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Abstract

Recently, contrastive learning has been shown
to be effective in improving pre-trained lan-
guage models (PLM) to derive high-quality
sentence representations. It aims to pull close
positive examples to enhance the alignment
while push apart irrelevant negatives for the
uniformity of the whole representation space.
However, previous works mostly adopt in-batch
negatives or sample from training data at ran-
dom. Such a way may cause the sampling
bias that improper negatives (e.g., false neg-
atives and anisotropy representations) are used
to learn sentence representations, which will
hurt the uniformity of the representation space.
To address it, we present a new framework
DCLR (Debiased Contrastive Learning of un-
supervised sentence Representations) to allevi-
ate the influence of these improper negatives.
In DCLR, we design an instance weighting
method to punish false negatives and gener-
ate noise-based negatives to guarantee the uni-
formity of the representation space. Exper-
iments on seven semantic textual similarity
tasks show that our approach is more effec-
tive than competitive baselines. Our code and
data are publicly available at the link: https:
//github.com/RUCAIBox/DCLR.

1 Introduction

As a fundamental task in the natural language pro-
cessing (NLP) field, unsupervised sentence repre-
sentation learning (Kiros et al., 2015; Hill et al.,
2016) aims to derive high-quality sentence rep-
resentations that can benefit various downstream
tasks, especially for low-resourced domains or com-
putationally expensive tasks, e.g., zero-shot text se-
mantic matching (Qiao et al., 2016), large-scale se-
mantic similarity comparison (Agirre et al., 2015),
and document retrieval (Le and Mikolov, 2014).

Recently, pre-trained language models (PLMs)
(Devlin et al., 2019) have become a widely-used se-

†† Corresponding author

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.00

10

20

30

40

50 Input: They are mostly migrants and are involved in 
fishing and cultivation for their livelihood

Figure 1: The distribution of cosine similarity between
an input sentence and 255 in-batch negatives from the
commonly-used Wikipedia Corpus. It is evaluated by
the SimCSE model (Gao et al., 2021). Almost half of
the negatives have high similarities with the input.

mantic representation approach, achieving remark-
able performance on various NLP tasks. However,
several studies have found that the native sentence
representations derived by PLMs are not uniformly
distributed with respect to directions, but instead oc-
cupy a narrow cone in the vector space (Ethayarajh,
2019), which largely limits their expressiveness. To
address this issue, contrastive learning (Chen et al.,
2020) has been adopted to refine PLM-derived sen-
tence representations. It pulls semantically-close
neighbors together to improve the alignment, while
pushes apart non-neighbors for the uniformity of
the whole representation space. In the learning
process, both positive and negative examples are
involved in contrast with the original sentence. For
positive examples, previous works apply data aug-
mentation strategies (Yan et al., 2021) on the origi-
nal sentence to generate highly similar variations.
While, negative examples are commonly sampled
from the batch or training data (e.g., in-batch nega-
tives (Gao et al., 2021)) at random, due to the lack
of ground-truth annotations for negatives.

Although such a negative sampling way is sim-
ple and convenient, it may cause sampling bias and
affect the sentence representation learning. First,
the sampled negatives are likely to be false neg-
atives that are indeed semantically close to the
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original sentence. As shown in Figure 1, given
an input sentence, about half of in-batch negatives
have a cosine similarity above 0.7 with the original
sentence based on the SimCSE model (Gao et al.,
2021). It is likely to hurt the semantics of the sen-
tence representations by simply pushing apart these
sampled negatives. Second, due to the anisotropy
problem (Ethayarajh, 2019), the representations of
sampled negatives are from the narrow represen-
tation cone spanned by PLMs, which cannot fully
reflect the overall semantics of the representation
space. Hence, it is sub-optimal to only rely on
these representations for learning the uniformity
objective of sentence representations.

To address the above issues, we aim to develop
a better contrastive learning approach with debi-
ased negative sampling strategies.The core idea is
to improve the random negative sampling strategy
for alleviating the sampling bias problem. First,
in our framework, we design an instance weight-
ing method to punish the sampled false negatives
during training. We incorporate a complemen-
tary model to evaluate the similarity between each
negative and the original sentence, then assign
lower weights for negatives with higher similarity
scores. In this way, we can detect semantically-
close false negatives and further reduce their influ-
ence. Second, we randomly initialize new nega-
tives based on random Gaussian noises to simulate
sampling within the whole semantic space, and
devise a gradient-based algorithm to optimize the
noise-based negatives towards the most nonuni-
form points. By learning to contrast with the
nonuniform noise-based negatives, we can extend
the occupied space of sentence representations and
improve the uniformity of the representation space.

To this end, we propose DCLR, a general frame-
work towards Debiased Contrastive Learning of
unsupervised sentence Representations. In our
approach, we first initialize the noise-based neg-
atives from a Gaussian distribution, and leverage a
gradient-based algorithm to update the new nega-
tives by considering the uniformity of the represen-
tation space. Then, we adopt the complementary
model to produce the weights for these noise-based
negatives and randomly sampled negatives, where
the false negatives will be punished. Finally, we
augment the positive examples via dropout (Gao
et al., 2021) and combine them with the above
weighted negatives for contrastive learning. We
demonstrate that our DCLR outperforms a number

of competitive baselines on seven semantic textual
similarity (STS) tasks using BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019).

Our contributions are summarized as follows:
(1) To our knowledge, our approach is the first

attempt to reduce the sampling bias in contrastive
learning of unsupervised sentence representations.

(2) We propose DCLR, a debiased contrastive
learning framework that incorporates an instance
weighting method to punish false negatives and
generates noise-based negatives to guarantee the
uniformity of the representation space.

(3) Experimental results on seven semantic tex-
tual similarity tasks show the effectiveness of our
framework.

2 Related Work

In this section, we review the related work from the
following three aspects.

Sentence Representation Learning. Learning uni-
versal sentence representations (Kiros et al., 2015;
Hill et al., 2016) is the key to the success of various
downstream tasks. Previous works can be roughly
categorized into supervised (Conneau et al., 2017;
Cer et al., 2018) and unsupervised approaches (Hill
et al., 2016; Li et al., 2020). Supervised approaches
rely on annotated datasets (e.g., NLI (Bowman
et al., 2015; Williams et al., 2018)) to train the
sentence encoder (Cer et al., 2018; Reimers and
Gurevych, 2019). Unsupervised approaches con-
sider deriving sentence representations without
labeled datasets, e.g., pooling word2vec embed-
dings (Mikolov et al., 2013). Recently, to lever-
age the strong potential of PLMs (Devlin et al.,
2019), several works propose to alleviate the
anisotropy problem (Ethayarajh, 2019; Li et al.,
2020) of PLMs via special strategies, e.g., flow-
based approach (Li et al., 2020) and whitening
method (Huang et al., 2021). Besides, contrastive
learning (Wu et al., 2020; Gao et al., 2021) has
been used to refine the representations of PLMs.

Contrastive Learning. Contrastive learning has
been originated in the computer vision (Hadsell
et al., 2006; He et al., 2020) and information re-
trieval (Bian et al., 2021; Zhou et al., 2022) field
with significant performance improvement. Usu-
ally, it relies on data augmentation strategies such
as random cropping and image rotation (Chen et al.,
2020; Yan et al., 2021) to produce a set of se-
mantically related positive examples for learning,
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and randomly samples negatives from the batch or
whole dataset. For sentence representation learn-
ing, contrastive learning can achieve a better bal-
ance between alignment and uniformity in semantic
representation space. Several works further adopt
back translation (Fang and Xie, 2020), token shuf-
fling (Yan et al., 2021) and dropout (Gao et al.,
2021) to augment positive examples for sentence
representation learning. However, the quality of
the randomly sampled negatives is seldom studied.

Virtual Adversarial Training. Virtual adversar-
ial training (VAT) (Miyato et al., 2019; Kurakin
et al., 2017) perturbs a given input with learnable
noises to maximize the divergence of the model’s
prediction with the original label, then utilizes
the perturbed examples to improve the generaliza-
tion (Miyato et al., 2017; Madry et al., 2018). A
class of VAT methods can be formulated into solv-
ing a min-max problem, which can be achieved
by multiple projected gradient ascent steps (Qin
et al., 2019). In the NLP field, several studies in-
corporate adversarial perturbations in the embed-
ding layer, and show its effectiveness on text clas-
sification (Miyato et al., 2017), machine transla-
tion (Sun et al., 2020), and natural language under-
standing (Jiang et al., 2020) tasks.

3 Preliminary

This work aims to make use of unlabeled cor-
pus for learning effective sentence representations
that can be directly utilized for downstream tasks,
e.g., semantic textual similarity task (Agirre et al.,
2015). Given a set of input sentences X =
{x1, x2, . . . , xn}, our goal is to learn a represen-
tation hi ∈ Rd for each sentence xi in an unsu-
pervised manner. For simplicity, we denote this
process with a parameterized function hi = f(xi).

In this work, we mainly focus on using BERT-
based PLMs (Devlin et al., 2019; Liu et al., 2019)
to generate sentence representations. Following
existing works (Li et al., 2020; Yan et al., 2021),
we fine-tune PLMs on the unlabeled corpus via our
proposed unsupervised learning approach. After
that, for each sentence xi, we encode it by the
fine-tuned PLMs and take the representation of the
[CLS] token from the last layer as its sentence
representation hi.

4 Approach

Our proposed framework DCLR focuses on re-
ducing the influence of sampling bias in the con-

trastive learning of sentence representations. In
this framework, we devise a noise-based negatives
generation strategy to reduce the bias caused by the
anisotropy PLM-derived representations, and an in-
stance weighting method to reduce the bias caused
by false negatives. Concretely, we initialize the
noise-based negatives based on a Gaussian distribu-
tion and iteratively update these negatives towards
non-uniformity maximization. Then, we utilize a
complementary model to produce weights for all
negatives (i.e., randomly sampled and the noise-
based ones). Finally, we combine the weighted
negatives and augmented positive examples for con-
trastive learning. The overview of our DCLR is
presented in Figure 2.

4.1 Generating Noise-based Negatives

We aim to generate new negatives beyond the sen-
tence representation space of PLMs during the
training process, to alleviate the sampling bias de-
rived from the anisotropy problem of PLMs (Etha-
yarajh, 2019). For each input sentence xi, we first
initialize k noise vectors from a Gaussian distribu-
tion as the negative representations:

{ĥ1, ĥ2, · · · , ĥk} ∼ N (0, σ2), (1)

where σ is the standard variance. Since these vec-
tors are randomly initialized from such a Gaussian
distribution, they are uniformly distributed within
the whole semantic space. By learning to contrast
with these new negatives, it is beneficial for the
uniformity of sentence representations.

To further improve the quality of the new neg-
atives, we consider iteratively updating the nega-
tives to capture the non-uniformity points within
the whole semantic space. Inspired by VAT (Miy-
ato et al., 2017; Zhu et al., 2020), we design a
non-uniformity loss maximization objective to pro-
duce gradients for improving these negatives. The
non-uniformity loss is denoted as the contrastive
loss between the noise-based negatives {ĥj} and
the positive representations of the original sentence
(hi, h

+
i ) as:

LU (hi, h
+
i , {ĥ}) = − log

esim(hi,h
+
i )/τu∑

ĥj∈{ĥj} e
sim(hi,ĥi)/τu

, (2)

where τu is a temperature hyper-parameter and

sim(hi, h
+
i ) is the cosine similarity h⊤

i h+
i

||hi||·||h+
i || .

Based on it, for each negative ĥj ∈ {ĥ}, we opti-

6122



“Two dogs are running.”

Positive 
Augmentation

“Two dogs are walking.”

“A kid is on a skateboard.”Randomly 
sampled 
negatives

Instance Weighting

Gaussian Distribution
Non-Uniformity 
Maximization

Noise-based Negatives
Input:

Pull Together Push Apart

NegativePositive

PLM-
Encoder

0.0

1.0 1.0 1.0

Figure 2: The overview of our DCLR framework with noise-based negatives and the instance weighting strategy.
We show the case that a false negative is punished by assigning the weight 0.

mize it by t steps gradient ascent as

ĥj = ĥj + βg(ĥj)/||g(ĥj)||2, (3)

g(ĥj) = ▽ĥj
LU (hi, h

+
i , {ĥ}), (4)

where β is the learning rate, || · ||2 is the L2-norm.
g(ĥj) denotes the gradient of ĥj by maximizing
the non-uniformity loss between the positive rep-
resentations and the noise-based negatives. In this
way, the noise-based negatives will be optimized
towards the non-uniform points of the sentence
representation space. By learning to contrast with
these negatives, the uniformity of the representa-
tion space can be further improved, which is essen-
tial for effective sentence representations.

4.2 Contrastive Learning with Instance
Weighting

In addition to the above noise-based negatives, we
also follow existing works (Yan et al., 2021; Gao
et al., 2021) that adopt other in-batch representa-
tions as negatives {h̃−}. However, as discussed
before, the sampled negatives may contain exam-
ples that have similar semantics with the positive
example (i.e., false negatives).

To alleviate this problem, we propose an instance
weighting method to punish the false negatives.
Since we cannot obtain the true labels or semantic
similarities, we utilize a complementary model to
produce the weights for each negative. In this paper,
we adopt the state-of-the-art SimCSE (Gao et al.,
2021) as the complementary model. 1 Given a
negative representation h− from {h̃−} or {ĥ} and
the representation of the original sentence hi, we
utilize the complementary model to produce the

1For convenience, we utilize SimCSE on BERT-base or
RoBERTa-base model as the complementary model.

weight as

αh− =

{
0, simC(hi, h

−) ≥ ϕ

1, simC(hi, h
−) < ϕ

(5)

where ϕ is a hyper-parameter of the instance
weighting threshold, and simC(hi, h

−) is the co-
sine similarity score evaluated by the complemen-
tary model. In this way, the negative that has
a higher semantic similarity with the representa-
tion of the original sentence will be regarded as a
false negative and will be punished by assigning
the weight 0. Based on the weights, we optimize
the sentence representations with a debiased cross-
entropy contrastive learning loss function as

L = − log
esim(hi,h

+
i )/τ∑

h−∈{ĥ}∪{h̃−} αh− × esim(hi,h−)/τ
,

(6)
where τ is a temperature hyper-parameter. In our
framework, we follow SimCSE (Gao et al., 2021)
that utilizes dropout to augment positive examples
h+i . Actually, we can utilize various positive aug-
mentation strategies, and will investigate it in Sec-
tion 6.1.

4.3 Overview and Discussion
In this part, we present the overview and discussion
of our DCLR approach.

4.3.1 Overview of DCLR
Our framework DCLR contains three major steps.
In the first step, we generate noise-based negatives
to extend in-batch negatives. Concretely, we first
initialize a set of new negatives via random Gaus-
sian noises using Eq. 1. Then, we incorporate a
gradient-based algorithm to adjust the noise-based
negatives by maximizing the non-uniform objec-
tive using Eq. 3. After several iterations, we can
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obtain the noise-based negatives that correspond to
the nonuniform points within the whole semantic
space, and we mix up them with in-batch negatives
to compose the negative set. In the second step, we
adopt a complementary model (i.e., SimCSE) to
compute the semantic similarity between the origi-
nal sentence and each example from the negative
set, and produce the weights using Eq. 5. Finally,
we augment the positive examples via dropout and
utilize the negatives with corresponding weights
for contrastive learning using Eq. 6.

4.3.2 Discussion
As mentioned above, our approach aims to re-
duce the influence of the sampling bias about
the negatives, and is agnostic to various positive
data augmentation methods (e.g., token cutoff and
dropout). Compared with traditional contrastive
learning methods (Yan et al., 2021; Gao et al.,
2021), our proposed DCLR expands the negative
set by introducing noise-based negatives {ĥ}, and
adds a weight term αh− to punish false negatives.
Since the noise-based negatives are initialized from
a Gaussian distribution and do not correspond to
real sentences, they are highly confident negatives
to broaden the representation space. By learning to
contrast with them, the learning of the contrastive
objective will not be limited by the anisotropy rep-
resentations derived from PLMs. As a result, the
sentence representations can span a broader seman-
tic space, and the uniformity of the representation
semantic space can be improved.

Besides, our instance weighting method also al-
leviates the false negative problem caused by the
randomly sampling strategy. With the help of a
complementary model, the false negatives with
similar semantics as the original sentence will be
detected and punished.

5 Experiment - Main Results

5.1 Experiment Setup
Following previous works (Kim et al., 2021; Gao
et al., 2021), we conduct experiments on seven
standard STS tasks. For all these tasks, we use
the SentEval toolkit (Conneau and Kiela, 2018) for
evaluation.

Semantic Textual Similarity Task. We eval-
uate our approach on 7 STS tasks: STS
2012–2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016), STS Benchmark (Cer et al., 2017) and
SICK-Relatedness (Marelli et al., 2014). These

datasets contain pairs of two sentences, whose sim-
ilarity scores are labeled from 0 to 5. The relevance
between gold annotations and the scores predicted
by sentence representations is measured by the
Spearman correlation. Following the suggestions
from previous works (Gao et al., 2021; Reimers
and Gurevych, 2019), we directly compute the co-
sine similarity between sentence embeddings for
all STS tasks.

Baseline Methods. We compare DCLR with com-
petitive unsupervised sentence representation learn-
ing methods, consisting of non-BERT and BERT-
based methods:

(1) GloVe (Pennington et al., 2014) averages
GloVe embeddings of words as the sentence repre-
sentation.

(2) USE (Cer et al., 2018) utilizes a Transformer
model that learns the objective of reconstructing
the surrounding sentences within a passage.

(3) CLS, Mean and First-Last AVG (Devlin
et al., 2019) adopt the [CLS] embedding, mean
pooling of token representations, average repre-
sentations of the first and last layers as sentence
representations, respectively.

(4) Flow (Li et al., 2020) applies mean pooling
on the layer representations and maps the outputs
to the Gaussian space as sentence representations.

(5) Whitening (Su et al., 2021) uses the whiten-
ing operation to refine representations and reduce
dimensionality.

(6) Contrastive (BT) (Fang and Xie, 2020) uses
contrastive learning with back-translation for data
augmentation to enhance sentence representations.

(7) ConSERT (Yan et al., 2021) explores var-
ious text augmentation strategies for contrastive
learning of sentence representations.

(8) SG-OPT (Kim et al., 2021) proposes a con-
trastive learning method with a self-guidance mech-
anism for improving the sentence embeddings of
PLMs.

(9) SimCSE (Gao et al., 2021) proposes a sim-
ple contrastive learning framework that utilizes
dropout for data augmentation.

Implementation Details. We implement our
model based on Huggingface’s transformers (Wolf
et al., 2020). For BERT-base and RoBERTa-base,
we start from the pre-trained checkpoints of their
original papers. For BERT-large and RoBERTa-
large, we utilize the checkpoints of SimCSE for sta-
bilizing the convergence process. Following Sim-
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Models STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Non-BERT GloVe (avg.)† 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
USE† 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22

BERT-base

CLS† 21.54 32.11 21.28 37.89 44.24 20.30 42.42 31.40
Mean† 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57
First-Last AVG‡. 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
+flow‡ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
+whitening‡ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
+Contrastive (BT)† 54.26 64.03 54.28 68.19 67.50 63.27 66.91 62.63
+ConSERT 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
+SG-OPT† 66.84 80.13 71.23 81.56 77.17 77.23 68.16 74.62
+SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
+DCLR (Ours) 70.81 83.73 75.11 82.56 78.44 78.31 71.59 77.22

BERT-large

CLS† 27.44 30.76 22.59 29.98 42.74 26.75 43.44 31.96
Mean† 27.67 55.79 44.49 51.67 61.88 47.00 53.85 48.91
First-Last AVG 57.73 61.17 61.18 68.07 70.25 59.59 60.34 62.62
+flow† 62.82 71.24 65.39 78.98 73.23 72.72 63.77 70.07
+whitening 64.34 74.60 69.64 74.68 75.90 72.48 60.80 70.35
+Contrastive (BT)† 52.04 62.59 54.25 71.07 66.71 63.84 66.53 62.43
+ConSERT 70.69 82.96 74.13 82.78 76.66 77.53 70.37 76.45
+SG-OPT† 67.02 79.42 70.38 81.72 76.35 76.16 70.20 74.46
+SimCSE 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
+DCLR (Ours) 71.87 84.83 77.37 84.70 79.81 79.55 74.19 78.90

RoBERTa-base

CLS† 16.67 45.57 30.36 55.08 56.98 45.41 61.89 44.57
Mean† 32.11 56.33 45.22 61.34 61.98 54.53 62.03 53.36
First-Last AVG‡ 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
+whitening‡ 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
+Contrastive (BT)† 62.34 78.60 68.65 79.31 77.49 79.93 71.97 74.04
+SG-OPT† 62.57 78.96 69.24 79.99 77.17 77.60 68.42 73.42
+SimCSE 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
+DCLR (Ours) 70.01 83.08 75.09 83.66 81.06 81.86 70.33 77.87

RoBERTa-large

CLS† 19.25 22.97 14.93 33.41 38.01 12.52 40.63 25.96
Mean† 33.63 57.22 45.67 63.00 61.18 47.07 58.38 52.31
First-Last AVG 58.91 58.62 61.44 69.05 65.23 59.38 58.84 61.64
+whitening 64.17 73.92 71.06 76.40 74.87 71.68 58.49 70.08
+Contrastive (BT)† 57.60 72.14 62.25 71.49 71.75 77.05 67.83 68.59
+SG-OPT† 64.29 76.36 68.48 80.10 76.60 78.14 67.97 73.13
+SimCSE 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
+DCLR (Ours) 73.09 84.57 76.13 85.15 81.99 82.35 71.80 79.30

Table 1: Sentence embedding performance on STS tasks (Spearman’s correlation). The best performance and the
second-best performance methods are denoted in bold and underlined fonts respectively. †: results from Kim et al.
(2021); ‡: results from Gao et al. (2021); all other results are reproduced or reevaluated by ourselves.

CSE (Gao et al., 2021), we use 1,000,000 sentences
randomly sampled from Wikipedia as the training
corpus. During training, we train our models for 3
epoch with temperature τ = 0.05 using an Adam
optimizer (Kingma and Ba, 2015). For BERT-base
and RoBERTa-base, the batch size is 128, the learn-
ing rate is 3e-5. For BERT-large and RoBERTa-
large, the batch size is 256, the learning rate is 3e-5
and 1e-5, respectively. For the four backbone mod-
els, we set the instance weighting threshold ϕ as
0.9, 0.85, 0.9 and 0.85, respectively. For each batch,
we generate k× batch_size noise-based negatives
as the shared negatives of all instance within it, and
k is 1, 2.5, 4 and 5 for BERT-base, RoBERTa-base,
BERT-large and RoBERTa-large, respectively. The

standard variance of the noise-based negatives is 1,
and we update the noise-based negatives four times
with the learning rate of 1e-3. We evaluate the
model every 150 steps on the development set of
STS-B and SICK-R and keep the best checkpoint
for evaluation on test sets.

5.2 Main Results

To verify the effectiveness of our framework on
PLMs, we select BERT-base and RoBERTa-base
as the base model. Table 1 shows the results of
different methods on seven STS tasks.

Based on the results, we can find that the non-
BERT methods (i.e., GloVe and USE) mostly out-
perform native PLM representation based baselines
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(i.e., CLS, Mean and First-Last AVG). The reason
is that directly utilizing the PLM native representa-
tions is prone to be influenced by the anisotropy is-
sue. Among non-BERT methods, USE outperforms
Glove. A potential reason is that USE encodes the
sentence using the Transformer model, which is
more effective than simply averaging GloVe em-
beddings.

For other PLM-based approaches, first, we can
see that flow and whitening achieve similar results
and outperform the native representations based
methods by a margin. These two methods adopt
specific improvement strategies to refine the repre-
sentations of PLMs. Second, approaches based on
contrastive learning outperform the other baselines
in most cases. Contrastive learning can enhance
both the alignment between semantically related
positive pairs and the uniformity of the represen-
tation space using negative samples, resulting in
better sentence representations. Furthermore, Sim-
CSE performs the best among all the baselines. It
indicates that dropout is a more effective positive
augmentation method than others since it rarely
hurts the semantics of the sentence.

Finally, DCLR performs better than all the base-
lines in most settings, including the approaches
based on contrastive learning. Since these methods
mostly utilize randomly sampled negatives (e.g.,
in-batch negatives) to learn the uniformity of all
sentence representations, it may lead to sampling
bias, such as false negatives and anisotropy rep-
resentations. Different from these methods, our
framework adopts an instance weighting method
to punish false negatives and a gradient-based al-
gorithm to generate noise-based negatives towards
the nonuniform points. In this way, the sampling
bias problem can be alleviated, and our model can
better learn the uniformity to improve the quality
of the sentence representations.

6 Experiment - Analysis and Extension

In this section, we continue to study the effective-
ness of our proposed DCLR.

6.1 Debiased Contrastive Learning on Other
Methods

Since our proposed DCLR is a general framework
that mainly focuses on negative sampling for con-
trastive learning of unsupervised sentence represen-
tations, it can be applied to other methods that rely
on different positive data augmentation strategies.

Model STS-Avg.
BERT-base+Ours 77.22
w/o Noise-based Negatives 76.17
w/o Instance Weighting 76.31
BERT-base+Random Noise 75.22
BERT-base+Knowledge Distillation 75.05
BERT-base+Self Instance Weighting 73.93

Table 2: Ablation and variation studies of our approach
on the test set of seven STS tasks.
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Figure 3: Performance comparison using different posi-
tive augmentation strategies on the test set of seven STS
tasks.

Thus, in this part, we conduct experiments to ex-
amine whether our framework can bring improve-
ments with the following positive data augmenta-
tion strategies: (1) Token Shuffling that randomly
shuffles the order of the tokens in the input se-
quences; (2) Feature/Token/Span Cutoff (Yan et al.,
2021) that randomly erases features/tokens/token
spans in the input; (3) Dropout that is similar to
SimCSE (Gao et al., 2021). Note that we only re-
vise the negative sampling strategies to implement
these variants of our DCLR.

As shown in Figure 3, our DCLR can boost the
performance of all these augmentation strategies,
it demonstrates the effectiveness of our framework
with various augmentation strategies. Furthermore,
the Dropout strategy leads to the best performance
among all the variants. It indicates that dropout is
a more effective approach to augment high-quality
positives, and is also more appropriate for our ap-
proach.

6.2 Ablation Study

Our proposed DCLR incorporates an instance
weighting method to punish false negatives and
also utilizes noise-based negatives to improve the
uniformity of the whole sentence representation
space. To verify their effectiveness, we conduct
an ablation study for each of the two components
on seven STS tasks and report the average value
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Figure 4: The uniformity loss of DCLR and SimCSE
using BERT-base on the validation set of STS-B during
training.

of the Spearman’s correlation metric. As shown
in Table 2, removing each component would lead
to the performance degradation. It indicates that
the instance weighting method and the noise-based
negatives are both important in our framework. Be-
sides, removing the instance weighting method re-
sults in a larger performance drop. The reason may
be that the false negatives have a larger effect on
sentence representation learning.

Besides, we prepare three variants for further
comparison: (1) Random Noise directly generates
noise-based negatives without the gradient-based
optimization; (2) Knowledge Distillation (Hinton
et al., 2015) utilizes SimCSE as the teacher model
to distill knowledge into the student model dur-
ing training; (3) Self Instance Weighting adopts the
model itself as the complementary model to gen-
erate the weights. From Table 2, we can see that
these variations don’t perform as well as the origi-
nal DCLR. These results indicate the proposed de-
signs in Section 4 are more suitable for our DCLR
framework.

6.3 Uniformity Analysis
Uniformity is a desirable characteristic for sentence
representations, describing how well the represen-
tations are uniformly distributed. To validate the
improvement of the uniformity of our framework,
we compare the uniformity loss curves of DCLR
and SimCSE using BERT-base during training.

Following SimCSE (Gao et al., 2021), we utilize
the following function to evaluate the uniformity:

ℓuniform ≜ log E
xi,xj

i.i.d.∼ pdata

e−2∥f(xi)−f(xj)∥2 ,

where pdata is the distribution of all sentence repre-
sentations, and a smaller value of this loss indicates
a better uniformity. As shown in Figure 4, the
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Figure 5: Performance tuning of our DCLR w.r.t. differ-
ent amounts of training data.
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Figure 6: Performance tuning w.r.t. ϕ and k.

uniformity loss of DCLR is much lower than that
of SimCSE in almost the whole training process.
Furthermore, we can see that the uniformity loss
of DCLR decreases faster as training goes, while
the one of SimCSE shows no significant decreas-
ing trend. It might be because our DCLR samples
noise-based negatives beyond the representation
space, which can better improve the uniformity of
sentence representations.

6.4 Performance under Few-shot Settings

To validate the reliability and the robustness of
DCLR under the data scarcity scenarios, we con-
duct few-shot experiments using BERT-base as the
backbone model. We train our model via different
amounts of available training data from 100% to
the extremely small size (i.e., 0.3%). We report the
results evaluated on STS-B and SICK-R tasks.

As shown in Figure 5, our approach achieves
stable results under different proportions of the
training data. Under the most extreme setting
with 0.3% data proportion, the performance of our
model drops by only 9 and 4 percent on STS-B
and SICK-R, respectively. The results reveal the
robustness and effectiveness of our approach under
the data scarcity scenarios. Such characteristics are
important in real-world application.
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6.5 Hyper-parameters Analysis

For hyper-parameters analysis, we study the impact
of instance weighting threshold ϕ and the propor-
tion of noise-based negatives k. The ϕ is the thresh-
old to punish false negatives, and k is the ratio of
the noise-based negatives to the batch size. Both
hyper-parameters are important in our framework.
Concretely, we evaluate our model with varying
values of ϕ and k on the STS-B and SICK-R tasks
using the BERT-base model.

Weighting threshold. Figure 6(a) shows the in-
fluence of the instance weighting threshold ϕ. For
the STS-B tasks, ϕ has a significant effect on the
model performance. Too large or too small ϕ may
lead to a performance drop. The reason is that a
larger threshold cannot achieve effective punish-
ment and a smaller one may cause misjudgment of
true negatives. In contrast, the SICK-R is insensi-
tive to the changes of ϕ. The reason may be that
the problem of false negatives is not serious in this
task.

Negative proportion. As shown in Figure 6(b),
our DCLR performs better when the number of
noise-based negatives is close to the batch size.
Under these circumstances, the noise-based nega-
tives are more capable to enhance the uniformity
of the whole semantic space without hurting the
alignment, which is key why DCLR works well.

7 Conclusion

In this paper, we proposed DCLR, a debiased con-
trastive learning framework for unsupervised sen-
tence representation learning. Our core idea is to
alleviate the sampling bias caused by the random
negative sampling strategy. To achieve it, in our
framework, we incorporated an instance weighting
method to punish false negatives during training
and generated noise-based negatives to alleviate
the influence of anisotropy PLM-derived represen-
tation. Experimental results on seven STS tasks
have shown that our approach outperforms several
competitive baselines.

In the future, we will explore other approaches
to reducing the bias in contrastive learning of sen-
tence representations (e.g., debiased pre-training).
Besides, we will also consider to apply our method
for multilingual or multimodal representation learn-
ing.

Ethical Consideration

In this section, we discuss the ethical considera-
tions of this work from the following two aspects.
First, for intellectual property protection, the code,
data and pre-trained models adopted from previ-
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certain biases from the data they have been pre-
trained on (Bender et al., 2021), there is a potential
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