-th
position, even if including them into the encod-
ing process does not prevent us from performing a
single forward pass.

A trade-off between the unidirectional and bidi-
rectional encoders is what we have dubbed Partial
Bidirectional Encoder (PBE), which modifies the
unidirectional encoder to allow the first k−1 source
positions to have access to succeeding tokens ac-
cording to

e
(l)
j = Enc

(
e
(l−1)
an:max(an+k−1,j)

)
. (9)

PBE allows for a longer context when encoding
the initial positions and is consistent with Eq. 7. At
training time a single forward pass of the encoder-
decoder is still possible as in the unidirectional
encoder, and therefore no additional training cost
is incurred. At inference time, we fall back to the
bidirectional encoder.

Figure 1 shows a graphical comparison of the
attention mechanism in j = 3 across the bidi-
rectional (left), unidirectional (center) and PBE
(right) encoders with k = 4 for two consecutive
timesteps i = 1 with G(1) = 4 (top) and i = 2
with G(2) = 5 (bottom). As observed, PBE can
take advantage of additional positions from j + 1
up to k with respect to the unidirectional encoder.

In a streaming setup, the bidirectional encoder-
decoder of Eqs. 6 and 7 are not necessarily con-
strained to the current sentence and could exploit a
streaming history of H(i) tokens

e
(l)
j =Enc

(
e
(l−1)
G(i)−H(i)+1:G(i)

)
(10)

s
(l)
i =Dec

(
s
(l−1)
i−H(i):i−1, e

(l−1)
G(i)−H(i)+1:G(i)

)
. (11)

Likewise, the proposed PBE with streaming his-
tory states as follows

e
(l)
j =Enc

(
e
(l−1)
G(i)−H(i)+1:max(G(i)−H(i)+k,j)

)
. (12)

3 Experimental setup

Table 1: Basic statistics of the training data from the
IWSLT 2020 Evaluation Campaign (M = Millions).

Corpus Doc Sents(M) Tokens(M)
German English

News-Comm. X 0.3 7.4 7.2
Wikititles 1.3 2.7 3.1
Europarl X 1.8 42.5 45.5
Rapid X 1.5 26.0 26.9
MuST-C X 0.2 3.9 4.2
TED X 0.2 3.3 3.6
LibriVox 0.1 0.9 1.1
Paracrawl 31.4 465.2 502.9

A series of comparative experiments in terms
of translation quality and latency have been car-
ried out using data from the IWSLT 2020 Eval-
uation Campaign (Ansari et al., 2020), for both
German→English and English→German. For the
streaming condition, our system is tuned on the
2010 dev set, and evaluated on the 2010 test set for
comparison with (Schneider and Waibel, 2020).
Under this setting, words were lowercased and
punctuation was removed in order to simulate a
basic upstream ASR system. Also, a second non-
streaming setting is used for the English→German
direction to compare our system with top-of-the-
line sentence-based simultaneous MT systems par-
ticipating in the IWSLT 2020 Simultaneous Trans-
lation Task.

Table 1 summarizes the basic statistics of the
IWSLT corpora used for training the streaming
MT systems. Corpora for which document in-
formation is readily available are processed for
training using the sliding window technique men-
tioned in Section 2.1. Specifically, for each
training sentence, we prepend previous sentences,
which are added one by one until a thresh-
old h of history tokens is reached. Sentence
boundaries are defined on the presence of spe-
cial tokens ( <DOC>,<CONT>,<BRK>,<SEP>)
as in (Junczys-Dowmunt, 2019). Byte Pair Encod-
ing (Sennrich et al., 2016) with 40K merge opera-
tions is applied to the data after preprocessing.

Our streaming MT system is evaluated in terms
of latency and translation quality with BLEU (Pap-
ineni et al., 2002). Traditionally, latency evaluation
in simultaneous MT has been carried out using
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Figure 1: Comparison of attention positions in j = 3 for bidirectional (left), unidirectional (center) and PBE (right)
encoders with k = 4 in two consecutive timesteps i = 1 with G(1) = 4 (top) and i = 2 with G(2) = 5 (bottom).

AP, AL and DAL. However, these measures have
been devised for sentence-level evaluation, where
the latency of every sentence is computed indepen-
dently from each other and as mentioned before,
they do not perform well on a streaming setup.
Thus, we revert to the stream-based adaptation of
these measures proposed in (Iranzo-Sánchez et al.,
2021) unless stated otherwise.

Latency measures for a sentence pair (x,y) are
based on a cost function Ci(x,y) and a normaliza-
tion term Z(x,y)

L(x,y) =
1

Z(x,y)

∑
i

Ci(x,y) (13)

where

Ci(x,y) =


g(i) AP
g(i)− i−1

γ AL

g′(i)− i−1
γ DAL

(14)

and

Z(x,y) =


|x| · |y| AP
argmin
i:g(i)=|x|

i AL

|y| DAL

(15)

Latency measures can be computed in a stream-
ing manner by considering a global delay function
G(i), that is mapped into a relative delay so that it
can be compared with the sentence-level oracle de-
lay. For the i-th target position of the n-th sentence,
the associated relative delay can be obtained from
the global delay function as gn(i) = G(i+bn)−an.
So, the stream-adapted cost function of the latency

measures is defined as

Ci(xn,yn) =


gn(i) AP
gn(i)− i−1

γn
AL

g′n(i)− i−1
γn

DAL

(16)

with g′n(i) defined as

max


gn(i){
g′n−1(|xn−1|) + 1

γn−1
i = 1

g′n(i− 1) + 1
γn

i > 1

(17)

This definition assumes that the source and tar-
get sentence segmentation of the stream are uncov-
ered, but this is not always the case (Schneider and
Waibel, 2020) or they may not match that of the
reference translations. However, sentence bound-
aries can be obtained by re-segmenting the system
hypothesis following exactly the same procedure
applied to compute translation quality in ST eval-
uation. To this purpose, we use the MWER seg-
menter (Matusov et al., 2005) to compute sentence
boundaries according to the reference translations.

Our streaming MT models have been trained
following the conventional Transformer BASE
(German↔English streaming MT) and BIG
(English→German simultaneous MT) configura-
tions (Vaswani et al., 2017). As in (Schneider
and Waibel, 2020), after training is finished, the
models are finetuned on the training set of MuST-
C (Di Gangi et al., 2019).

The proposed model in Section 2 assumes that
at inference time the source stream has been seg-
mented into sentences. To this purpose, we opt
for the text-based DS model (Iranzo-Sánchez et al.,
2020), a sliding-window segmenter that moves over
the source stream taking a split decision at each
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token based on a local-context window that ex-
tends to both past and future tokens. This seg-
menter is streaming-ready and obtains superior
translation quality when compared with other seg-
menters (Stolcke, 2002; Cho et al., 2017). As the fu-
ture window length of the DS segmenter conditions
the latency of the streaming MT system, this length
was adjusted to find a tradeoff between latency and
translation quality. The DS segmenter was trained
on the TED corpus (Cettolo et al., 2012).

4 Evaluation

Figure 2 reports the evolution of BLEU scores on
the German-English IWSLT 2010 dev set as a func-
tion of the k value in the wait-k policy for a range of
streaming history lengths (h = {0, 20, 40, 60, 80}).
We show results for the 3 encoders introduced pre-
viously. History lengths were selected taking into
account that the average sentence length is 20 to-
kens. A history length of zero (h = 0) refers to
the conventional sentence-level simultaneous MT
model. The BLEU scores for the offline MT sys-
tems with a bidirectional encoder are also reported
using horizontal lines, in order to serve as reference
values. We report offline results for h = 0 and the
best performing history configuration, h = 60. All
systems used the reference segmentation during
decoding.

As observed, BLEU scores of the simultaneous
MT systems leveraging on the streaming history
(h > 0) are systematically and notably higher than
those of conventional sentence-based simultaneous
MT system (h = 0) over the range of wait-k values.
Indeed, as the streaming history increases, BLEU
scores also do reaching what it seems the optimal
history length at h = 60 and slightly degrading at
h = 80. As expected, when replacing the unidirec-
tional encoder by the PBE, BLEU scores improve
as the wait-k value increases, since PBE has ad-
ditional access to those tokens from j + 1 up to
k. For instance, for k = 32 and h = 60, PBE is
0.7 BLEU points above the unidirectional encoder.
On the other hand, it can be observed how using
an encoder which is not fully bidirectional during
training, creates a performance gap with respect
to the offline bidirectional model when carrying
out inference in an offline manner (k ≥ 32). It
can be also observed how the PBE model is better
prepared for this scenario and shows a smaller gap.
It is important to keep in mind that although both
offline and PBE models behave the same way dur-
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 1  2  4  8  16  32

Offline h=60

Offline h=0

BLEU

wait-k

h=80
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Unidir.

Bidir.

PBE

Figure 2: BLEU scores on the German-English IWSLT
2010 dev set as a function of the k value in the wait-k
policy for a range of streaming history (h) lengths and
encoder type (See Appendix A for a close-up).

ing inference for a large enough k, during training
time the PBE model, trained using the multi-k with
k randomly sampled for each batch, has been opti-
mized jointly for low, medium and high latencies.

In general, the bidirectional encoder shows poor
performance for simultaneous MT. This can be ex-
plained by the fact that there exists a mismatch
between the training condition (whole source avail-
able) and the inference condition (only a prefix of
the source is available for k < 32). These results
are consistent with (Elbayad et al., 2020a). Keep in
mind that this bidirectional model is different from
the offline one because it has been subject to the
constraints of Eq. 7 during training. As a result of
the BLEU scores reported in Figure 2, the stream-
ing MT system with h = 60 and PBE was used in
the rest of the German-English experiments.

Following (Schneider and Waibel, 2020)’s setup,
the test set is lowercased and concatenated into a
single stream. In order to measure the latency of
the pipeline defined by the segmenter followed by
MT system, it is necessary to take into account not
only the latency of the MT system but also that
of the segmenter. Thankfully this is straightfor-
ward to do in our pipeline, as a segmenter with a
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Figure 3: BLEU scores versus stream-adapted AL and DAL (scale s=0.85) with segmenters of future window
length w = {0, 1, 2, 3, 4} on the IWSLT 2010 test set. Points over each curve correspond to k = {1, 2, 4, 8, 16}
values of the wait-k policy used at inference time.

future window of length w modifies the pipeline
policy so that, at the start of the stream, w READ
actions are carried out to fill up the future win-
dow. Then, every time the MT system carries out
a READ action, it receives one token from the
segmenter. Thus, the integration of the segmenter
into the pipeline is transparent from a latency view-
point. Figure 3 shows BLEU scores versus stream-
adapted AL and DAL (s scale = 0.85) figures re-
ported with segmenters of future window length
w = {0, 1, 2, 3, 4} for a streaming evaluation on
the IWSLT 2010 test set. Points over each curve
correspond to k = {1, 2, 4, 8, 16} values of the
wait-k policy used at inference time. Results for a
w = 0 oracle are also shown as an upper-bound.

As shown, stream-adapted AL and DAL figures
achieved by our streaming MT system are reason-
able, lagging 2-10 tokens behind the speaker for
nearly maximum BLEU scores with a best BLEU
score of 29.5 points. The same happens with AP
figures ranging from 0.6 forw = 0 to 1.3 forw = 4.
These figures highlight the advantages of tying to-
gether our translation policy with the sentence seg-
mentation provided by the DS model. Every time

the DS model emits an end-of-sentence event, the
MT model is forced to catch-up and translate the
entire input. In this way, the MT model never strays
too far from the speaker, even if the source-target
length ratio differs from the γ defined at inference
time. See Appendix A for streaming translation re-
sults in the reverse direction (English→ German).

Next, we compare our proposed streaming MT
(STR-MT) model with the λ = 0.3 ACT sys-
tem (Schneider and Waibel, 2020) in terms of
BLEU score and stream-adapted latency measures
on Table 2. Stream-level AL and DAL indicate that
the ACT models lags around 100 tokens behind
the speaker. Although both MT systems achieve
similar translation quality levels, they do so at sig-
nificantly different latencies, since the ACT model

Table 2: Latency and quality comparison of ACT
(Schneider and Waibel, 2020) and the proposed STR-
MT on the IWSLT 2010 De-En test set.

Model BLEU AP AL DAL
ACT 30.3 10.3 100.1 101.8
STR-MT 29.5 1.2 11.2 17.8
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lacks a catch-up mechanism to synchronize and
keep the pace of the speaker.

The STR-MT model is now compared on the
English-German IWSLT 2020 simultaneous text-
to-text track (Ansari et al., 2020) with other par-
ticipants: RWTH (Bahar et al., 2020), KIT (Pham
et al., 2020) and ON-TRAC (Elbayad et al., 2020b).
This comparison is carried out in order to assess
whether the proposed streaming MT system is com-
petitive with highly optimized systems for a simul-
taneous MT task. Given that the test set of this track
remains blind, we use the results reported on the
MuST-C corpus as a reference. In order to evaluate
all systems under the same conditions, the refer-
ence segmentation of the MuST-C corpus is used in-
stead of the DS model. Additionally, given that all
other participants translate each sentence indepen-
dently, the conventional sentence-level AL latency
measure is reported. Figure 4 shows the compari-
son of BLEU scores versus AL measured in terms
of detokenized tokens. As defined in the IWSLT
text-to-text track, three AL regimes, low (AL ≤ 3),
medium (3 < AL ≤ 6) and high (6 < AL ≤ 15)
were considered.

ON-TRAC and our streaming MT system exhibit
a similar progression, which is to be expected given
that they are both based on the multi-k approach.
However, our system consistently outperforms the
ON-TRAC system by 1-2 BLEU. This confirms
the importance of utilizing streaming history in
order to significantly improve results, and how the
proposed PBE model can take better advantage of
the history.

RWTH and KIT systems are closer in translation
quality to our proposal than ON-TRAC, for AL be-
tween 5 and 7. However, these systems do not show
a flexible latency policy and are not comparable
to our system at other regimes. Indeed, for that to
be possible, these systems need to be re-trained, in
contrast to our system in which latency is adjusted
at inference time.

5 Conclusions

In this work, a formalization of streaming MT as a
generalization of simultaneous MT has been pro-
posed in order to define a theoretical framework in
which our two contributions have been made. On
the one hand, we successfully leverage streaming
history across sentence boundaries for a simultane-
ous MT system based on multiple wait-k paths that
allows our system to greatly improve the results of
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Figure 4: Comparative BLEU scores versus AL at
three regimes, low, medium, and high latency, for
IWSLT 2020 simultaneous text-to-text track partici-
pants, RWTH, ON-TRAC, KIT and our streaming MT
(STR-MT) system on the MuST-C corpus.

the sentence-level baseline. On the other hand, our
PBE is able to take into account longer context in-
formation than its unidirectional counterpart, while
keeping the same training efficiency.

Our proposed MT system has been evaluated
under a realistic streaming setting being able to
reach similar translation quality than a state-of-the-
art segmentation-free streaming MT system at a
fraction of its latency. Additionally, our system
has been shown to be competitive when compared
with state-of-the-art simultaneous MT systems op-
timized for sentence-level translation, obtaining
excellent results using a single model across a wide
range of latency levels, thanks to its flexible infer-
ence policy.

In terms of future work, additional training and
inference procedures that take advantage of the
streaming history in streaming MT are still open for
research. One important avenue of improvement
is to devise more robust training methods, so that
simultaneous models can perform as well as their
offline counterparts when carrying out inference at
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higher latencies. The segmentation model, though
proved useful in a streaming setup, adds complexity
and can greatly affect translation quality. Thus, the
development of segmentation-free streaming MT
models is another interesting research topic.
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A Extended Streaming Translation
Results

Figure 5 shows a close-up of Figure 2, which con-
tains results for the German-English IWSLT 2010
dev set. We can observe how the PBE models
obtain consistent quality improvements over their
unidirectional counterparts.

Apart from the previously reported German→
English streaming MT results, we have also con-
ducted experiments in the reverse direction, En-
glish → German. These are shown in Figure 6.
The results show a similar trend to previous ex-
periments, with the addition of streaming history
allowing our systems to obtain significant improve-
ments over the sentence-based baseline. Unlike the
previous case, the optimum history size in this case
is h = 40 instead of h = 60.

In order to enable streaming translation, the best
performing h = 40 systems has been combined
with a German DS system. Similarly to previous
experiments, we have conducted tests using dif-
ferent values of w and k in order to balance the
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Figure 5: BLEU scores on the German-English IWSLT
2010 dev set as a function of the k value in the wait-k
policy for a range of streaming history (h) lengths with
a unidirectional encoder (solid lines), PBE (dashed
line) or bidirectional (dashed line with points). This
is a close-up of Figure 2.

latency-quality trade-off, shown in Figure 7. Un-
der the streaming condition, the wait-k policy and
DS model allow the model to follow closely the
speaker while achieving good quality, with a la-
tency that can be easily adjusted between 4 and 15
tokens depending on the requirements of the task.
There are diminishing returns when increasing the
latency above 6-7 tokens, as only marginal gains in
quality are obtained.

B Efficiency of the proposed models

During training of the unidirectional and PBE en-
coders, the constraints imposed by Eqs. 8 and 9
are efficiently implemented by full self-attention,
as in the bidirectional encoder, followed by an at-
tention mask, for each token to only attend those
tokens fulfilling the constraints. The attention mask
sets the weights of the other tokens to −∞ before
application of the self-attention softmax. This is
exactly the same mechanism used in the standard
Transformer decoder to prevent the auto-regressive
decoder from accessing future information.

This means that the three encoder types have an
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Figure 6: BLEU scores on the English-German IWSLT
2010 dev set as a function of the k value in the wait-
k policy for a range of streaming history (h) lengths
using a PBE encoder.

identical computational behavior. We are not aware
of alternative GPU-based acceleration techniques
to speed up the training of the unidirectional en-
coder. If so, this could be also applicable to the
training of the standard Transformer decoder.

During inference time, however, the unidirec-
tional encoder has some advantages. Given that
the unidirectional encoder is incremental, mean-
ing that the encodings of old tokens do not change
when a new token becomes available, the process
can be sped up by only computing the encoding
of the newly available token. Although encoder
self-attention still needs to be computed, a single
vector is used as the query instead of the full matrix.
Table 3 shows inference statistics for the different
components of the En→ De Transformer Big with
h=60. Two setups have been tested: CPU-only in-
ference, and GPU inference. Results were obtained
on an Intel i9-7920X machine with an NVIDIA
GTX 2080Ti.

The unidirectional encoder is four times faster
than the bidirectional encoder when run on a CPU.
However, both encoders perform the same when
run on a GPU. For the streaming MT scenario con-
sidered in this work, no latency reduction is gained
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Figure 7: BLEU scores versus stream-adapted AL and DAL (scale s=0.85) with segmenters of future window
length w = {0, 1, 2, 3, 4} on the English-German IWSLT 2010 test set. Points over each curve correspond to
k = {1, 2, 4, 8, 16} values of the wait-k policy used at inference time.

Table 3: Latency of translating a token (in seconds) for
the proposed En-De h=60 Transformer Big model.

Component CPU GPU
Unidir. Encoder 0.034s 0.002s
Bidir. Encoder 0.138s 0.002s
Decoder 0.242s 0.004s

by not re-encoding previous tokens due to the GPU
paralellization capability. When run on a GPU, the
proposed model works seamlessly under real-time
constraints.

C MT System configuration

The multi-k systems have been trained with the offi-
cial implementation (https://github.com/
elbayadm/attn2d). Models are trained for
0.5M steps on a machine with 4 2080Ti GPUs.
Total training time was 40h for BASE models, and
60h for BIG models. The following command was
used to train them:

cri=label_smoothed_cross_entropy;
ex=simultaneous_translation
fairseq-train $CORPUS_FOLDER \
-s $SOURCE_LANG_SUFFIX \
-t $TARGET_LANG_SUFFIX \
--user-dir $FAIRSEQ/examples/$ex \
--arch $ARCH waitk_transformer_base \
--share-decoder-input-output-embed \
--left-pad-source False \
--multi-waitk \
--optimizer adam \
--adam-betas ’(0.9, 0.98)’ \
--clip-norm 0.0 \
--lr-scheduler inverse_sqrt \
--warmup-init-lr 1e-07 \
--warmup-updates 4000 \
--lr 0.0005 \
--min-lr 1e-09 \
--dropout 0.1 \
--weight-decay 0.0 \
--criterion $cri \
--label-smoothing 0.1 \
--max-tokens $TOK \
--update-freq 2 \
--save-dir $MODEL_OUTPUT_FOLDER \
--no-progress-bar \
--log-interval 100 \
--max-update 500000 \
--save-interval-updates 10000 \
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--keep-interval-updates 20 \
--ddp-backend=no_c10d \
--fp16

with

ARCH=waitk_transformer_base;
TOK=4000

for the BASE configuration, and

ARCH=waitk_transformer_big;
TOK=2000

for the BIG one.
For finetuning, we change to the following:

--lr-scheduler fixed \
--lr 4.47169e-05 \

For the streaming translation scenario, the data is
lowercased and all punctuation signs are removed.
For the simultaneous scenario (IWSLT 2020 simul-
taneous text- to-text), it is truecased and tokenized
using Moses. We apply language identification to
the training data using langid (Lui and Baldwin,
2012) and discard those sentences that have been
tagged with the wrong language. SentencePiece
(Kudo and Richardson, 2018) is used to learn the
BPE units, and we use whitespace as a suffix in
order to know when an entire target word has been
written during decoding.

In order to obtain samples that can be used for
training streaming MT models, a sliding window
that moves over whole sentences is used to extract
consistent source-target samples. Figure 8 shows
an example of corpus construction using h = 5.
The generated streaming data is upsampled to keep
a 1-to-3 ratio with the regular sentence-level data.

D Segmenter System configuration

The Direct Segmentation system has been
trained with the official implementation
(https://github.com/jairsan/
Speech_Translation_Segmenter).
The following command was used to train the
segmenter system:
python3 train_text_model.py \
--train_corpus train.$len_$window.txt \
--dev_corpus dev.$len_$window.txt \
--output_folder $out_f \
--vocabulary $corpus_f/train.vocab.txt \
--checkpoint_interval 1 \
--epochs 15 \
--rnn_layer_size 256 \
--embedding_size 256 \
--n_classes 2 \
--batch_size 256 \
--min_split_samples_batch_ratio 0.3 \
--optimizer adam \

--lr 0.0001 \
--lr_schedule reduce_on_plateau \
--lr_reduce_patience 5 \
--dropout 0.3 \
--model_architecture ff-text \
--feedforward_layers 2 \
--feedforward_size 128 \
--sample_max_len $len \
--sample_window_size $window

with the following configurations:

(len=11; window=0)
(len=12; window=1)
(len=13; window=2)
(len=14, window=3)
(len=15, window=4)
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Sentece pair Source Target
1 x1,1 x1,2 y1,1 y1,2
2 x2,1 x2,2 x2,3 y2,1 y2,2
3 x3,1 x3,2 x3,3 y3,1 y3,2 y3,3
4 x4,1 x4,2 y4,1 y4,2

Sentence pair Source
1 <DOC> x1,1 x1,2 <BRK>
2 <DOC> x1,1 x1,2 <SEP> x2,1 x2,2 x2,3 <BRK>
3 <DOC> x1,1 x1,2 <SEP> x2,1 x2,2 x2,3 <SEP> x3,1 x3,2 x3,3 <BRK>
4 <CONT> x3,1 x3,2 x3,3 <SEP> x4,1x4,2 <END>

Sentence pair Target
1 <DOC> y1,1 y1,2 <BRK>
2 <DOC> y1,1 y1,2 <SEP> y2,1 y2,2 <BRK>
3 <DOC> y1,1 y1,2 <SEP> y2,1 y2,2 <SEP> y3,1 y3,2 y3,3 <BRK>
4 <CONT> y3,1 y3,2 y3,3 <SEP> y4,1y4,2 <END>

Figure 8: Illustrated example of sample construction with history. Starting from a corpus of ordered sentence pairs
(top), streaming samples are constructed (bottom) using h = 5. Past history is shown in light gray. Sentence
boundary and document tokens (Junczys-Dowmunt, 2019) are not counted for the history size limit. Notice how,
for the last sample, the pair (x2,y2) is not included in the sample, as the history size limit would have otherwise
been exceeded on the source side.
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