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Abstract

Research in stance detection has so far focused
on models which leverage purely textual in-
put. In this paper, we investigate the integra-
tion of textual and financial signals for stance
detection in the financial domain. Specifically,
we propose a robust multi-task neural archi-
tecture that combines textual input with high-
frequency intra-day time series from stock
market prices. Moreover, we extend WT–WT,
an existing stance detection dataset which col-
lects tweets discussing Mergers and Acquisi-
tions operations, with the relevant financial sig-
nal. Importantly, the obtained dataset aligns
with STANDER, an existing news stance detec-
tion dataset, thus resulting in a unique multi-
modal, multi-genre stance detection resource.
We show experimentally and through detailed
result analysis that our stance detection sys-
tem benefits from financial information, and
achieves state-of-the-art results on the WT–WT
dataset: this demonstrates that the combina-
tion of multiple input signals is effective for
cross-target stance detection, and opens inter-
esting research directions for future work.

1 Introduction

Stance detection (SD) is the task of automatically
classifying the writer’s opinion expressed in a text
towards a particular target (Küçük and Can, 2020).
Starting from Mohammad et al. (2016)’s seminal
work, research on Twitter SD gained increasing
popularity (Ghosh et al., 2019), embracing new
topics (Derczynski et al., 2017; Aker et al., 2017a;
Conforti et al., 2020b) and languages (Gorrell et al.,
2019; Vamvas and Sennrich, 2020a; Zotova et al.,
2020). In recent years, research on SD has mainly
focused on cross-target generalization, in which an
SD system is tested on targets unseen during train-
ing (Xu et al., 2018). Cross-target generalization
constitutes one of the biggest challenges in Twitter
SD (AlDayel and Magdy, 2021): in this context,
researchers investigated a wide range of techniques,

including adversarial training (Wang et al., 2020;
Allaway et al.), cross-lingual transfer (Mohtarami
et al., 2019), knowledge transfer using semantic
and emotion lexicons (Zhang et al., 2020), weak
supervision through synthetic samples (Conforti
et al., 2021b; Li and Caragea, 2021), and various
types of cross-domain transfer (Schiller et al., 2021;
Hardalov et al., 2021a).

In this paper, we study multimodality as a means
to enhance cross-target generalization in Twitter
SD. Multimodal Machine Learning studies the inte-
gration and modeling of multiple modalities (Elliott
et al., 2016), where a modality refers to the way in
which something happens (Baltrusaitis et al., 2019).
Our contributions are as follows:

1. We study multimodal learning for Twitter SD.
Despite being an established research area in
NLP (Elliott et al., 2016), SD in a multimodal
context is still understudied.

2. We extend WT–WT, an SD dataset which col-
lects English tweets discussing four Mergers
and Acquisitions operations (M&As or merg-
ers, Conforti et al. (2020b)), with high fre-
quency intra-day stock market data for the
involved companies, which we release for fu-
ture research1. We note that the union of
our financial signal with WT–WT and with
STANDER, an SD corpus collecting news ar-
ticles discussing the same mergers (Conforti
et al., 2020a), will constitute the first multi-
genre, multi-modal parallel resource for SD
and, more generally, one of the very few of
this kind in NLP.

3. We propose SDTF (Stance Detection with
Texual and Financial signals), a novel multi-
task, multimodal architecture for Twitter SD,
which integrates textual and financial signals.

1https://github.com/cambridge-wtwt/
acl2022-wtwt-stocks
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4. Finally, we show experimentally that SDTF
benefits from the information encoded in the
financial signal, achieving state-of-the-art re-
sults on the WT–WT dataset; the integration
of multiple input signals thus constitutes a
promising research direction to tackle cross-
target generalization for SD.

2 Problem Formulation

We study SD in the financial domain and consider
tweets discussing M&A operations, i.e. financial
transactions in which the ownership of a company
(the target) is transferred to another company (the
buyer, Bruner and Perella (2004)). An M&A pro-
cess usually comprises many stages, ranging from
informal talks between the companies’ boards to
acquisition planning, negotiations, and external ap-
provals, up to the closing of the deal (or its rejec-
tion, e.g. by antitrust bodies). M&As account for
billions of dollars of investment globally and have
been widely studied under many aspects (Gomes
and Maldonado, 2020). They are well known in
NLP (Lefever and Hoste, 2016; Yang et al., 2020;
Conforti et al., 2020a,b) and constitute an important
application in other AI fields, with a strong focus on
automatic prediction of the M&A outcome (Yan
et al., 2016; Jetley and Ji, 2010; Moriarty et al.,
2019; Venuti, 2021).

In our task, a model receives a tweet and a target
merger, and has to predict the stance expressed by
the tweet’s author with respect to the likelihood of
the merger to succeed:

• Target. Company A will merge with company B
• Tweet. Federal judge rejects A’s bid to buy B!!!
• Stance. Refute

All existing models for financial SD only leverage
the tweet’s text as input (Conforti et al., 2020b;
Liang et al., 2021; Li and Caragea, 2021). How-
ever, a user tweeting at a particular time is im-
mersed into a context which shapes their view of
the world: their opinion about an M&A’s outcome
will be influenced by how the involved companies
are perceived.

In this paper, we use a variation of the stock
market prices from the n days prior to a tweet’s
posting as a means to provide a model with such
context. According to the Efficient Market Hypoth-
esis (Fama, 1970), stock market prices reflect all
publicly known information. Even though the Effi-
cient Market Hypothesis is controversial (Malkiel,
2003), stock market prices still reflect a consider-

able amount of publicly known information. There-
fore, we argue that they can be used as a proxy
for the available knowledge about the merger at a
given time.

The relationship between rumors about an M&A
operation and their effect on the involved compa-
nies’ stocks is mutual and has been widely stud-
ied in finance (Ma and Zhang, 2016; Betton et al.,
2018; Jia et al., 2020; Gorman et al., 2021; Davis
et al., 2021), but never investigated in NLP. To our
knowledge, the integration of textual and financial
data signals has been studied for financial forecast-
ing (Schumaker and Chen, 2009; Hu et al., 2018;
Sawhney et al., 2020a,b, 2021c; Ni et al., 2021),
but has yet to be investigated for SD.

3 Background

3.1 Twitter SD

Traditionally, research on SD has focused on user-
generated data, such as blogs and commenting sec-
tions on websites (Skeppstedt et al., 2017; Hercig
et al., 2017), apps (Vamvas and Sennrich, 2020b),
online debate forums (Somasundaran and Wiebe,
2009), Facebook posts (Klenner et al., 2017) and,
above all, Twitter. Since Mohammad et al. (2016)’s
seminal work, Twitter has been used as a data
source for collecting corpora covering a wide range
of domains, from US politics (Mohammad et al.,
2017; Inkpen et al., 2017) to mental health (Aker
et al., 2017b), breaking news events (Zubiaga et al.,
2016; Gorrell et al., 2019), finance (Conforti et al.,
2020b), and the COVID pandemic (Hossain et al.,
2020; Glandt et al., 2021).

SD has been studied both as a stand-alone, iso-
lated task, and integrated as a sub-component of
more complex NLP pipelines (Hardalov et al.,
2021b). Starting from the pioneering work by Vla-
chos and Riedel (2014), SD has been identified as
a key step in fake news detection (Lillie and Mid-
delboe, 2019) and automated fact-checking (Popat
et al., 2017; Thorne and Vlachos, 2018; Baly et al.,
2018).

3.2 Multimodal SD

Multimodal learning has proven successful for
many NLP tasks (Tsai et al., 2019; Zadeh et al.,
2020), including grounding (Beinborn et al., 2018),
visual question answering (Ben-Younes et al., 2017;
Yu et al., 2018), sentiment analysis (Rahman et al.,
2020), and humor detection (Hasan et al., 2019).

To the best of our knowledge, only one
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M&A Buyer Target Outcome

CVS_AET CvsHealth Aetna yes
CI_ESRX Cigna ExprsScripts yes
ANTM_CI Anthem Cigna no
AET_HUM Aetna Humana no

Table 1: Healthcare M&As in WT–WT. AET
and CI appear both as buyers and as targets.
.

CSV CI ANTM AET
AET ESRX CI HUM

support 2,469 773 0970 1,038
refute 518 253 1,969 1,106
comment 5,520 947 3,098 2,804
unrelated 3,115 554 5,007 2,949

total 11,622 02,527 11,622 07,897

Table 2: Label distribution across M&As in
the WT–WT corpus (total: 33,090 tweets).

Figure 1: Stock prices of ANTM (buyer) and CI (target) and
tweets distribution on the day of the official antitrust com-
plaint to the Department of Justice (21.07.2013).

dataset exists for multimodal SD, MULTISTANCE-
CAT (Taulé et al., 2018; Segura-Bedmar, 2018),
released for IberEval20182. MULTISTANCECAT

collects 11,398 tweets in Spanish and Catalan dis-
cussing the Catalan 2017 Independence referen-
dum: according to Taulé et al. (2018), the corpus
is multimodal because it contains, along with the
tweets’ text, contextual information and up to 10
images downloaded from the authors’ timeline. We
note that, unfortuntately, almost all research build-
ing on MULTISTANCECAT considered only the pro-
vided textual features, thus ignoring its multimodal
component. As mentioned in Taulé et al. (2018,
p. 157), only 1 out of the 4 teams participating
in the task integrated images into their model, by
training a CNN on Spanish and Catalan flags (with
the underlying intuition that using them would hint
to the user’s stance with respect to the topic of
Catalan independence)3. Interestingly, no positive
impact was observed on SD results when including
such multimodal signals.

Our work differs in a number of respects: (1) the
size of our corpus is considerably larger, thus allow-
ing for more robust training; (2) we do not consider
visual signals, such as images, but – consistently
with WT–WT’s domain – financial time-series sig-
nals from stock market prices; and (3) most notably,
MULTISTANCECAT’s multimodal signal consists

2http://www.autoritas.net/
MultiStanceCat-IberEval2018/

3The team did not submit working notes describing their
system; therefore, we refer to the model’s overview provided
in the general task paper (Taulé et al., 2018).

of a maximum of 10 images taken from the user’s
timeline: therefore, the images might not be related
to the tweet, might have been posted at a very dif-
ferent timestamp, or might be the same for multiple
tweets published by the same author. In contrast,
our financial signal is specific to each tweet and is
perfectly aligned with its time of posting.

3.3 Finance and NLP

In recent years, there has been an increasing in-
terest in research at the intersection between fi-
nance and NLP (Hahn et al., 2018; El-Haj et al.,
2018), with a rich stream of work focusing on fi-
nancial textual analysis (Lang and Stice-Lawrence,
2015; Loughran and McDonald, 2016), sentiment
analysis (Giachanou and Crestani, 2016; Chan and
Chong, 2017; Krishnamoorthy, 2018), stance de-
tection (Conforti et al., 2020b,a, 2021a), volatility
prediction (Rekabsaz et al., 2017; Kolchyna et al.,
2015) and, above all, financial forecasting (Qasem
et al., 2015; Ranco et al., 2015; Pagolu et al., 2016;
Pimprikar et al., 2017; Oliveira et al., 2017).

3.4 Multimodality in Financial Forecasting

While multimodality has not been investigated for
financial SD, it constitutes a very active research
direction in financial forecasting, i.e. the task
of predicting a business’ future financial perfor-
mance (Abu-Mostafa and Atiya, 1996).

Given the importance of psychological and
behaviorial elements on stock-price move-
ments (Malkiel, 2003), researchers in economics
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have started to explore models which leverage
features beyond simple numerical values (Nikou
et al., 2019; Liu and Chen, 2019). In this context,
a stream of work analyzed the integration of
historical price data with social media texts (Sawh-
ney et al., 2020a) and other audio or textual
features (Zhao et al., 2019; Qin and Yang, 2019;
Sawhney et al., 2021b; Lee and Yoo, 2020;
Sawhney et al., 2021b,a; Das et al., 2021; Chen
and Huang, 2021).

4 Extending the WT–WT Dataset

Text Signal. As our text signal, we use Will-
They-Won’t-They (Conforti et al., 2020b, WT–
WT)4, which collects English tweets discussing
four M&As between US companies (Table 1). WT–
WT is expert-annotated for stance with respect to
the likelihood of the merger happening according
to the opinion expressed in the text, following a
four-class classification schema: support, refute,
comment and unrelated (i.e. the tweet does not dis-
cuss the merger). Below, we report one example
for each of the considered labels (targets in squared
brackets):

• Support [CVS_AET] CVS, Aetna $69B merger
wins DOJ approval <URL>

• Refute [ANTM_CI] Big-name lawmakers want
to block Aetna-Humana and Anthem-Cigna!

• Comment [ANTM_CI] Anthem-Cigna deal
would create ‘Big 3’: If the deal is approved

• Unrelated [CVS_AET] Urge Your Legislators
to Oppose CVS and Walmart Takeover of Med-
ical Care Delivery!!! <URL>#MSSNY

Financial Signal. For the four healthcare M&As
in WT–WT5, we obtain historical prices in 30-min
intervals for the involved stocks. The financial
data has been bought from FirstRate Data LLC6

(∼700MB) at market price.
Each entry in the data has the following fields:

DateTime, Open, High, Low, Close, Volume.
DateTime is in US Eastern Time, in the format
YY-MM-DD h:m:s. Only minutes with trading
volume are included: times with zero volume, such
as during weekends or holidays, are omitted. Prices

4WT–WT can be downloaded, upon signing a data sharing
agreement, from its GitHub repository https://github.
com/cambridge-wtwt/acl2020-wtwt-tweets

5Note that this aligns with the targets collected in
STANDER, a news SD corpus (Conforti et al., 2020a).

6https://firstratedata.com/

are adjusted for dividends and splits7. We used
Python’s datetime library to align Twitter time
values (UTC) with the financial signal (EST, New
York Stock Exchange)8

Note that price variations in 30-minutes intervals
are considerably more granular than the financial
signal used in NLP work, which is mostly limited to
daily data (Sawhney et al., 2020a). Such granular-
ity is necessary when monitoring tweets, which are
highly reactive to real-time, on-topic information
from the outside world (ALRashdi and O’Keefe,
2019).

Analysis. Figure 1 shows an example of the inte-
gration of the two signals. On the day the antitrust
complaint was made to the Department of Justice
regarding the M&A operation, ANTM’s price in-
creased while CI’s decreased. Such movements tes-
tify that the event changed the world’s view: people
believe that the merger is less likely to happen, and
this is reflected by their investment decisions. The
direction of the price variation reflects standard
M&A theory (Bruner and Perella, 2004): the buyer
will not buy the target’s shares at a premium, thus
the owners of target’s stocks will not profit from
the acquisition.

The price variation is useful for classifying a
tweet on that day, as it implies that the likelihood
of a refute label is higher. This is reflected in the
tweet distribution in the lower part of the Figure:
the distribution of tweets on that day shows that
most of them were indeed refuting. We report one
more example in Appendix A.

5 Models

As shown in Figure 2, our multitask SDTF model is
composed of a textual, a financial and a multimodal
component.

5.1 Text Encoder

Following previous work in SD (Hardalov et al.,
2021a), we obtain a vector representation htext ∈
Rd for the textual input by averaging the token-
level hidden states from the last layer of a large
transformer (in our case, BerTweet (Nguyen et al.,

7https://firstratedata.com/about/
price_adjustment

8The timestamps of posting of each tweet in the WT–WT
dataset can be shared in accordance with the terms of use out-
lined by Twitter https://developer.twitter.com/
en/developer-terms/agreement-and-policy.
No private information (such as username of the tweet’s
author and similar) is shared.
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Figure 2: Overview of the proposed multi-task SDTF architecture. Price embeddings are not shown. Right, middle,
and left components represent resp. textual, blended and financial signals. γ is a multi-head attention mechanism,
and β is a bilinear transformation (Subsection 5.3).

2020)). The input text is provided as:
[CLS] tweettext [SEP] target [SEP]

where target consists of the string: B (b, tb)
will merge with T (t, tt), where B, b, and tb, are
the buyer’s name, acronym and Twitter username9

(same for the target company).

5.2 Price Encoder

Input. For each tweet posted at time s, we con-
sider a window of w days in the past. At each
timestep i, in {s − w, s − w + 1, ..., s}, we con-
sider two price vectors pbi , p

t
i ∈ R12 which consist

of:

(1)

pbi = pbi1 ⊕ pbi2 ⊕ pbi3
= [ob, cb, hb, lb]⊕ [om, cm, hm, lm]

⊕ [vb, rb,
cb

cm
rb

cm
]

where o, c, h, l and v are resp. the opening, closing,
highest, lowest price and volume of transactions at
time i for the buyer’s stock (superscript b) or for
the overall market index (superscript m); finally,
r is the return at time i and is defined as (cbi −
cbi−1)/c

b
i−1 (Law (2018), same for the target).

Price Embeddings. We obtain a vector represen-
tation eib for each time point i by concatenating:

pbi ⊕ ebi1 ⊕ ebi2 (2)

9For example, Anthem (ANTM, AnthemInc). This is in
principle the same as in (Liang et al., 2021), with two dif-
ferences: we add the companies’ official Twitter usernames
and, similarly to other SD works (Hardalov et al., 2021a), we
consider first the input text, and then the target.

where ebi1 and ebi2 are the time embeddings for
pbi1 and pbi2 (same for the target). We use
Time2Vec (Kazemi et al., 2019) for time embed-
dings, and we jointly learn embeddings for the
buyer and the target.

Price Encoder. As in Du and Tanaka-Ishii (2020)
and Kostkova et al. (2017), we use a Gated Recur-
rent Unit (Cho et al., 2014, GRU) to encode the
price variations over time. We implement two sep-
arate GRUb and GRUt for the buyer and the target.
At time i, the GRUb’s output consists of:

hi = GRUb(e
i
b, hi−1) s− w ≤ i ≤ s (3)

To model the inter-dependencies between the
two stocks, we use multi-head attention mecha-
nism (Vaswani et al., 2017) which, in our experi-
ments, proved to be more effective for SD than the
“classic” temporal attention used in financial fore-
casting (Feng et al., 2019). In practice, we obtain a
unified price vector representation hprice as:

hb = γb(Ht, Hb) (4)

ht = γt(Hb, Ht) (5)

hprice = hb ⊕ ht (6)

where γb and Hb (resp. γt and Ht) are the buyer’s
(and target’s) multi-head attention mechanism and
the matrix consisting of GRUb’s (resp. GRUt’s)
outputs.

5.3 Blending Multimodal Signals
Signals from different modalities encode comple-
mentary information (Schumaker and Chen, 2009):
we avoid simple concatenation (Li et al., 2016),
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which would treat such signals equally, and im-
plement a bilinear transformation to integrate the
tweet’s encoded representation with the historical
prices of the involved companies (Sawhney et al.,
2020a). Given the price and the text vector repre-
sentations hprice ∈ Rp and htext ∈ Rd, we obtain
a combined vector representation h ∈ Rw as:

h = relu(hTtextWhprice + b) (7)

where W ∈ Rw×d×p and b ∈ Rw are the learned
weight matrix and bias.

5.4 Multi-Task Training

We jointly train our model to learn two sets of tasks:
SD and financial forecasting (FF).

Stance Detection. We expect the financial signal
to be relevant only in the case of related stance
labels (i.e. support, refute, comment). In order to
assist the model in differentiating between those
two macro-classes, we predict a binary label re-
lated/unrelated along with the stance label ystance:

ystance = softmax(h) ybinary = σ(htext) (8)

Financial Forecasting. As it has been previously
studied in finance, rumors about a merger can affect
the stock prices of the involved companies (Jia
et al., 2020; Davis et al., 2021). To encourage
our model to learn such influence, we also add
two binary financial-related outputs, in which we
predict the stock movement of the two companies:

ybuyer = σ(hbuyer) (9)

ytarget = σ(htarget) (10)

where hbuyer (resp. htarget) is the concatenation of
the last output vector of GRUb and h, and ybuyer
(resp. ytarget) ∈ {↑, ↓} (i.e., stock closing price for
the considered company will resp. move up, or fall).
The final loss is:

L = Lstance + 0.5Lbinary
+ 0.2Lbuyer + 0.2Ltarget

(11)

For Lstance we use categorical cross-entropy loss,
while Lbinary,Lbuyer and Ltarget use binary cross-
entropy loss function. The weights of the last three
loss components were empirically set in an initial
pilot.

6 Experimental Setting

Preprocessing. We perform minimal preprocess-
ing on the textual signal. Concerning the financial
signal, we consider a window of 30 timepoints in
the past, and price variations every 30 minutes: de-
pending on the tweet’s posting time, this accounts
for the previous ∼2.5 days10.

For FF, we predict ups or downs in the con-
sidered company’s closing price 2 hours after the
tweet11 (see Appendix B.1 for details).

Training Setup and Evaluation. Details on the
training setup and (hyper-)parameter settings are
reported in Appendix B.2 for replication. Fol-
lowing Hanselowski et al. (2018); Conforti et al.
(2020b), we consider macro-averaged precision,
recall and F1 score. To account for performance
fluctuations (Reimers and Gurevych, 2017), we av-
erage three runs for each model (standard deviation
is reported in Appendix B.2).

Baselines. We consider six published baseline
models, including the four best models of Conforti
et al. (2020b):

• SVM, a linear-kernel SVM leveraging bag of
ngrams (over words and characters) features,
similar as in Mohammad et al. (2017);

• CrossNet, a cross-target SD model (Xu et al.,
2018) consisting of a bidirectional conditional
encoding model over LSTMs, augmented with
self-attention and two dense layers;

• SiamNet, a siamese network similar to San-
tosh et al. (2019), which is based on a BiL-
STM followed by a self-attention layer;

• HAN, a Hierarchical Attention Network as
in (Sun et al., 2018)) which uses two levels of
attention to leverage the tweet representation
along with linguistic information (sentiment,
dependency and argument);

and two further baselines from Liang et al. (2021):

• BERT, a strong vanilla BERT-based model
fine-tuned on WT–WT;

• TPDG, a sophisticated network based on a
target-adaptive pragmatics dependency graph.

10During night or holidays, price entries are usually not
available. Tweets published outside of the market’s opening
hours (9:30am–4pm EST during workdays) are thus associated
with the most recent available financial signal.

11Or, for tweets posted at night or during holidays, the first
available closing price in the future.
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CVS_AET CI_ESRX ANTM_CI AET_HUM avgF1 avgwF1 sup ref com unr

SVM\ 51.0 51.0 65.7 65.0 58.1 58.5 54.5 43.9 41.2 88.4
CrossNet\ 59.1 54.5 65.1 62.3 60.2 61.1 63.8 48.9 50.5 75.8
SiamNet\ 58.3 54.4 68.7 67.7 62.2 63.1 67.0 48.0 52.5 78.3
HAN\ 56.4 57.3 66.0 67.3 61.7 61.7 67.6 52.0 55.2 69.1
BERT[ 56.0 60.5 67.1 67.3 62.7 62.8 65.4 56.1 58.0 70.1
TPDG[ 66.8 65.6 74.2 73.1 69.8 70.7 69.7 64.9 69.8 76.9

BerTweet 71.7 70.4 70.8 69.6 70.6 70.4 70.0 66.2 70.2 75.9
SDTF (ST) 71.5 73.7 74.3 75.5 73.7 73.8 75.4 68.2 72.7 79.6
SDTF (MT)

+FF 72.3 73.2 76.0 75.7 74.3 74.0 74.8 67.2 73.7 81.6
+Binary 70.4 73.4 77.1 74.8 73.9 73.4 73.2 67.7 73.5 78.9
+FF+Binary 72.9 72.7 77.0 78.1 75.2 74.9 75.2 68.6 74.3 82.7

Table 3: Results on the WT–WT dataset. Macro F1 are obtained by testing on a target M&A while training on the
other three. avgF1 and avgwF1 are the unweighted and weighted (by operations size) avg over targets. On the
right, average per-label accuracy. \ and [ results are retrieved resp. from Conforti et al. (2020b) and Liang et al.
(2021). MT is the complete multitask model in Figure 2, ST refers to a single-task model trained for SD only.

Finally, we also consider BerTweet, a model re-
lying on textual signal only; it is a BerTweet
model (Nguyen et al., 2020) fine-tuned on WT–WT.

7 Results and Discussion

Table 3 shows our experimental results. We observe
that using BerTweet as main text encoder alone
achieves considerable gains in performance with
respect to all stance labels considering all baselines,
including the strong vanilla BERT baseline.

This is unsurprising, given the peculiarities of
Twitter language (Hu et al., 2013) which are cap-
tured by BerTweet.

Adding the financial signal. Adding our financial
component proves to be effective over all consid-
ered targets, with improvements in F1 scores up to
+5.8 (AET_HUM).

Single-label performance seems to suggest that
price variations encode very useful information for
all labels, resulting in notable improvements not
only on the unrelated (+3.7), but also on the refute
and support samples (resp. +2.1 and +5.4 in accu-
racy): this is important because those labels, apart
from being the minority classes, arguably consti-
tute the most relevant information for downstream
tasks (Scarton et al., 2020).

Adding Multi-Task Objectives and Ablation Ex-
periments. Results of ablation experiments (Ta-
ble 3) show that including the financial forecast
(+FF) task alone brings moderate improvements in
performance, while considering binary SD (+Bi-
nary) alone moderately degrades it: their combina-
tion, however, achieves the best results over three
of the four mergers.

CSV CI ANTM AET avg.
AET ESRX CI HUM

+FF buyer FF 51.3 49.6 48.9 51.4 50.3
target FF 41.9 52.9 52.5 53.8 50.3

+Bin SD bin 85.4 88.5 93.0 85.7 88.1

+FF
+Bin

SD bin 86.3 89.8 92.6 90.6 89.8
buyer FF 48.7 53.6 52.1 49.2 50.9
target FF 52.0 51.5 49.8 50.2 50.9

Table 4: Per-merger performance (binary accuracy)
of the SDTF multitask models on the ancillary tasks.
+FF: financial forecasting; +Bin: binary SD.

Interestigly, jointly modeling FF and binary SD
seems to be beneficial not only for SD: as shown
in Table 4, best results on both ancillary tasks are
obtained in the multitask setting. Binary SD perfor-
mance is very satisfactory over all mergers, with a
correlation with M&As with a higher proportion of
unrelated samples.

Moving to the other ancillary tasks, FF results
are encouraging12, even if we considered a consid-
erably shorter time window of historical pricing
than architectures specifically designed for FF (Du-
mas et al., 2009; Kim et al., 2019; Ho et al., 2021).
This suggest that the learned multimodal textual
and financial vectors constitute an informative in-
put for the FF predictors.

Single-Label Performance. An analysis of
single-label performance (Table 3) shows that mod-
els including the financial component, with or with-
out ancillary tasks, achieve best performance on all
related labels.

12Consider for example a strong neural model such
as Selvin et al. (2017), reported in (Sawhney et al., 2020a).
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SDTF (MT) sup ref com unr avg. F1

text only 70.8 66.6 68.7 74.9 70.4
financial only 00.0 02.2 27.2 46.7 21.1
text+financial 75.2 68.6 74.3 82.7 75.2

Table 5: Ablation experiments with multi-task SDTF
when “silencing” the textual or financial signal (per-
label average accuracy and average F1 score over merg-
ers); text+financial corresponds to the complete SDTF
model in Table 3.

Interestingly, however, best performance overall
for the unrelated samples is obtained with the sim-
plest of the considered models, a strong SVM over
character- and word-ngrams similar to (Moham-
mad et al., 2017). A similar situation, in which a
model leveraging simple lexical features achieved
best results on the unrelated samples, was already
observed not only for WT–WT (Conforti et al.,
2020b), but also for other SD datasets, such as
FNC-1 (Pomerleau and Rao, 2017; Hanselowski
et al., 2019).

We note that, in both datasets, related-unrelated
vs. support/comment/refute classifications can be
seen as constituting two different tasks: the for-
mer is more similar to topic detection, where even
surface-level methods can do well, whereas the
latter is an inference task which requires deeper
semantic knowledge (Conforti et al., 2018)13.

The analysis of the confusion matrices (reported
in detail in Appendix B.2) shows that most errors
concern support or refute samples which were mis-
classified as comment: as already observed in Con-
forti et al. (2020b), the difference between a com-
ment and a stance-bearing label such as support
(or refute) depends on argumentative nuances in
the tweet, which are sometimes subjective and ulti-
mately depends on the annotator’s preferences. A
number of comment-unrelated misclassifications
are also present, especially for M&As with a high
number of unrelated samples (such as CVS_AET

and ANTM_CI).

Performance When “Silencing” Different Sig-
nals. In order to estimate the relative importance
of the two signals considered in the SDTF model,
we consider a scenario in which we silence one
of the two signals: for the textual signal, this cor-

13We note that, in a practical scenario, it might make sense
to first apply a simple lexicon-based method for filtering out
unrelated samples, and then to adopt a more sophisticated
approach for the second step, as proposed for example by Ma-
sood and Aker (2018).

Precision Recall F1 score

BerTweet (frozen) 60.34 58.04 56.69
“ (frozen:9) 73.36 74.66 73.63
“ (train all) 72.18 71.02 70.62

SDTF (frozen) 67.04 66.95 63.08
“ (frozen:9) 73.83 74.96 74.15
“ (train all) 74.85 76.39 75.19

Table 6: Average model performance over targets of
our multitask multimodal system, when partially freez-
ing TweeBert layers.

responds to replacing the target and the tweet’s
text with two empty strings (i.e., [CLS] [SEP]
[SEP] as input to the right component in Fig-
ure 2); for the financial signal, we input two empty
price vectors for the considered companies (i.e. the
left components in Figure 2).

Results of such ablation experiments (Table 5)
show that, as expected, the textual signal provides
the biggest contribution for SD, and the financial
signal alone is not sufficient at all to perform SD.
Blending together both signals, however, provides
the most informative input to the model: a con-
sistent drop in performance over all labels, includ-
ing unrelated, is observed with models exposed to
empty price vectors.

Robustness Over Parameters Freezing. More-
over, we investigate the model robustness over
freezing BerTweet14: we consider two scenarios, in
which we freeze the complete weights or BerTweet,
or all but its last three layers (Wang et al. (2019),
see Appendix B.2 for details on number of parame-
ters for the different settings).

As expected (Mosbach et al., 2020), perfor-
mance degrades with fewer layers trained (Table 6),
with the exception of the BerTweet architecture
when freezing all but its last three layers. Notably,
our multitask SDTF model is more robust over pa-
rameter freezing than the vanilla BerTweet, achiev-
ing higher performance over all considered metrics:
this suggests that, when less powerful textual en-
coders are provided, the presence of the financial
signal supports SD classification.

Adding Synthetic Data. As mentioned in the In-
troduction, a recent stream of work investigates the
usage of synthetically generated data to compen-
sate for data scarcity in Twitter SD. In particular,
Li and Caragea (2021) used Auxiliary Sentence
based Data Augmentation (ASDA), a conditional

14This is important, because the number of trainable param-
eters correlates with CO2 emission (Strubell et al., 2019).
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CSV CI ANTM AET avg.
AET ESRX CI HUM

ASDA] 76.4 75.4 74.5 79.0 76.5
SDTF 72.9 72.7 77.0 78.1 75.2
ASDA + SDTF 74.6 75.9 77.8 79.7 77.0

Table 7: Per-merger performance (F1 score) when
including synthetic training data. ] results refer to
the ASDAWT–WT model and are retrieved from Li and
Caragea (2021); SDTF indicates our multi-task model.

data augmentation method, to double the size of
SD datasets, achieving state-of-the-art results on
WT–WT with a model trained on the union of gold
and synthetic samples.

In a last set of experiments, we investigate the
impact of adding such synthetically generated ex-
amples to an SDTF model. As synthetic samples
aren’t associated to any price vectors from the stock
market, we proceed as follows: we first fine tune a
BerTweet model on ASDAWT–WT, which we obtain
from the ASDA paper’s authors; then, we use such
model’s weights to initialize the textual encoder
of an SDTF multitask model (the left components
in Figure 2), which we finally train on the gold
WT–WT as described in Section 5.

Results in Table 7 show that models trained on
ASDAWT–WT (gold and synthetic samples) achieve
better results than SDTF trained on gold data alone.
Including synthetic signal from ASDAWT–WT seems
to be effective for all considered training settings:
even using a simple pretraining strategy as de-
scribed above allows an SDTF model to capture
useful textual features from the synthetic samples,
which are retained over the finetuning stage and
allow for better cross-target generalization.

Our finetuned model (ASDA+SDTF in Table 7)
reaches state-of-the-art results on the WT–WT

dataset and best results over three of the four con-
sidered mergers, with gains in F1 scores ranging
from +1.4 (ANTM_CI) to +3.2 (CI_ESRX).

8 Conclusions

In this paper, we studied the well-established task
of Twitter SD in a multitask scenario, focusing on
the financial domain. We proposed SDTF, a novel
model which integrates two modalities, text and
financial time series data. We extended WT–WT, a
large dataset for financial SD, with financial signals
from stock market prices. Our detailed analysis of
models’ results demonstrated that financial SD on
tweets benefits from such signals: models which

include textual and financial features showed bet-
ter cross-target generalization capabilities, and ob-
tained better results on all stance labels. Finally,
we proposed a simple but effective setting to lever-
age useful signals encoded in synthetic samples,
reaching state-of-the-art results on WT–WT.

We release the financial signal collected to com-
plement WT–WT: together with the STANDER cor-
pus of news SD, which discusses the same mergers,
it constitutes an invaluable and unique resource to
foster research on multi-modal, multi-genre SD,
and to model the integration and mutual influences
between stock market variations, tweets, and au-
thoritative news sources.

Ethics and Broader Impact

Data Collection. Daily financial data is pub-
licly available and can be freely downloaded
(e.g. through Yahoo Finance15). However, granular
financial data needs to be purchased. We bought
the historical financial data from FirstRate Data
LLC16, who source their data directly from major
exchanges. We tested all signals for consistency
and completeness, and found that it reflects the
actual trading in the stocks.
Presence of Bias. As textual input, we used WT–
WT, a publicly available dataset which we obtained
from the authors after signing a data sharing agree-
ment (Academic Free License). Given that many
NLP tasks are somehow subjective (Poesio et al.,
2019), and the choice of annotators might reinforce
the emergency of bias (Waseem, 2016; Sap et al.,
2019; Geva et al., 2019) we note that WT–WT might
contain annotation bias, which could be amplified
by our models (Shah et al., 2020; Waseem et al.,
2021). Moreover, the BerTweet model we are using
as main text encoder might encode biases due to
the data it was trained on (Bender et al., 2021). We
observe, however, that both elements are beyond
our control.
Data Sharing. In accordance with FirstRate Data,
we release the relevant portion of the data under
Academic Free License at the link: https:
//github.com/cambridge-wtwt/
acl2022-wtwt-stocks. We are aware
of the many ethical issues surrounding social
media research (Hovy and Spruit, 2016). Virtually
all models trained on social media data are
dual-use (Benton et al., 2017): in order to avoid

15https://uk.finance.yahoo.com/
16https://firstratedata.com/
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potential misuse, we will share our financial
signals, which is complementary to WT–WT, only
upon signing a data sharing agreement restricting
the data usage to research only.
Environmental Factors. We are conscious that
training transformers such as BerTweet produces
large quantity of CO2 emissions (Strubell et al.,
2019; Henderson et al., 2020). We observe that,
in our case, we are not training such models from
scratch, thus considerably limiting the training time.
Moreover, we also experimented with (partially)
frozen transformers (Lee et al., 2019; Sajjad et al.,
2020; Mosbach et al., 2020), which in turn require
less parameters to be optimized.
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A Data Analysis

Figure 3: Stock prices of CVS (buyer) and AET (target)
on the day of the merger announcement (26.10.2017).

In addition to the example discussed in Section 4,
we report a further case study from financial data
aligned to WT–WT, this time from one of the suc-
ceeded mergers, CVS_AET. As shown in Figure 3,
on the day in which the CSV_AET merger was
officially announced, the buyer’s price decreased,
while the target’s price increased. This is in line
with the theory (Bruner and Perella, 2004) and also
makes intuitively sense: the deal was worth $69 bil-
lion and CVS was likely to need to pay a premium
to acquire AET’s shares.

This knowledge is captured by the stock market’s
movements, and constitutes very valuable informa-
tion for a stance classifier, as it implicitly increases
the likelihood of a supporting stance. The lower
plot in Figure 3 shows not only a peak in the tweets
number, but also in the relative proportion of sup-
porting tweets.

B Experimental Specification

B.1 Detailed Data Preprocessing
We perform minimal preprocessing on the tex-
tual input: differently than in the BerTweet pa-
per (Nguyen et al., 2020), we perform only URL
normalization and lowercasing. We leave the user-
names as in their original form: this was done be-
cause, in many cases, the usernames are the only
clue in the tweet that points to one of the consid-
ered companies. To create the string representation
for the target, we follow Conforti et al. (2020b)’s
representation of company names and acronyms,
and add the official (at the time of data collection)
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Figure 4: Confusion matrices for the our multi-modal model on the test merger (when training, in turn, on the other
three). y axis are the true, and the x the predicted labels, in the order: Comment, Refute, Support, Unrelated.

Twitter account(s) for both the buyer and the target
(Table 8).

Company Acronym Twitter Username(s)

Aetna AET @Aetna @AetnaHelp
Anthem ANTM @AnthemInc @Anthem
Cigna CI @Cigna
CSV CVS @cvs @cvshealth
Express Script ESRX @ExpressScripts
Humana HUM @Humana

Table 8: Company-related specifications used to obtain
the targets.

B.2 Experimental Setup

(Number of) Hyper-Parameters. All models use
Adam (Kingma and Ba, 2014) with weight decay
3e− 5, β1 = 0.9, β2 = 0.999. Models are trained
for a maximum of 7 epochs, with early stopping
monitoring the eval loss with a patience of 3. All
hyper-parameters used are reported in Table 9 and
have been optimized on the development set. Ta-
ble 10 reports on the total number of (trainable)
parameters for each considered model.

batch size 64
maximum tweet length 64
output of BerTweet 768
financial input vector size 12
financial input sequence length 30
GRU hidden size 128
number of attention heads 6

Table 9: Details of used hyper-parameters.

Training Setting. All models are trained using
cross-validation, testing on one target and train-
ing on the other three. The WT–WT dataset does
not provide any official development set. Follow-
ing (Conforti et al., 2020b), we randomly select a
15% of the training sample as development set.

Model #parameters #trainable
parameters

BerTweet (frozen) 134,903,044 49,848,580
BerTweet (frozen:9) “ 71,112,196
BerTweet (trained) “ 134,903,044

SDTF (MT, frozen) 168,783,423 83,727,167
SDTF (MT, frozen:9) “ 104,992,575
SDTF (MT, trained) “ 168,783,423

Table 10: Number of (trainable) parameters for all con-
sidered models and training settings.

Evaluation Framework. We use sklearn’s im-
plementation17 of accuracy and macro-averaged
precision, recall and F1 scores (Pedregosa et al.,
2011).

Computing Infrastructure and Runtime Speci-
fications. Models were trained on Google Colab’s
GPU. On average, each experiment took ∼1:30
hours to train.

Confusion Matrices. Detailed confusion matri-
ces for all cross-validation settings are reported in
Figure 4.

17https://scikit-learn.org/stable/
modules/classes.html#module-sklearn.
metrics
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