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Abstract

Recent years have witnessed growing interests
in incorporating external knowledge such as
pre-trained word embeddings (PWEs) or pre-
trained language models (PLMs) into neural
topic modeling. However, we found that em-
ploying PWEs and PLMs for topic modeling
only achieved limited performance improve-
ments but with huge computational overhead.
In this paper, we propose a novel strategy to in-
corporate external knowledge into neural topic
modeling where the neural topic model is pre-
trained on a large corpus and then fine-tuned
on the target dataset. Experiments have been
conducted on three datasets and results show
that the proposed approach significantly outper-
forms both current state-of-the-art neural topic
models and some topic modeling approaches
enhanced with PWEs or PLMs. Moreover, fur-
ther study shows that the proposed approach
greatly reduces the need for the huge size of
training data.

1 Introduction

Topic models have been widely used for discov-
ering hidden themes from a large collection of
documents in an unsupervised manner. Recently,
to avoid the complex and specific inference pro-
cess of graph model-based method such as LDA
(Blei et al., 2003), neural topic modeling that uti-
lizes neural-network-based black-box inference has
been the main research direction in this field (Blei,
2012; Miao et al., 2016; Srivastava and Sutton,
2017). Typically, neural topic models infer topics
of a document by utilizing its bag-of-words (BoWs)
representation to capture word co-occurrence pat-
terns. The BoWs representation, however, fails to
encode rich word semantics, leading to relatively
inferior quality of topics generated by the topic
models. Therefore, approaches have been proposed
to address the limitation of BoWs representation
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by incorporating the external knowledge, such as
pre-trained word embeddings (PWEs) (Das et al.,
2015; Wang et al., 2020; Dieng et al., 2020).

In recent years, pre-trained language models
(PLMs) (Peters et al., 2018; Devlin et al., 2019;
Brown et al., 2020) have achieved state-of-the-art
performance on a wide range of natural language
processing tasks. Different from PWEs1 in which a
word is mapped to a static word emebdding, PLMs
generate a specific word embedding for each oc-
currence of a word depending on the context. It
is appealing to incorporate PLMs into topic mod-
els since contextualized embeddings generated by
PLMs encode richer semantics and naturally deal
with word polysemy (Pasini et al., 2020). One
straightforward way is to replace BoWs representa-
tion with the outputs of PLM (Bianchi et al., 2020b)
in existing topic models or take PLM outputs as
additional inputs to topic modeling (Bianchi et al.,
2020a). A more sophisticated approach is to dis-
till the knowledge of a PLM into a topic model.
For example, (Hoyle et al., 2020) employed the
probability estimates of a teacher PLM over a text
sequence to guide the training of a student topic
model.

However, the approaches mentioned above still
have limitations. Firstly, using PLMs for topic
model training in such ways leads to huge compu-
tational overhead. Most neural topic models are
based on shallow multi-layer perceptions with few
hidden units. However, most popular PLMs are
based on deep Transformers (Vaswani et al., 2017)
where at each layer expensive self-attention opera-
tions are performed, which have a time complexity
quadratic in document length. Therefore, the over-
all training time is dominated by PLM, and it will
be worse if PLM is further fine-tuned, as shown in
(Hoyle et al., 2020). Secondly, there is the gap of
training objectives between PLMs and topic mod-
els, where PLMs are trained to learn the semantic

1In this paper, PWEs refer to context-free embeddings.
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and syntactic knowledge within a sentence while
topic models focus on extracting main themes over
whole corpus. As shown in Table 4, a model based
on GloVe embeddings (Pennington et al., 2014) per-
forms better than PLMs-based models such as those
proposed in (Bianchi et al., 2020a) and (Bianchi
et al., 2020b).

To overcome these challenges, we propose a
simple yet effective strategy, namely Pre-trained
Neural Topic Model (PT-NTM), to utilize exten-
sive knowledge from large corpora for neural topic
modeling with low computational complexity. In-
stead of pre-training the embeddings and acquiring
knowledge indirectly, PT-NTM directly pre-trains
the topic model itself on the knowledge source cor-
pora. In specific, a neural topic model is firstly
trained on a large corpus only once, which is called
pre-training. Afterward, it is fine-tuned on any
other dataset, which is called fine-tuning. As the
architecture of the neural topic model used in pre-
training and fine-tuning is the same, it incurs little
computational overhead to any subsequent training.
Experiments have been conducted on three datasets
and the results show that the proposed approach
significantly outperforms not only some state-of-
the-art neural topic models but also the topic model-
ing approaches using PWEs and PLMs. Moreover,
it is observed that on the NYTimes dataset, the
neural topic model trained on 1% of the whole
dataset using the proposed approach achieves supe-
rior performance than other baseline models that
are trained on the whole dataset. It further shows
that the proposed approach greatly reduces the need
for the huge size of training data.

The main contributions are:

• We proposed a simple yet effective strategy
for training neural topic models in which the
models are pre-trained on a large corpus and
then fine-tuned on a specific dataset.

• We conducted extensive experiments and the
results show that the pre-trained neural topic
models significantly outperform baselines in
terms of topic coherence and topic diversity.

• The proposed approach greatly reduces the
amount of training data needed. In our ex-
periments on the NYTimes dataset, a pre-
trained model fine-tuned with 1% of docu-
ments achieves superior performance than
baselines that are trained on the whole dataset.

2 Related Work

2.1 Neural Topic Modeling
Due to the flexible modeling choices and high rep-
resentation capacity, neural networks have been
widely used for topic modeling in recent years.
Some approaches (Kingma and Welling, 2013;
Miao et al., 2016) model topics with variational
autoencoders (VAEs) and view the latent variables
of VAEs as document topics. However, topic mod-
els typically use Dirichlet distribution as the prior
of multinomial topic distributions, while the repa-
rameterization trick required by VAEs hinders the
usage of a Dirichlet prior. Therefore, some follow-
up works (Srivastava and Sutton, 2017; Card et al.,
2018) used logistic normal to approximate Dirich-
let. Another family of neural topic models (Nan
et al., 2019; Wang et al., 2020; Hu et al., 2020)
overcome the problem with adversarial training
(Goodfellow et al., 2014) by encouraging the model
to generate topic distributions that are similar to
samples randomly drawn from a Dirichlet prior.

2.2 Topic Modeling with External Knowledge
There are mainly two ways to incorporate external
knowledge into topic modeling, namely by PWEs
and PLMs.

Some attempts incorporate pre-trained word rep-
resentations into neural topic models. For example,
(Card et al., 2018; Dieng et al., 2020) used PWEs to
initialize word embeddings of topic models. (Wang
et al., 2020) built a generative process that models
word embeddings with per-topic Gaussian distribu-
tions.

Beyond static word embeddings, researchers
also tried to utilize PLMs. (Bianchi et al., 2020b,a)
treated PLM outputs as an additional knowledge
source to enhance or replace BoW-based inputs.
(Hoyle et al., 2020) employed knowledge distilla-
tion to guide the training of a student topic model
with a PLM teacher network. Recently, (Song et al.,
2020) proposed TopicOcean to train LDA-based
topic models on large corpora and then transfer the
knowledge of accumulated topics to new corpora
which can also be considered a way of pre-training.

It should be pointed out that the proposed PT-
NTM differs from the previous PLMs-based topic
models or TopicOcean in that the architecture of
neural topic models during pre-training and fine-
tuning are the same in PT-NTM while other meth-
ods combine the large PLM with the topic models,
the two different model architectures.
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Figure 1: The architecture of neural topic model em-
ployed in PT-NTM. Both the encoder on the left and the
decoder on the right have N + 1 layers.

3 Methodology

In this section, we describe the detailed processes
of PT-NTM. First, we will introduce the architec-
ture of neural topic model, which we call NTM in
the following, employed in PT-NTM. Then, we will
introduce how to pre-train the neural topic model
on a large-scale dataset. Finally, we will introduce
how to fine-tune the pre-trained neural topic model
on the target dataset.

3.1 Neural Topic Model Architecture

For the architecture of NTM, we follow the
encoder-decoder architecture, as employed by
many neural topic models (Srivastava and Sutton,
2017; Miao et al., 2017; Nan et al., 2019). The
encoder takes a document’s BoW x ∈ RV as input
and infers its topic distribution ẑ ∈ RK , where V
is the vocabulary size and K the topic number. The
decoder then reconstructs the original document
from ẑ, denoted as x̂.

The whole architecture of NTM is shown in Fig-
ure 1. In specific, the encoder is a stack of N + 1
MLP layers. From the bottom to the top, the first N
layers have an identical structure. Each layer has
four sub-layers: Dropout (Srivastava et al., 2014),
Linear, BatchNorm (Ioffe and Szegedy, 2015), and
LeakyReLU (Maas et al., 2013). The final layer is a
Dropout sub-layer and a Linear transformation fol-
lowed by a Softmax. The decoder shares the same
architecture as the encoder, though they may vary

in input/output dimensions. In our experiments, we
set a Dropout probability of 0.5 in the first encoder
layer and 0.2 in the remaining encoder and decoder
layers. All LeakyReLU sub-layers have a negative
slope of 0.01.

Combining the encoder and the decoder, we now
have the reconstruction loss:

Lrec(X, X̂) = −E(x log x̂), (1)

which encourages the decoder outputs X̂ =
{x̂(i)}mi=1 to be as similar as the corresponding
encoder inputs X = {x(i)}mi=1 for each training
batch, where m is the batch size.

For topic distribution ẑ, what we have done
above is insufficient to generate reasonable topics
since ẑ’s distribution Q is not well defined. To this
end, we follow a similar approach proposed in (Nan
et al., 2019) and further impose on ẑ a Dirichlet
prior P by minimizing the Maximum Mean Dis-
crepancy (MMD) (Gretton et al., 2012) between
the two distributions P and Q:

LMMD(Z, Ẑ) = − 2

m2

∑
i,j

k(z(i), ẑ(j))+

1

m(m− 1)

∑
i̸=j

(k(z(i), z(j)) + k(ẑ(i), ẑ(j))), (2)

where Z = {z(i)}mi=1 are topic distributions ran-
domly drawn from the prior P , Ẑ = {ẑ(i)}mi=1

are encoder outputs, and k is the kernel function
that is information diffusion kernel (Lebanon and
Lafferty, 2003) in our experiments following (Nan
et al., 2019).

The overall training objective is:

L = Lrec(X, X̂) + λrLMMD(Z, Ẑ), (3)

where we balance Lrec and LMMD with a hyperpa-
rameter λ and another factor

r =
∥∇b(N+1)Lrec(X, X̂)∥2
∥∇b(N+1)LMMD(Z, Ẑ)∥2

, (4)

where ∥·∥2 denotes L2 normalization and b(N+1)

is the bias term of the last Linear sub-layer of the
encoder, i.e., the one just before the Softmax sub-
layer. Equation (4) shows that the two losses are
balanced with their relative gradient norm with
respect to b(N+1). We found in our experiments
that r greatly reduces the effort of tuning λ and
generally produces better results.

5982



3.2 Pre-training

By pre-training the topic model on a large and
topically diverse corpus, we expect the model
would learn topic-related knowledge that is gen-
eral enough to be reused on other corpora. For the
proposed approach, the knowledge may include
word semantics, common senses, and document
encoding and decoding patterns at each layer.

The details of the pre-training procedure are
presented in Algorithm 1. The pre-training cor-
pus D is the subset00 of the OpenWebText dataset
(Gokaslan and Cohen, 2019), an open-source recre-
ation of the WebText dataset as detailed in (Radford
et al., 2019). We preprocess data by tokenization,
lemmatization, stopword removal, and only keep-
ing words occurred in at least 50 documents. After
preprocessing, there are about 392K documents,
consisting of 45K unique words, in the resulting
dataset. At each training mini-batch, we update
model parameters according to Equation (3) using
the Adam optimizer (Kingma and Ba, 2014).

Algorithm 1 Pre-training.

Require: D, the pre-training corpus; E, the en-
coder; D, the decoder; θ, parameters of E and
D; θ0, initial parameters; m, the batch size;
n, the number of training epochs; P (z), the
Dirichlet prior.

1: θ ← θ0
2: for i = 1, · · · , n do
3: Shuffle D.
4: for each X = {x(j)}mj=1 from D do
5: Ẑ ← E(X); X̂ ← D(Ẑ)
6: Sample Z = {z(j)}mj=1 ∼ P (z).
7: Compute L by Equation (3).
8: θ ← Adam(∇θ

1
m

∑m
j=1 L(j),θ)

9: end for
10: end for

3.3 Fine-tuning

Fine-tuning is the process of adapting the pre-
trained topic model to a specific dataset. However,
directly fine-tuning the pre-trained model on a new
dataset does not always work and may introduce se-
vere bias to subsequent tuning steps since the ideal
number of topics might change and the corpus-wide
topic distributions might be different. Therefore,
our fine-tuning begins with the pre-trained model
but randomly re-initializes parameters in the last
encoder layer and the first decoder layer. If we fine-

tune the model without any re-initialization, we
find that in our experiments the corpus-wide topic
distributions discovered by the fine-tuned model
would be biased towards the topic distribution of
the pre-training corpus, which is unexpected. The
proposed fine-tuning strategy with re-initialization
solves this issue. Algorithm 2 shows the fine-tuning
steps. We keep the pre-trained parameters fixed for
the first n1 epochs and use a small learning rate
in the remaining training epochs since they have
already been well trained before fine-tuning.

Algorithm 2 Fine-tuning.

Require: D′, the target corpus; E, the encoder; D,
the decoder; θr, randomly initialized parame-
ters; θp, pre-trained parameters; m, the batch
size; n, the number of training epochs; n1,
n1 ∈ N and 0 ≤ n1 ≤ n; P (z), the Dirichlet
prior.

1: for i = 1, · · · , n do
2: Shuffle D′.
3: for each X = {x(j)}mj=1 from D′ do
4: Ẑ ← E(X); X̂ ← D(Ẑ)
5: Sample Z = {z(j)}mj=1 ∼ P (z).
6: Compute L by Equation (3).
7: θr ← Adam(∇θr

1
m

∑m
j=1 L(j),θr)

8: if i > n1 then
9: θp←Adam(∇θp

1
m

∑m
j=1 L(j),θp)

10: end if
11: end for
12: end for

By comparing Algorithm 1 with Algorithm 2, it
can be observed that the fine-tuning process adds
little overhead to the training stage. More impor-
tantly, the proposed method does not introduce any
additional computations or parameters during in-
ference.

4 Experiments

We used three datasets in (Hu et al., 2020): NY-
Times2, Grolier3, and 20Newsgroups4. We did
not include the DBPedia dataset as it is based on
Wikipedia and potentially overlaps with the dataset
used for our pre-training. The dataset statistics are
shown in Table 1.

The proposed basic model, NTM, is the one de-
scribed in Section 3 without pre-training. Both the

2http://archive.ics.uci.edu/ml/
datasets/Bag+of+Words

3https://cs.nyu.edu/~roweis/data
4http://qwone.com/~jason/20Newsgroups
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Dataset #Documents Vocabulary Size

NYTimes 99,992 12,604
Grolier 29,762 15,276
20Newsgroups 11,258 2,000

Table 1: Dataset statistics.

encoder and the decoder have three layers (N = 2)
and 300 neurons at each hidden layer. We have
four variants:

• NTM-w2v, we initialize weights we1 ∈
RV×300 of the first encoder Linear sub-layer
and wd3 ∈ R300×V of the the last decoder
Linear sub-layer with the corresponding 300-
dim Word2Vec embeddings trained on Google
News.

• NTM-glv, same as NTM-w2v but utiliz-
ing 300-dim GloVe embeddings trained on
Wikipedia and Gigaword 5.

• PT-NTM-w2v, pre-training from NTM-w2v
initialization and then fine-tuning.

• PT-NTM-glv, pre-training from NTM-glv ini-
tialization and then fine-tuning.

The number of training epochs is 200 for pre-
training, fine-tuning (PT-* models) and fresh train-
ing (NTM). We used the Dirichlet prior distribution
whose parameters are all 1

K , where K is the topic
number. MMD loss weight λ is 1 for all models
expect the fine-tuning of *-pre models in which
λ is 0.3. We will analyze the effect of λ in our
experiments. During pre-training, the batch size
is 1,024, the learning rate is 2e-2, and the topic
number is 200. For fine-tuning, n1 is 100, and the
learning rates for reinitialized and pre-trained pa-
rameters are 2e-2 and 1e-5, respectively (Algorithm
2), showing that the pre-trained parameters are only
slightly tuned. The batch size of fine-tuning and
fresh training varies on different datasets depend-
ing on their sizes. Specifically, it is set to 128 for
20Newsgroups, 256 for Grolier and 512 for NY-
Times. Finally, it should be noted that fine-tuning
on each datasets shares the same pre-trained model
checkpoint for each model variant.

We compare our models with following base-
lines:

• LDA (Blei et al., 2003), we used the imple-
mentation of GibbsLDA++5.

• ProdLDA (Srivastava and Sutton, 2017), a
VAE-based model that employs logistic nor-
mal prior for topic distributions.

• W-LDA (Nan et al., 2019). Our model fol-
lows W-LDA loss but differs in training and
implementation.

• BAT (Wang et al., 2020), an adversarially
trained neural topic model.

• ToMCAT (Hu et al., 2020), an adversarial neu-
ral topic model with cycle-consistency objec-
tive.

• ZeroShotTM (Bianchi et al., 2020b), tak-
ing Sentence-BERT (Reimers and Gurevych,
2019) embeddings as input.

• CombinedTM (Bianchi et al., 2020a), same
as ZeroShotTM but combining the input with
BoWs.

• G-BAT (Wang et al., 2020), extending BAT to
incorporate pre-trained word embeddings.

• TopicOcean (Song et al., 2020), integrating
well-trained LDAs and transferring the knowl-
edge of accumulated topics to new corpora,
which is re-implemented by ourselves.

We evaluate the model performance with three
topic coherence measures and one topic diversity
measure. Topic coherence measures first calcu-
late the coherence scores of pairs of top words
ranked by their topic-associated probabilities for
each topic and then aggregate all topic scores as
the final topic coherence. The used topic coherence
measures are C_A (Aletras and Stevenson, 2013),
C_P (Röder et al., 2015), and NPMI (Aletras and
Stevenson, 2013) of top-10 topic words, imple-
mented in Palmetto (Röder et al., 2015) 6. Topic
coherence measures are highly correlated with hu-
man evaluation but have no penalizing mechanism
for repetitive or similar topics. We remedy the prob-
lem by also evaluating topic diversity. Our topic
diversity measure is calculate by TD = 1− Nrep

Ntotal
,

where Ntotal = 10×K is the total number of topic
words and Nrep counts the number of repetitions
in all topic words. For example, 5 identical words
would add 4 to Nrep.

5http://gibbslda.sourceforge.net/
6https://github.com/AKSW/Palmetto
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Model
NYTimes Grolier 20Newsgroups

C_A C_P NPMI TD C_A C_P NPMI TD C_A C_P NPMI TD

BoWs-based

LDA 0.215 0.323 0.081 0.82 0.196 0.197 0.053 0.81 0.186 0.282 0.064 0.79
ProdLDA 0.184 0.125 0.015 0.69 0.148 -0.065 -0.019 0.83 0.178 0.071 -0.044 0.67
W-LDA 0.225 0.335 0.078 0.79 0.235 0.258 0.073 0.86 0.229 0.341 0.062 0.72
BAT 0.236 0.375 0.095 0.80 0.211 0.231 0.061 0.73 0.199 0.296 0.055 0.69
ToMCAT 0.245 0.385 0.095 0.79 0.229 0.275 0.081 0.90 0.208 0.314 0.066 0.68
NTM 0.229 0.269 0.056 0.90 0.215 0.146 0.030 0.93 0.242 0.372 0.070 0.82

PWEs-based
G-BAT 0.249 0.414 0.108 0.72 0.219 0.258 0.074 0.78 0.229 0.394 0.087 0.78
NTM-w2v 0.238 0.404 0.096 0.93 0.236 0.273 0.087 0.92 0.258 0.482 0.113 0.82
NTM-glv 0.247 0.388 0.103 0.90 0.257 0.334 0.106 0.93 0.278 0.526 0.129 0.80

PLMs-based
ZeroShotTM - - - - - - - - 0.190 0.249 0.042 0.81
CombinedTM - - - - - - - - 0.182 0.235 0.039 0.79

Pretrain-based

TopicOcean 0.266 0.419 0.099 0.68 0.197 0.289 0.060 0.61 0.195 0.289 0.070 0.61
PT-NTM 0.312 0.651 0.148 0.91 0.325 0.616 0.127 0.93 0.279 0.532 0.124 0.80
PT-NTM-w2v 0.276 0.539 0.131 0.96 0.325 0.621 0.160 0.95 0.271 0.538 0.127 0.87
PT-NTM-glv 0.304 0.614 0.152 0.95 0.345 0.673 0.181 0.96 0.287 0.560 0.140 0.84

Table 2: Average topic coherence (C_A, C_P, and NPMI) and topic diversity (TD) scores of 5 topic number settings
(20, 30, 50, 75, 100) on 3 datasets (NYTimes, Grolier, and 20Newsgroups). Bold values indicate best-performing
models under corresponding settings. NYTimes and Grolier only have BoW data so we cannot evaluate ZeroShotTM
and CombinedTM, which require word order information, on them.

4.1 Topic Modeling Results

The topic modeling results are presented in Table 2.
We report results averaged over five runs with topic
number set to 20, 30, 50, 75, and 100 respectively
in all our experiments unless otherwise specified.

From Table 2, we can observe that: 1) Among
all models, PT-NTM and its variants outperform
other methods by a large margin. Since PT-
NTM and NTM share the identical model architec-
ture, we attribute the improvements of PT-NTM
over NTM to the pre-training strategy. 2) For
PLMs-based methods, both ZeroShotTM and Com-
binedTM performs badly, for some metric even
worse than regular methods. We think the reason
maybe the gap between the learning objectives of
PLMs (word order-based) and topic models (word-
cooccurrence based). 3) For PWEs-based methods,
non-pretrained methods (NTM, BAT) benefits a lot
from the PWEs. We think the reason maybe the
PWEs are also trained based on word-cooccurrence,
so the gap between PWEs and topic models is rel-
atively small. Another interesting thing is that the
benefit of using PWEs in topic modeling seems
diminishing with our proposed topic model pre-
training strategy. For example, PT-NTM gives
similar results compared to PT-NTM-w2v and PT-
NTM-glv. This shows that word semantic knowl-
edge has somehow been captured to a certain de-
gree by pre-training the topic model on a large cor-
pus. 4) For pre-training-based models, PT-NTM
outperforms TopicOcean, consider the performance

gap between their base models (NTM for PT-NTM
and LDA for TopicOcean), the improvement of PT-
NTM is even larager. What’s more, our method
is based on neural network, which is easier to in-
corporated with PWEs or other information than
TopicOcean, which is based on graphical models.

One concern about PT-NTM may be that the
whether the fine − tuning stage works. To get
a sense of the topics extracted by our model, we
list in Table 3 top 4 topics extracted by PT-NTM
on the pre− training and fine− tuning dataset.
The topic labels are assigned manually. The whole
topics are presented in the attachment.

4.2 Contextualized vs. Static word
embeddings

Contextualized word embeddings like those pro-
duced by BERT (Devlin et al., 2019) provide richer
semantic than static ones like Word2Vec (Mikolov
et al., 2013) or GloVe (Pennington et al., 2014).
Thus we also conducted experiments to test their
performance on topic modeling. The baseline
models are ZeroShotTM (Bianchi et al., 2020b)
and CombinedTM (Bianchi et al., 2020a). Ze-
roShotTM and CombinedTM both take Sentence-
BERT (Reimers and Gurevych, 2019) embeddings
as inputs but CombinedTM additionally uses BoW.
We also implement three NTM-based models,
namely BERT-NTM, Word2Vec-NTM, and GloVe-
NTM, according to the input embeddings they used.
BERT-NTM follows the idea of ZeroShotTM, aim-
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OpenWebText (Pre-training) NYTimes (Fine-tuning)

Tesla Drug TPP GPU Racism Cuisine Health Weddding
tesla marijuana tpp gtx racist shrimp fat wedding

autonomous legalization nafta geforce racism sauce protein daughter
waymo cannabi ustr nvidia trump cuisine calories bride

driverless legalize trade amd black broth carbohydrate mother
car norml freeland gpu feminist basil cup gown

musk drug trump radeon political pork diet father
vehicle dispensary tpa evga racial onion sugar wife

autopilot decriminalization fta directx politic pastry chocolate husband
automaker recreational mexico sli party garlic cholesterol sister
hyperloop prohibition climate mhz women chef vitamin son

Grolier (Fine-tuning) 20Newsgroups (Fine-tuning)

Myth Artist History Biology Politics Terrorist Football Crime
thor art emperor biology clinton bomb player police

norse picasso empire organism president fbi game cop
mythology artist justinian evolutionary bush fire team officer
poseidon museum ottoman species tax waco nhl woman
chariot sculpture byzantine physiology senate kill coach gun
goddess painting throne gene political police defensive car
athena exhibition king molecular secretary soldier season man

god pollock roman fossil government military draft fbi
sword portrait serbian genetic economy weapon winnipeg murder
dragon monet war evolution administration terrorist league suspect

Table 3: Top 4 topics extracted by PT-NTM on OpenWebText, NYTimes, Grolier and 20Newsgroups dataset.

Model C_A C_P NPMI TD

ZeroShotTM 0.190 0.249 0.042 0.81
CombinedTM 0.182 0.235 0.039 0.79
BERT-NTM 0.236 0.382 0.072 0.80
Word2Vec-NTM 0.233 0.388 0.079 0.79
GloVe-NTM 0.250 0.407 0.083 0.80

Table 4: Topic modeling results on 20Newsgroups.

ing at providing a fair comparison between BERT-
based topic models. Word2Vec-NTM only uses
pre-trained embeddings in the encoder, which is
different from NTM-w2v as the latter use the the
pre-trained Word2Vec embeddings in both the first
encoder layer and the last decoder layer. The same
setup applies to GloVe-NTM.

The experimental results on 20Newsgroups7 are
shown in Table 4. All the models have similar
topic diversity. Our NTM variants outperform both
ZeroShotTM and CombinedTM on all three topic
coherence measures. The possible reasons could
be: 1) Topic modeling does not quite rely on word
order information, at least for our experimented
dataset; and 2) Training of GloVe utilizes global
word-word co-occurrence statistics that are also
helpful for topic modeling. As topic modeling

7The other two datasets only contain word counts, making
it impossible to extract BERT embeddings since no word
context information is present.

#Layers C_A C_P NPMI TD

2 0.238 0.375 0.071 0.82
3 0.287 0.560 0.140 0.84
4 0.292 0.588 0.146 0.80
5 0.286 0.578 0.143 0.78

Table 5: The impact of the #layers on 20Newsgroups.

can be viewed as a form of word clustering, our
results are somewhat inline with previous findings
reported in Meng et al. (2019) that using BERT
leads to poor performance on text clustering.

4.3 Ablation Study and Further Analysis
Number of model layers We vary the number
of encoder and decoder layers of pre-training and
fine-tuning models, and show the results in Table 5.
It can be observed that the four-layer and the three-
layer models achieve the highest topic coherence
and topic diversity respectively. Further increasing
the layer number resulted in slight declines in all
four metrics.

MMD loss weight λ We present the impact of λ
on our model in Figure 2. With λ increasing from
0.03 to 30, the NPMI of PT-NTM-glv first gradu-
ally increases, peaking at about 0.14 when λ = 1,
and then gradually decreases. For Topic Diversity
(TD), however, we observe a steady decline for
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Figure 2: NPMI and TD results on 20Newsgroups of
PT-NTM-glv and NTM w.r.t. MMD loss weight λ.

PT-NTM-glv. PT-NTM also has a similar trend but
with more drastic changes. Given these findings, it
seems that there is a trade-off towards generating
more coherent or diverse topics.

Nevertheless, it is worth noting that in compar-
ison to NTM, the PT-NTM-glv is very robust to
the choices of λ. The NPMI values of PT-NTM-
glv only fluctuate in the range of [0.11, 0.14] while
its TD values vary between 0.74 and 0.86. This
is in contrast to NTM in which it has poor topic
coherence for λ ≤ 0.1 and low topic diversity for
λ ≥ 10. We attribute the advantage of the pre-
trained model to our proposed fine-tuning strategy.
During fine-tuning, we mainly update a small set of
parameters that are directly related to topics while
only slightly tune others, which consequently en-
ables more controllable data/gradient flows and
thus produces more stable results.

Data efficiency With pre-training, a topic model
indeed captures extensive knowledge from an exter-
nal corpus. As have been shown in our experiments,
the acquired knowledge can improve the perfor-
mance of subsequent fine-tuning on other datasets,
It would be interesting to see to what extent such
knowledge can increase data efficiency. To this
end, we conducted experiments that take subsets
of NYTimes dataset of varying sizes as training
datasets. Specifically, we used dataset sizes includ-
ing 1K, 2K, 4K, · · · , 64K, and 100K. For each size,
we averaged the results over five runs whose train-
ing datasets are randomly sampled from the whole
dataset with different random seeds.

The results are shown in Figure 3. PT-NTM-glv
has a very high starting point when the document
number is 1000: the NPMI and TD is about 0.15
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Figure 3: NPMI and TD results on NYTimes of PT-
NTM-glv and NTM w.r.t. the training dataset sizes.

and 0.89 respectively. While at the same time,
NTM has extremely poor performance with nega-
tive NPMI and low TD. Only when the document
number increases to 8000, the topics generated by
NTM has comparable topic diversity to topics from
PT-NTM-glv. But even when the whole dataset
is used by PT-NTM, i.e., the document number is
100K, NTM’s NPMI is still about 0.08 lower than
the 1000-document PT-NTM-glv, which indeed
represents a significant difference in topic quality.
In summary, pre-training the topic model greatly
reduces the need for training data and helps the
model achieve superior performance with only 1%
of documents on the NYTimes dataset.

5 Conclusion

In this paper, we proposed a simple yet effective
strategy to incorporating external knowledge into
neural topic modeling by pre-training topic models
on a large corpus before fine-tuning them on spe-
cific datasets. By experiments, we have presented
the effectiveness of the method of pre-trained neu-
ral topic model in terms of topic coherence, topic
diversity, and data efficiency over other methods
such as by incorporating PWEs and PLMs. Another
advantage of this approach is that it introduces little
overhead to the training and none to the inference.
Limited by computing resources, we did not exper-
iment pre-trainings on larger datasets, though we
believe there is still room for improvement given
more pre-training data. For future research, we en-
courage further explorations in model architectures,
pre-training objectives, and fine-tuning procedures.
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