
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 6213 - 6226

May 22-27, 2022 c©2022 Association for Computational Linguistics

OIE@OIA: an Adaptable and Efficient Open Information Extraction
Framework

Xin Wang, Minlong Peng, Mingming Sun, Ping Li
Cognitive Computing Lab

Baidu Research
No.10 Xibeiwang East Road, Beijing 100193, China
10900 NE 8th St. Bellevue, Washington 98004, USA

{wangxin60, pengminlong, sunmingming01, liping11}@baidu.com

Abstract
Different Open Information Extraction (OIE)
tasks require different types of information,
so the OIE field requires strong adaptability
of OIE algorithms to meet different task re-
quirements. This paper discusses the adapt-
ability problem in existing OIE systems and
designs a new adaptable and efficient OIE
system - OIE@OIA as a solution. OIE@OIA
follows the methodology of Open Information
eXpression (OIX): parsing a sentence to an
Open Information Annotation (OIA) Graph
and then adapting the OIA graph to different
OIE tasks with simple rules. As the core of
our OIE@OIA system, we implement an end-
to-end OIA generator by annotating a dataset
(we make it open available) and designing an
efficient learning algorithm for the complex
OIA graph. We easily adapt the OIE@OIA
system to accomplish three popular OIE tasks.
The experimental show that our OIE@OIA
achieves new SOTA performances on these
tasks, showing the great adaptability of our
OIE@OIA system. Furthermore, compared to
other end-to-end OIE baselines that need mil-
lions of samples for training, our OIE@OIA
needs much fewer training samples (12K),
showing a significant advantage in terms of
efficiency.

1 Introduction

Open Information Extraction (OIE) techniques
are gradually attracting more and more attention
(Christensen et al., 2011; Mausam et al., 2012;
Corro and Gemulla, 2013; Angeli et al., 2015;
Bhutani et al., 2016; Cui et al., 2018; Roy et al.,
2019; Zhan and Zhao, 2020) as they build a
bridge between language to knowledge. OIE
tasks are generally designed for its information
extraction requirements, which vary from verbal
relations between entities (Banko et al., 2007;
Etzioni et al., 2004), nominal attributes (Yahya
et al., 2014; Pal and Mausam, 2016; Saha et al.,
2017), and adverbial components (e.g., time)

(Stanovsky et al., 2018). Even for the same
type of information, the required facts may still
differ. Table 1 shows the required form of facts of
three popular OIE tasks: OIE2016 (Stanovsky and
Dagan, 2016), Re-OIE2016 (Zhan and Zhao, 2020)
and CaRB (Bhardwaj et al., 2019). The diversity
of requirements is an essential feature in the field
of OIE, which leads to the urgent need for OIE
algorithms with strong adaptability.

The adaptability problem in the OIE field has
not been well addressed. There are two primary
methodologies to obtain an OIE system: the rule-
based approach and the end-to-end learning-based
approach. The rule-based approaches (Christensen
et al., 2011; Corro and Gemulla, 2013; Angeli
et al., 2015; Bhutani et al., 2016; Gashteovski
et al., 2017) use human-written or bootstrap-
learned rules to convert linguistic structures of
sentences into target facts. The end-to-end learning
approaches (Stanovsky et al., 2018; Sun et al.,
2018b,a; Roy et al., 2019; Ro et al., 2020; Kolluru
et al., 2020; Liu et al., 2020) first build a dataset
containing <sentence, facts> pairs and then use
end-to-end learning to train a neural network as
the OIE system. However, these methodologies
develop a specific machine for every single task.
When the requirements change, one must rewrite
the complex rule system or re-annotate the data and
then retrain the model. These methodologies fail
to meet the need for strong adaptability in the OIE
field.

Recently, a concept called Open Information
eXpression (OIX) was proposed by Sun et al.
(2020) to address the adaptability issue of OIE
algorithms. The idea of OIX is to introduce an
intermediate layer between the language and OIE,
which can express the sentence without information
loss and be easily adapted to various OIE tasks. Sun
et al. (2020) proposed a standard, called Open
Information Annotation (OIA), to implement OIX.
The OIA standard defines an annotation criterion of

6213

Fact OIE2016 Re-OIE2016 CaRB
<[is], Ms. Lee, headmaster> 7 3 3

<is responsible, Ms. Lee, for this> 3 3 3

<told, Ms. Lee, Lily, she is responsible for this> 3 7 3

<told, Ms. Lee, Jimmy, she is responsible for this> 3 7 3

<told, Ms. Lee, Lily and Jimmy, she is responsible for this> 7 3 7

Table 1: Facts defined in different OIE tasks, for the expression “Ms. Lee, the headmaster, told Lily and Jimmy she
is responsible for this.". With OIA, we can easily adapt to these various OIE standards using simple rules.

natural language sentences, which aims to express
all information of a sentence into a Predicate-
Function-Argument structure, represented by a
single-rooted DAG graph. In addition, they im-
plemented a rule-based OIA system that generates
OIA graphs from Universal Dependency graphs.

Following the methodology of OIX/OIA, we
implement an adaptable and efficient OIE system -
OIE@OIA. The framework of OIE@OIA shown
in Figure 1 has two components. The first one
is the OIA generator, which converts a sentence
into an OIA graph. We annotate a large OIA
dataset (containing 12,543 training samples, 2,002
development samples, and 2,077 testing samples),
develop an efficient learning algorithm to learn
and inference the OIA graph, and finally build
an end-to-end OIA graph learner. The second
component is a group of adaptors, one for each
OIE task. We show three popular OIE tasks
focused on in this paper in the figure. Furthermore,
one can write new adaptors for new OIE tasks,
which are very simple, as shown in the following
sections. The OIE@OIA system achieves the
SOTA (or comparable) performance on three
OIE tasks: OIE2016, Re-OIE2016, and CaRB,
verifying the adaptability of our OIE@OIA system.
Furthermore, our OIE@OIA only needs 12K
samples to train, whereas existing end-to-end
OIE methods typically need millions of training
samples. This verifies the efficiency of our
OIE@OIA system.

The contribution of this work is as follows:

• An adaptable and efficient OIE system –
OIE@OIA, achieving the SOTA performance on
different OIE tasks.

• The first end-to-end OIA learning pipeline built
on a large human-labeled OIA dataset (we make
it open available) and an efficient algorithm for
the OIA graph;

Figure 1: The framework of OIE@OIA.

2 OIE@OIA

In this section, we introduce the OIE@OIA frame-
work, compare it with existing methodologies, and
finally discuss its capability and limitation.

2.1 OIA Generator

The core of the OIE@OIA framework is an end-to-
end learned OIA generator. To build the generator,
we annotate a large dataset using sentences from
English-EWT (version 2.4, containing 16K sen-
tences)1 and design a neural-based algorithm for
learning the OIA graph from sentences. The data
annotation procedure and the learning procedure
are detailed in Section 3.

The standard OIA graph described in Sun et al.
(2020) only defined three node types: Constant,
Predicate, and Function. However, users may need
more fine-grained type information about nodes,
especially the type of predicates, to filter wanted
facts. For instance, in building OIE systems based
on OIA, we need to recognize verbal nodes, which
act as the relationship descriptions of the OIE facts.
In addition, in event logic graph construction (Ding
et al., 2019), logical predicates are essential. With
this consideration, we update the type field to a
fine-grained version for nodes in the OIA graph
according to its semantic function. The fine-
grained node types are listed in Table 2.

1https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-2988

6214

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2988
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2988

0 Ms. Lee ((0, 1),) Noun

1 the headmaster ((3, 4),) Noun

appos

2 told (6,) Verbal

pred.arg.1

3 Lily and Jimmy ((7, 9),) Noun

pred.arg.2

4 is responsible ((11, 12),) Verbal

pred.arg.3

5 she (10,) Noun

pred.arg.1

6 for (13,) Prepositional

as:pred.arg.1

7 this (14,) Noun

pred.arg.2

Figure 2: The OIA graph for sentence “Ms. Lee, the headmaster, told Lily and Jimmy she is responsible for this.”

Fine-grained Type Original Type Example
Verbal Predicate know
Prepositional Predicate to
Logical Predicate and
Function Function when
Noun Constant Chicago
Modifier Constant well

Table 2: Node types in OIA graph. Examples are
extracted from “I know him well, and I remember when
he went to Chicago".

Figure 2 shows the OIA graph created by our
OIA generator for the example sentence in Table 1,
where the predicate nodes are highlighted with
color cyan. We can see that all information in
the sentence is expressed in the graph, and the
predicate-argument structures concerned in OIE
tasks are accurately captured.

2.2 OIE Adaptors

Next, we illustrate how to design adaptors to
accomplish three popular OIE tasks: OIE2016,
Re-OIE2016, and CaRB. The OIE2016 and Re-
OIE2016 adaptors are built based on the relabeling
principle of Zhan and Zhao (2020). The adaptor
for CaRB is built based on the labeling instructions
in attachment2 of Bhardwaj et al. (2019). Note that
one can always design new adaptors for new OIE
tasks.

Figure 2 shows the OIA graph of the example
sentence expressing the common units required by
these three tasks. First, we design the following
simple rules:

Verbal: For each verbal node in the OIA graph,

2https://aclanthology.org/D19-1651/

we take the node as the predicate of the OIE fact
and take each child sub-tree of the verbal node as
an argument of the fact. For instance, given the
sample in Figure 2, the extracted facts using the
rule are <"told", "Ms. Lee, the headmaster", "Lily
and Jimmy", "she is responsible for this"> and <"is
responsible", "she", "for this">.
VerbalPiP: In the OIA graph, for each verbal node
with a prepositional child, we merge the child into
the verbal node and apply the Verbal rule on the
resultant OIA graph. This produces <"is responsi-
ble for", "she", "this"> for the sample in Figure 2
instead of <"is responsible", "she", "for this">.
Appos(be): All edges like <A, appos, B> in OIA
graphs are extracted to form the facts <be, A, B>.
CoordSep: The fact tuples with coordination
arguments are separated into multiple fact tuples,
e.g., <told, ~, Lily and Jimmy, ~> is separated into
<told, ~, Lily, ~> and <told, ~, Jimmy, ~>.

Then, we implement the adaptors for the three
tasks using the combinations of the above rules:

• Adaptor@OIE 2016 = Verbal + CoordSep;

• Adaptor@Re-OIE 2016 = Verbal + Appos([is]);

• Adaptor@CaRB = VerbalPiP + Appos(is) +
CoordSep.

2.3 Comparisons
In this section, we compare OIE@OIA with
existing OIE methodologies and show the dif-
ference in Table 3. The traditional rule-based
OIE methods are generally based on a sentence
annotation structure, such as dependency graphs
or constituency graphs, and apply rules to convert
the annotation structure into the OIE facts. This

6215

Methodology Rule-Based OIE End-to-End OIE OIE@OIA

Sentence Annotation Dependency / Constituency - OIA
OIE Sensitiveness of Annotation No - Yes

Rule Complexity High - Low
Training Data - 1 Million 12K

Training Efficiency - Low High
Adaptation to New Task Rewrite Rules Relabel and Retrain New Adaptor

Adaptation Cost May Be High May Be High Low

Table 3: Comparisons among Rule-based OIE, End-to-End OIE , and OIE@OIA.

pipeline is similar to our OIE@OIA, where
OIE@OIA uses the OIA graph as the sentence
annotation structure. However, the differences be-
tween the traditional annotation and OIA make the
substantial differences between the rule-based OIE
and our OIE@OIA. Since the traditional annotation
- dependency and constituency - is not designed
for the OIE task, one needs to write a complex
rule system (or construct by bootstrapping) to
convert those annotation structures into the OIE
facts. However, for OIE@OIA, since the OIA
is designed for OIE tasks, one can accomplish
the conversion with straightforward rules, just like
those described in the above section. As for the
end-to-end OIE algorithms, existing methods are
generally built on OpenIE4 dataset (Zhan and Zhao,
2020), which contains about 1 million training
samples. However, differences may exist in the
forms between the training dataset and the target
task, so the performance may drop when adapting
to new tasks. To limit the differences, one may
need many new training samples and retrain the
model. Our OIE@OIA can adapt to an extensive
range of new tasks by introducing new adaptors,
so it has much better adaptability. In addition,
our experimental studies show that OIE@OIA
needs only 12K samples for training to achieve
new SOTA OIE performance, so it is much more
efficient to implement an OIE system.

2.4 Capability and Limitations

Besides the type of facts defined in the three
popular tasks, one can extract more types of facts
from OIA graphs. For example, since OIA graphs
are naturally hierarchical, one can easily extract
the nested facts, which can implement the target
task of NestIE (Bhutani et al., 2016). One can
also extract logical relationships between facts
since OIA identifies the logical predicate nodes.

We believe OIA can act as a general platform
for various OIE tasks and provide better facts for
downstream tasks based on OIE (Ding et al., 2019;
Zhang et al., 2020).

However, the current version of the OIE@OIA
pipeline does not separate the compound noun
phrase, making it unable to extract nominal
relationships between different nominals within
a compound noun phrase (Yahya et al., 2014). This
is because current OIA graphs are phrase-level
graphs and take noun phrases as single nodes. As
an example, “the president of America" will form
a single node in our OIA graph, and it is not able
to identify the relationship between “the president"
and “America" based on the graph. We left this
problem as one of our future work.

3 Learning the OIA Graphs

Converting a sentence into the OIA graph is the
central operation of the OIE@OIA framework. We
build an OIA dataset using active-learning-powered
human labeling to implement such an operation.
Then, we learn equivalent variants of the OIA
graphs – Word-OIA graphs and convert them back
to OIA-graphs, which overcomes the difficulty of
learning the structures of the OIA graphs.

3.1 Dataset

We annotated sentences of English-EWT (version
2.4) for OIA. The annotation mainly follows the
OIA graph definition given by Sun et al. (2020)
but with some confusing or special cases being
clarified. In addition, we introduce more detailed
type information for the node. The obtained
dataset contains 12,543 training samples, 2,002
development samples, and 2,077 testing samples.
Each sample is a sentence-graph pair. On average,
a graph has 7.74 nodes and 6.95 edges, and a
node comprises 1.98 words. We make the updated

6216

annotation standard and dataset open available 3.

Auxiliary Annotation System. To improve data
annotation efficiency, we generate an initial OIA
graph for each input sentence using the existing
rule-based OIA system (Sun et al., 2020). For
node types initialization, we align the phrases with
the POS tags in English-EWT v2.4 and assign
heuristic types based on the POS tags of the head
words. Then we develop an annotation tool for the
annotator to modify the adapted graphs with ease.

Active Learning. The samples in the dev set
and test set are all human-labeled. For the
training set, we first randomly labeled 2,000
samples, then trained a model using the proposed
learning method (described in § 3.4) and started
the active-learning procedure. The data labeling
order of unlabeled samples was determined by the
difference between the rule-generated results and
the predicted results. We labeled 200 samples
in each active learning iteration and stopped the
iteration when the performance of the trained did
not improve on the dev set. As a result, we
manually annotated about 74% of the training data
and treated the rule-generated results as the true
labels of the rest 26% training data.

Quality Control. The data annotation was done by
three postgraduate/doctoral students of linguistics.
Two annotators first label each sample. If there is a
disagreement, the third annotator will be involved
for discussion and voting. The initial agreement
ratio between the two annotators is about 80%, and
the final agreement ratio after the discussion (no
vote needed) is higher than 93%. The annotation
of the rest 7% data is obtained by voting.

3.2 Complexity in Learning the OIA Graphs

The node of OIA graphs consists of a sequence of
symbols, placeholders, and words. We call such a
graph Generalized Phrase Graph (GGPG = (P, S),
where P is the set of generalized nodes and S
is the edge set). Directly learning the graph is
difficult due to the very large decision space caused
by the complexity of OIA nodes. The decision
space is large even in the simplest situation that
each node consists of consecutive words (a span
in the sentence without any symbol or placeholder
outside the sentence). Since the target number of
nodes is unknown, the number of candidate node

3https://github.com/sunbelbd/
Open-Information-eXpression

sets to be considered is exponential to the number
of words in the sentence. Due to this large decision
space, it is very difficult to learn a good candidate
set of nodes for OIA graphs as the first step task in a
stage-wise approach. If one prefers the end-to-end
approach to reduce the error propagation between
tasks in each stage by jointly leaning the nodes and
edges, the decision space will be even much larger.

3.3 Equivalence between OIA and
Word-OIA

Fortunately, we have the following proposition
connecting the Generalized Phrase Graph with
Word Graph, where Word Graph is a graph with
each graph node corresponding to one and only one
word of the sentence:

Proposition. For any Generalized Phrase Graph
GGPG = (P, S), there is a one-to-one correspond-
ing Word Graph GW = (W, S′) in the sense that
GGPG and GW can convert to each other without
loss of information, where the labels of S′ are
independent to word nodes W.

Proof. We split each generalized phrase node into a
chain of nodes of symbols, placeholders, or words,
connected in order with the edge next, and connect
all the edges from parents/children to the first node
of the chain. In this new graph, each word is a
single node. We replace each type of path between
two words (or the virtual root) containing only
symbols/placeholders into a single edge with a
correspondingly designed edge label and remove
the original path. The resulting graph is a valid
word graph.

A constructive procedure to convert a General
Phrase Graph into the Word Graph is shown in
Appendix A. The OIA graphs are special cases of
GPG, and the properties of the OIA graphs can
make the procedure much simpler. We discuss
these details in Appendix B.

With the above procedure, we can convert a
complex OIA graph into an equivalent simple
Word-OIA graph (as shown in Figure 3), which is
a single-rooted DAG where each node is a word in
the original sentence. Each node in the Word-OIA
graph has one category attribute type (by sharing
the type of OIA node it belongs to) and two boolean
attributes arg_whether and missing_be (described
in Appendix B).

With this conversion, the learning of the OIA
graph is equivalently converted into the learning

6217

https://github.com/sunbelbd/Open-Information-eXpression
https://github.com/sunbelbd/Open-Information-eXpression

Parataxis

Parataxis

perd.arg.1

(be) not sure

pred.arg.2

dependens

pred.arg.1

do n't know

pred.arg.2

It

pred.arg.1

I

pred.arg.1

(a) The OIA graph for the sentence A.

not

missing_be=True
sure

next_word

dependents

upper_parataxis

do
parataxis

It

pred.arg.1

n't
next_word

I

pred.arg.1

know
next_word

(b) The Word-OIA graph for the sentence A.

{1} {2} , {3} and {4}

red

perd.arg.1

black

pred.arg.2

yellow

pred.arg.3

blue

pred.arg.4

(c) The OIA graph for the sentence B.

, and
next_word

black

prev_arg

yellow

prev_arg

blue

post_arg

red
prev_arg

(d) The Word-OIA graph for the sentence B.

Figure 3: The illustration of the equivalence between the OIA graphs and the Word-OIA graphs. The example
sentences are: A: "It depends, I don’t know. not sure."; B: "red black, yellow and blue".

of the Word OIA graph. The node number of the
Word-OIA graph is fixed N , so we only need to
learn the possible N(N − 1) edges, and thus the
learning complexity is significantly reduced.

3.4 Learning the Word-OIA Graphs

The structure of the Word-OIA graph is similar
to that of the dependency graph so that the
semantic dependency graph learning procedure can
be applied to the learning of the Word-OIA graph.
We build our learning procedure based on pre-
trained BERT models (Devlin et al., 2019). Given
a sentence S = [w1, · · · , wN], we generate the
representation ri of each word by:

R = BERT(S),

where R = [r1, · · · , rN]. Then we learn the
properties of nodes and the graph structures using
these representations.

Node Attribute Learning. For node attribute
prediction, we build a one-layer MLP classifier
above ri to learn each attribute ak for word wi:

p
(node)
ki = p(ak|wi) = Softmax(MLP

(node)
k (ri)).

The loss of node attribute prediction is defined as:

Lnode =
1

N

∑
k

∑
i

`CE

(
p
(node)
ki , y

(node)
ki

)
,

where y(node)ki denotes the target attribute value of
the corresponding node of wi and `CE denotes the
cross-entropy loss function.

Edge Learning. Following the protocol of Dozat
and Manning (2018), we divide the structure
learning into two steps: given two nodes, we firstly
determine if there is an edge between them; if so,
we then determine the type of the edge. It avoids
introducing an empty edge type in the second step,
which will overwhelm the other edge types. For
the two-step learning, we use the biaffine-based
graph learning approach (Dozat and Manning,
2017, 2018). In the first step, for two words wi

and wj , we learn the representations of each word
as the start and end node of an edge:

h
(es)
i = MLP(es)(ri),h

(ee)
i = MLP(ee)(ri).

where esmeans "as the start of the edge", eemeans
"as the end of the edge". The probability of there

6218

being an edge eij between wi and wj is:

s
(edge)
ij = Biaff (edge)(h

(es)
i ,h

(ee)
j),

p
(edge)
ij = σ

(
MLP(edge)(s

(edge)
ij)

)
.

Here, the i-th dimension of Biaff(x1,x2) is:

x>1 Uix2 + w>i (x1 ⊕ x2) + bi,

where Ui, wi, bi denotes a trainable matrix, vector,
and scalar, respectively. ⊕ is the concatenation
operator. The corresponding graph topology loss
on S is defined as follows:

Ltopo =
1

N2

∑
ij

`CE

(
p
(edge)
ij , y

(edge)
ij

)
.

Then we learn the label of each edge. We learn the
representations of start-node and end-node of an
edge by:

h
(ls)
i = MLP(ls)(ri), h

(le)
j = MLP(le)(rj).

The probability of the label lij is:

s
(label)
ij = Biaff (label)(h

(ls)
i ,h

(le)
j),

p
(label)
ij = Softmax

(
MLP(label)(s

(label)
ij)

)
,

and the edge prediction loss on S is defined as:

Llabel =

∑
ij I(y

(edge)
ij = 1)`CE

(
p
(label)
ij , y

(label)
ij

)
∑

ij I(y
(edge)
ij = 1)

,

where I(·) is the indicator function.

Multi-Task Learning. We learn the Word-OIA
graph in a multi-task style, that is, optimize a linear
combination of the losses:

L = αLtopo + βLlabel + (1− α− β)Lnode.

In the inference phase, we accomplish the
following steps to generate the Word-OIA graph:

Node Attribute Prediction. For each node wi, its
type ti is predicted by:

ŷki = argmaxp
(node)
ki .

Edge Prediction. Edge and label between wi and
wj are predicted by:

êij = p
(edge)
ij > 0.5,

l̂ij = êij · argmaxp
(label)
ij .

However, because the label prediction may be
incorrect, constructing the graph using the above
predictions may result in an invalid graph (dis-
connected graph, edge conflicted, etc.). So in
practice, we develop a greedy search strategy to
construct the graph step-by-step while maintaining
the validness of the graph all the time. First, we
select the edge with the highest value of p

(label)
ij

for all edges with p
(edge)
ij > 0.5. Then, we identify

conflicted edges with the selected edges and set
their corresponding values in p

(label)
ij to zero. The

above process iterates several times until all edge
types are set. In addition, the resulting graph may
consist of several disconnected sub-graphs. In this
case, we iteratively select the edge with the highest
p
(label)
ij to connect it to the sub-graph to which

the predicted root belongs. It guarantees that the
generated Word-OIA graph is valid.

3.5 Recover OIA from Word-OIA

For a predicted Word-OIA graph, we reverse the
OIA to the Word-OIA procedure to obtain the
OIA graph. Specifically, we first collect nodes in
Word-OIA graph chained by next_word and related
arcs (prev_arg, pos_arg) to form the nodes in OIA
graph. Then we identify the special structure such
as edge upper_parataxis and add special node like
Parataxis and Missing to OIA graph. We add
(be) to the node span if missing_be is true. The
Whether node is added as the parent of current
node if arg_whether is true. Last, we connect the
nodes using the learned arc labels in Word-OIA.
The type of the phrase node in the OIA graph is set
as the majority type of its constituted words in the
corresponding Word-OIA graph.

4 Experiment I: OIA Learning

The experiment is conducted on the PaddlePaddle
deep learning platform4, and the pre-trained BERT
model is provided by the PaddleNLP project5.
Following Che et al. (2020), the hidden size of
MLP(edge) and MLP(label) is set to 500 and 100,
respectively. The hidden sizes of MLPs used in
node attribute predictions are set to 500. The model
is trained with the classifier’s dropout rate being set
to 0.1 and Adam optimizer with a learning rate of
10−5. α and β in loss function are searched using

4https://www.paddlepaddle.org.cn
5https://github.com/PaddlePaddle/

PaddleNLP

6219

https://www.paddlepaddle.org.cn
https://github.com/PaddlePaddle/PaddleNLP
https://github.com/PaddlePaddle/PaddleNLP

Level Metric Performance

Node
type Acc 0.951
arg_whether Acc 0.998
missing_be Acc 0.998
Edge P/R 0.847 / 0.851
Graph Acc 0.528

Table 4: Performance of Word-OIA prediction, where
P/R means Precision/Recall, Acc means Accuracy.

grid search on dev set and set to 0.2 and 0.4,
respectively.

Evaluation Metric. In this experiment, the eval-
uation metrics for all measurements are based on
exact match, that is, score 1 if exactly the same,
otherwise 0. For nodes, we compare their node
expressions. For a Word-OIA node, the node
expression is the word index in the sentence; for
an OIA node, the node expression is the phrase
based on the word indexes it contains. For edges,
we compare the triplets of <start_node_expression,
edge_label, end_node_expression>. For graphs,
we test whether the two graphs’ node sets and edge
sets are exactly the same.

4.1 Performance on Word-OIA
The node precision and recall of Word-OIA are
always 1.0 since the nodes correspond to the words
in the sentence. The performance of node attribute
prediction is illustrated by the upper part of Table 4.
The precision/recall of edge prediction is shown
in the middle part of Table 4. We also report
the accuracy of graph structure in the last part of
Table 4.

4.2 Performance on OIA
We report the performances of the nodes, edges,
and the whole graph structure of the recovered OIA
graphs in the lower half of the Table 5. Note that
the graph-structure accuracy of the OIA graph is
slightly lower than that of the Word-OIA graph. It
is because the graph structure of the OIA graph
is related to the node attributes arg_whether and
missing_be. Since there are tiny proportions of bad
cases in predicting these two attributes, the graph-
structure accuracy of the OIA graph is lower.

As a comparison, we report the performances
of the rule baseline (Sun et al., 2020) in upper
part of Table 5. We can see that the proposed
method achieves significant improvement over the
rule baseline, e.g., improving the graph structure

Generator Level Metric Performance
Rule Node P/R 0.796 / 0.855
Rule Edge P/R 0.530 / 0.585
Rule Graph Acc 0.373
Neural Node P/R 0.893 / 0.877
Neural Edge P/R 0.709 / 0.688
Neural Graph Acc 0.525

Table 5: Performance of OIA graph prediction.

accuracy by 15.2%. We believe the learning-
based approach solves several problems in the rule-
based approach: 1) limitation of expressiveness of
Universal Dependency, 2) mistakes in Universal
Dependency and Enhanced++ (Schuster and
Manning, 2016) parsers, and 3) failure of rules
to cover the complex combination of situations.

We also evaluate the accuracy of the node type
of the recovered OIA graphs. Among the 89.3%
correctly identified nodes, 96.4% of them are
labeled with the correct node types by the voting
of nodes in the Word-OIA graphs.

4.3 Error Analysis

We reviewed the error cases to find the limitations
in the graph generation process. We find several
common issues that lead to incorrect graphs.

Long Tail Words and Edges. About 33% errors
are caused by the long tail words and edge labels.
The out-of-vocabulary words lead to problematical
word representations. Rarely used edge labels (e.g.,
discourse) tend to be predicted as other frequent
edge labels.

Granularity Issue. The granularity or boundary
of the node may be controversial in prediction
results. For example, the phrase ‘turn out to be’
can be a predicate, but it also makes sense that
‘turn out’ and ‘to be’ form a nested relation. Such
granularity issues cause about 25% errors in both
predicate node and constant node. Mining idioms
can further clarify the boundary of expression with
refined strategy. This belongs to our future work.

Ambiguous Modification. A prepositional phrase
can be used to modify either a noun or a verb in
its context. This ambiguity leads to about 17% of
graph-level errors. For example, in sentence I love
all the roles in this play, prepositional phrase in
this play is the modifier of all the roles. Thus, they
should be in the same noun node of the ground-
truth OIA graph. However, in the predicted graph,

6220

Systems OIE2016 Re-OIE2016 CaRB
AUC F1 AUC F1 AUC F1

R
ul

e
B

as
ed

Stanford (Angeli et al., 2015) 7.9 13.6 11.5 16.7 13.4 23.0
OLLIE (Mausam et al., 2012) 20.2 38.6 31.3 49.5 22.4 41.1
NestIE (Bhutani et al., 2016) 37.7 43.8 32.1 42.2 19.4 31.1
PropS (Stanovsky and Dagan, 2016) 32.0 54.4 43.3 64.2 12.6 31.9
MinIE (Gashteovski et al., 2017) 35.0 41.0 45.5 47.8 28.1 41.3
ClausIE (Corro and Gemulla, 2013) 36.4 58.0 46.4 64.2 22.4 44.9
OIE@RuleOIA 37.3 54.6 63.3 75.0 32.4 45.6

L
ea

rn
in

g
B

as
ed OpenIE4 (Christensen et al., 2011) 40.8 58.8 50.9 68.3 27.2 48.8

BIO (Zhan and Zhao, 2020) 46.2 68.6 71.9 80.3 27.7 46.6
SpanOIE (Zhan and Zhao, 2020) 48.9 68.7 65.8 77.0 30.0 49.4
BiLSTM + BERT (Ro et al., 2020) - - 72.1 81.3 30.6 50.6
Multi2OIE (BERT) (Ro et al., 2020) - - 74.6 83.9 32.6 52.3
OIE@OIA (BERT) 54.3 71.6 76.9 85.3 33.9 51.1

Table 6: OIE performance on OIE2016, Re-OIE2016 and CaRB. Note that BiLSTM+BERT and Multi2OIE Ro
et al. (2020) use OIE2016 as validation set, so the performances are not listed.

in this play may become the sub-tree of verb love. It
is a common error in parsing tasks that a model may
incorrectly choose the headword for a modifier. We
believe better language modeling will ameliorate
this problem.

5 Experiment II: OIE@OIA

We further evaluate the applicability of OIA as an
intermediate layer between language and OIE, i.e.,
OIE@OIA, on three tasks: OIE2016, Re-OIE2016,
CaRB. We compared OIE@OIA with six rule-
based systems and five learning-based systems.

Evaluation Metric. The performances of baseline
systems on OIE2016 are from Zhan and Zhao
(2020) while that on Re-OIE2016 and CaRB are
from Ro et al. (2020), except that NestIE (Bhutani
et al., 2016) is implemented using the code from
the author. We evaluate the extraction results of
the proposed methods, OIE based on rule OIA and
NestIE with metric AUC and optimal F1 following
the setting of the released codes6.

The performance of our OIE@OIA system is
shown in Table 6. We observe that OIE@OIA
achieves better performance than most exist-
ing baselines, including learning-based methods
trained on millions of samples. This result justifies
the effectiveness of OIE@OIA for OIE.

We think the reason for this phenomenon is
three-fold: Firstly, compared with the annotation
of OIA, the annotation of a single OIE task is

6www.github.com/zhanjunlang/Span_OIE,
and www.github.com/youngbin-ro/Multi2OIE

sparse. Given a sentence, it will only annotate
phrases with interesting relationships. For the other
phrases and relationships, it will not annotate. In
contrast, in OIA, all the phrases and relationships
will be annotated. So based on a single sample,
the annotation in OIA is much more informative
than that in any single OIE task. Secondly, if
treating the recognition of a type of facts as a task,
learning of OIA can be seen as a multi-task learning
scenario, and different tasks can augment each
other. Thirdly, OIA is designed as an intermediate
layer between language and OIE. Thus, during
the standard design of OIA, it has considered the
compatibility between OIA and OIE, which makes
it easier to adapt OIA to different OIE tasks.

6 Conclusion

We introduce an adaptable and efficient Open
Information Extract system called OIE@OIA. To
implement OIE@OIA, we annotate and release
an OIA dataset containing about 16K sentences,
design an efficient learning algorithm, and build
an easy-to-implement rule system to adapt OIA
graphs to different OIE tasks. Empirical studies on
three popular OIE tasks show that our OIE@OIA
system can achieve new SOTA performances on
these tasks, using only 12K training sentences.
It verifies the great advantage of our system in
both effectiveness and efficiency over the previous
learning-based baselines, which usually require
millions of training samples to achieve comparable
performance.

6221

www.github.com/zhanjunlang/Span_OIE
www.github.com/youngbin-ro/Multi2OIE

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and

Christopher D Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 344–354, Beijing, China.

Michele Banko, Michael J. Cafarella, Stephen Soder-
land, Matthew Broadhead, and Oren Etzioni. 2007.
Open information extraction from the web. In Pro-
ceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI), pages 2670–2676,
Hyderabad, India.

Sangnie Bhardwaj, Samarth Aggarwal, and Mausam.
2019. CaRB: A crowdsourced benchmark for open
IE. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 6261–6266, Hong Kong, China.

Nikita Bhutani, H. V. Jagadish, and Dragomir R. Radev.
2016. Nested propositions in open information ex-
traction. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 55–64, Austin, TX.

Wanxiang Che, Yunlong Feng, Libo Qin, and Ting Liu.
2020. N-LTP: A open-source neural chinese lan-
guage technology platform with pretrained models.
arXiv preprint arXiv:2009.11616.

Janara Christensen, Mausam, Stephen Soderland, and
Oren Etzioni. 2011. An analysis of open infor-
mation extraction based on semantic role labeling.
In Proceedings of the 6th International Conference
on Knowledge Capture (K-CAP), pages 113–120,
Banff, Alberta, Canada.

Luciano Del Corro and Rainer Gemulla. 2013.
ClausIE: clause-based open information extraction.
In Proceedings of the 22nd International World Wide
Web Conference (WWW), pages 355–366, Rio de
Janeiro, Brazil.

Lei Cui, Furu Wei, and Ming Zhou. 2018. Neural
open information extraction. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers), pages 407–413.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 4171–
4186, Minneapolis, MN.

Xiao Ding, Zhongyang Li, Ting Liu, and Kuo Liao.
2019. ELG: an event logic graph. arXiv preprint
arXiv:1907.08015.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency
parsing. In Proceedings of the 5th International
Conference on Learning Representations (ICLR),
Toulon, France.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics
(ACL), pages 484–490, Melbourne, Australia.

Oren Etzioni, Michael J. Cafarella, Doug Downey,
Stanley Kok, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S. Weld, and Alexander
Yates. 2004. Web-scale information extraction in
knowitall: (preliminary results). In Proceedings
of the 13th international conference on World Wide
Web (WWW), pages 100–110, New York, NY.

Kiril Gashteovski, Rainer Gemulla, and Luciano Del
Corro. 2017. MinIE: Minimizing facts in open
information extraction. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2630–2640,
Copenhagen, Denmark.

Keshav Kolluru, Samarth Aggarwal, Vipul Rathore,
Mausam, and Soumen Chakrabarti. 2020. IMoJIE:
Iterative memory-based joint open information ex-
traction. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics
(ACL), pages 5871–5886, Online.

Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun,
and Ping Li. 2020. Extracting knowledge from web
text with monte carlo tree search. In Proceedings
of the Web Conference (WWW), pages 2585–2591,
Taipei.

Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. 2012. Open language
learning for information extraction. In Proceed-
ings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 523–534, Jeju Island, Korea. ACL.

Harinder Pal and Mausam. 2016. Demonyms and
compound relational nouns in nominal open IE. In
Proceedings of the 5th Workshop on Automated
Knowledge Base Construction (AKBC@NAACL-
HLT), pages 35–39, San Diego, CA.

Youngbin Ro, Yukyung Lee, and Pilsung Kang.
2020. Multi2OIE: Multilingual open information
extraction based on multi-head attention with BERT.
In Findings of the Association for Computational
Linguistics (EMNLP Findings), pages 1107–1117,
Online Event.

6222

Arpita Roy, Youngja Park, Taesung Lee, and Shimei
Pan. 2019. Supervising unsupervised open infor-
mation extraction models. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 728–737, Hong Kong,
China.

Swarnadeep Saha, Harinder Pal, and Mausam. 2017.
Bootstrapping for numerical open IE. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 317–
323, Vancouver, Canada.

Sebastian Schuster and Christopher D. Manning.
2016. Enhanced english universal dependencies:
An improved representation for natural language
understanding tasks. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC), Portorož, Slovenia.

Gabriel Stanovsky and Ido Dagan. 2016. Creating a
large benchmark for open information extraction. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2300–2305, Austin, TX.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,
and Ido Dagan. 2018. Supervised open information
extraction. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pages 885–895, New
Orleans, LA.

Mingming Sun, Wenyue Hua, Zoey Liu, Xin Wang,
Kangjie Zheng, and Ping Li. 2020. A Predicate-
Function-Argument Annotation of Natural Lan-
guage for Open-Domain Information eXpression. In

Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2140–2150, Online.

Mingming Sun, Xu Li, and Ping Li. 2018a. Logician
and orator: Learning from the duality between
language and knowledge in open domain. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2119–2130, Brussels, Belgium.

Mingming Sun, Xu Li, Xin Wang, Miao Fan, Yue Feng,
and Ping Li. 2018b. Logician: A unified end-to-
end neural approach for open-domain information
extraction. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data
Mining (WSDM), pages 556–564, Marina Del Rey,
CA.

Mohamed Yahya, Steven Whang, Rahul Gupta, and
Alon Y. Halevy. 2014. Renoun: Fact extraction
for nominal attributes. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 325–335,
Doha, Qatar.

Junlang Zhan and Hai Zhao. 2020. Span model for
open information extraction on accurate corpus. In
Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence (AAAI), pages 9523–9530,
New York, NY.

Jingyuan Zhang, Mingming Sun, Yue Feng, and
Ping Li. 2020. Learning interpretable relationships
between entities, relations and concepts via bayesian
structure learning on open domain facts. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 8045–8056, Online.

6223

A Convert Generalized Phrase Graph to
Word Graph

We will limit our discussion to a well-formed GPG.
First, we assume the relational symbols are not
neighbors to each other. That is, they do not form
any not continuous sequence. Second, we assume
that the relational symbols either appear lonely
as a node or connecting/separating two words or
placeholders. That is, relational symbols do not
appear as prefixes or suffixes in a node. Last, we
assume that placeholders must appear together with
elements or relational symbols in a node. Since the
relational symbols are designed to express relations
between nodes, elements, and placeholders, we
believe the above constraints are reasonable. OIA
graphs naturally satisfy these constraints.

If a graph does not satisfy these constraints, pre-
processing can be applied to adapt the graph to
meet the constraints. If a continuous sequence of
relation symbols exists in the graph, one can merge
them into one new relational symbol. If some nodes
have prefix/suffix symbols, one can add a boolean
attribute to the node indicating that this node has
a prefix/suffix symbol. If a node is a sequence
of placeholders, one can design a new relational
symbol to replace the sequence of placeholders.

Given a well-formed GPG, we can apply
Algorithm 1 to convert it to a Word Graph. The
sub-procedures used in the algorithm are shown in
Algorithm 2. In these procedures, [x] means the
label of x, where x can be a node or an edge.

B Specialization for the OIA Graph

OIA graphs have the following properties/internal
constraints. We use them to simplify the label
system for Word-OIA.

• Lonely Relational Symbols In OIA, there are
only two Relational Symbols: Parataxis and
Missing. They can only form a node lonely
with themselves, which reduce some possible
combined edge labels;

• Ordered Predicate-Argument Labels In OIA,
the predicates connect their arguments with a
unified form of edge label pred.arg.n, where
n denote the order of the argument. When
processing the Parataxis, these arguments are
chained by label "parataxis", and the n is omitted
since the order is naturally embedded in the
chain;

• Relational Symbols Nested Up to Two Layers
Nested Relational symbol is the most complex
situation for GPG. In OIA, only one symbol
Parataxis can be nested. From the annotated
dataset, we observe that the length of the nested
path of Parataxis is 2. For this simple situation,
after processing the child Parataxis nodes, we
link the children with edges upper_parataxis,
peer_parataxis, or lower_parataxis, according
to their depth compared to the depth of the first
child. Actually, only upper_parataxis is needed
in our annotated dataset.

Beyond the above processing, we analyze the
label system, remove unnecessary prefixes/suffixes,
merge labels, and rename labels for better readabil-
ity. These steps build a simple edge label system
of Word-OIA graphs by introducing few new edge
labels.

Besides the label system, when converting the
OIA graphs into Word-OIA graphs, we introduce
the following node attributes for each node/word
to preserve the information of the original OIA
graphs:

• type: Share the type of the origin OIA node
which contains this word;

• arg_whether: Boolean attribute that indicate
whether the original OIA node is an argument
of the Whether function;

• missing_be: Boolean attribute that indicate
whether the original OIA node is a predicate
that misses the be word.

6224

Algorithm 1: Converting General Phrase Graph to Word-Graph
Data: An input G
Result: y = xn

Add a virtual root node to G and connect it to the original root with edge root;;
while visiting node n over a depth first back-track traversal G do

switch n do
case a single element or is virtual root do

continue
end
case a sequence of elements (no symbol) do

Split the sequence into a sequence of a new node with each contains one element, and
then connect them in order with edge next_elem;

Replace n with the first node in the sequence;
end
case n is a mixed sequence of placeholders, relational symbols, and elements do

1 Make a new node for each element;
2 Connect nodes of continuous or placeholder-separated elements with edge next_elem;
3 foreach continuous sequences of placeholders and corresponding edges and children

[(pi, ei, ci)]
k
i=1 do ProcessPlaceholderSequence([(pi, ei, ci)]ki=1);

4 foreach relational symbol s do BuildRelationalSymbolBridge(s);
5 if element exists in n then
6 foreach placeholder p do BridgePlaceholderAndElement(p);

else
/* Currently, n only has one child corresponding to

first placeholder */
7 Get the only child c with edge e;
8 Find all parents of n as {mi} with edges {ei};
9 foreach mi, ei do Connect mi to c with edge [ei]_sub_arg_[e] ;

end
end
case n is a relational symbol node do

ProcessSymbolNode(n)
end

end
end

6225

Algorithm 2: Sub-Procedures

Procedure ProcessPlaceholderSequence([(pi, ei, ci)]ki=1)
12 Merge [pi]

k
i=1 into one placeholder p, set e1, c1 be the corresponding edge and child of p;

3 foreach i > 1 do Remove ei, connect ci − 1 to ci with edge next_[pi]_[ei];
Procedure BuildRelationalSymbolBridge(s)

1 Identify the corresponding edge and node of the previous item as ep, np and that of the next
item as en, nn;

2 if np is a placeholder and nn is an element then
3 Connect nn to np with edge label prev_arg_[s]_[ep], remove ep;
4 else if np is an element and nn is a placeholder then
5 Connect np to nn with edge label next_arg_[s]_[en], remove en;
6 else
7 Connect np to nn with edge label [s]_[en], remove en;

end
Procedure BridgePlaceholderAndElement(p)

1 Find the corresponding edge and node of p as ep and np;
2 if no correspondings found then return;
3 if The nearest previous element ne exist then
4 Connect np to ne with edge next_arg_[ep]

else
5 Find the nearest next element ne, connect np to ne with edge prev_arg_[ep]

end
Procedure ProcessSymbolNode(n)

1 Get the children set C = {cj}kj=1 of n and the corresponding edge set {ej}kj=1;
if |C| = 1 then

Connect parents of n with the only child c1 with label [n]; Remove n;
else

2 Compute l = max(L[c] for c in C) + 1;
3 Connect cj−1 to cj , j > 1 with edge [n]_l_[ej]; Remove ej , j > 1;
4 Add suffix _[n]_l_[e1] to all parent edge labels of n;
5 Replace n with c1, preserving all edge connection;

end

6226

