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Two children throw _____ at each other
as a video is captured in slow motion.

_____ sits at a drum set and practices
playing the drums.

A boy is trying to comb his hair while
_____ dries it.

Correct answers: balloons, balloons
filled with water, balloons of water, pink
balloon, pink water balloon, things, wa-
ter, water balloons, water-filled balloons

Correct answers: child, drummer, fu-
ture drummer, girl, kid, little girl, little
kid, musician, small child, young girl

Correct answers: another person,
friend, girl, his sister, his sister with
hairdryer, person, young woman

Figure 1: Three examples from the FIBER dataset, each including three video frames, the caption, the blanked
answers from the original caption together with the collected answers (all answers normalized, see Section 3.2).

Abstract

We propose fill-in-the-blanks as a video under-
standing evaluation framework and introduce
FIBER – a novel dataset consisting of 28,000
videos and descriptions in support of this evalu-
ation framework. The fill-in-the-blanks setting
tests a model’s understanding of a video by
requiring it to predict a masked noun phrase
in the caption of the video, given the video
and the surrounding text. The FIBER bench-
mark does not share the weaknesses of the cur-
rent state-of-the-art language-informed video
understanding tasks, namely: (1) video ques-
tion answering using multiple-choice questions,
where models perform relatively well because
they exploit linguistic biases in the task for-
mulation, thus making our framework chal-
lenging for the current state-of-the-art systems
to solve; and (2) video captioning, which re-
lies on an open-ended evaluation framework
that is often inaccurate because system answers
may be perceived as incorrect if they differ
in form from the ground truth. The FIBER
dataset and our code are available at https:
//lit.eecs.umich.edu/fiber/.

1 Introduction

Despite current progress on multimodal (textual
and visual) representations, language-informed
video understanding is still a very challenging task
for machine learning systems (Zhang et al., 2021;
Li et al., 2021). This is due in large part to the

task setup and the dataset construction. Current
video understanding datasets often have at least
one of two major limitations. First, they have
limited application value. E.g., multiple-choice
questions (Lei et al., 2018; Tapaswi et al., 2016;
Jang et al., 2017; Castro et al., 2020) do not reflect
real-world tasks. Second, they are based on sub-
jective evaluation metrics, e.g., video captioning
(Tran et al., 2016; Krishna et al., 2017; Zhou et al.,
2018; Wang et al., 2019)), and are therefore hard to
evaluate automatically, as the ground truth can be
expressed in different ways. In this paper, we ad-
dress these limitations by introducing a new dataset
named FIBER that collects multiple perspectives
on the same video, focusing on noun phrases as a
proxy for different entities and their interactions
in the video. Our data focuses on recall and tests
the ability of models to capture a wide range of
possible interpretations for a particular aspect of a
video.

We construct the FIBER dataset by systemati-
cally blanking captions from an existing video cap-
tioning dataset named VaTeX (Wang et al., 2019)
and by providing additional correct answers for
the blanks. VaTeX is a video captioning dataset
that contains 40,000 10-second YouTube videos
with 10 English captions per video.1 We build our

1Licensed under Creative Commons, more infor-
mation here: https://eric-xw.github.io/
vatex-website/index.html.
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video fill-in-the-blanks dataset by blanking random
noun phrases from one of the English captions for
each video, from a subset of VaTeX consisting of
28,000 videos. Through extensive analyses, we
show that the blanked noun phrases are essential
for understanding important visual aspects from
the video.

To address the fill-in-the-blanks task, we pro-
pose a Transformer-based (Vaswani et al., 2017)
multimodal model. Our experiments show that our
best multimodal model achieves a token-level F1
score of 71.4 while the F1 score of crowd workers
is 82.5, indicating that this task is challenging for
video and text understanding.

The contribution of this work is threefold: (1)
We propose a novel fill-in-the-blanks task as an
evaluation framework that addresses the drawbacks
associated with previous approaches to video un-
derstanding. In support of this framework, we in-
troduce FIBER, which is a novel dataset of 28,000
videos and fill-in-the-blanks captions with multiple
correct answers. (2) We propose several unimodal
baselines and two multimodal models for solving
this task. (3) We provide a detailed analysis of the
data to measure the diversity and complexity of
the answers, and also conduct an error analysis of
the models’ performance, to gain insights into the
blanked captions and videos that are hard for the
models to solve.

2 Related Work

Language-informed video understanding is a com-
plex task that has been extensively addressed in the
multimodal (natural language and computer vision)
machine learning research through diverse tasks
and benchmarks.

Multiple-Choice Video Understanding.
Multiple-choice benchmarks consist of iden-
tifying the only correct answer from a set of
distractors, where the set of possible answers
varies depending on the input. Video Question
Answering (Video QA), a popular format, consists
of answering questions based on the video content.
Numerous multiple-choice Video Understand-
ing benchmarks have been proposed such as
TVQA (Lei et al., 2018), MovieQA (Tapaswi et al.,
2016), TGIF-QA (Jang et al., 2017) (Repetition
Action and State Transition tasks), LifeQA (Castro
et al., 2020), PororoQA (Kim et al., 2017), Mari-
oQA (Mun et al., 2017), VCQA (Zhu et al., 2017),
VideoMCC (Tran et al., 2016), and ActivityNet

QA (Yu et al., 2019). However, they provide
choices and are thus easier to solve than generating
arbitrary text. A further drawback is that the
performance without the visual input is generally
already high as models are able to exploit biases in
the dataset (Agrawal et al., 2018) or they count on
other modalities that overlap in functionality with
the visual one.

Video Captioning. Video Captioning consists
of generating a piece of text that describes a
given video. This task can be carried out us-
ing multiple datasets such as ActivityNet Cap-
tions (Krishna et al., 2017) (also features Dense-
Captioning), YFCC100M (Thomee et al., 2016),
(Alayrac et al., 2016), DiDeMo (Anne Hen-
dricks et al., 2017), MSR-VTT (Xu et al., 2016),
YouCook2 (Zhou et al., 2018), How2 (Sanabria
et al., 2018), HowTo100M (Miech et al., 2019),
VaTeX (Wang et al., 2019), TGIF (Li et al., 2016),
MovieNet (Huang et al., 2020), LSMDC (Rohrbach
et al., 2017), TGIF-QA (Li et al., 2016) (Frame QA
task). Due to the diversity of captions provided,
Video Captioning benchmarks do not present a high
human agreement and are thus hard to evaluate au-
tomatically with certainty (Aafaq et al., 2019).

Video Understanding Based on Filling Blanks.
VideoBERT (Sun et al., 2019b), CBT (Sun et al.,
2019a), UniVL (Luo et al., 2020), ActBERT (Zhu
and Yang, 2020), and HERO (Li et al., 2020) meth-
ods propose masking random parts of the input
from text and video pairs for training. However,
they do this only for the purpose of system train-
ing and do not use the framework to test and eval-
uate video understanding. The only exception
is MovieFIB (Maharaj et al., 2017) which em-
ploys a video fill-in-the-blanks scheme, based on
LSMDC (Rohrbach et al., 2017) for both training
and evaluation. However, these methods have sev-
eral drawbacks. They blank a single word, which
makes it easier to guess; they evaluate correctness
with a single ground-truth answer per caption; and
they focus on the movies domain (we focus on
YouTube videos).

Concurrent Work. The most similar work to
ours is VidQAP (Sadhu et al., 2021), which
presents an evaluation framework to fill in blanks
with phrases using semantic roles based on Activ-
ityNet Captions (Krishna et al., 2017) and Cha-
rades (Sigurdsson et al., 2016); unlike this existing
work, we design our benchmark to feature a high
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human accuracy (avoiding ActivityNet Captions
as it is contextualized, collecting multiple correct
answers, and showing a high human performance).
Our work is also close to (Yang et al., 2021) on
evaluating the use of free-form QA; however, they
employ a small vocabulary and no human accuracy
that serves as an upper bound for the task.

The novelty of our work lies in our use of a hard
task (a considerable gap between human and best
model performance) that measures a form of video
understanding while at the same time yielding a
high human performance due to the large number
of possible correct answers we collected (∼13 per
caption) from multiple annotators (∼9 per caption).

3 Video Fill-in-the-Blanks Dataset

We construct FIBER – a large video understanding
dataset that can evaluate the ability of a model to
interpret and use a multimodal context by requiring
the models to “fill in” (generate) a “blank” (a miss-
ing constituent) in this context. We build FIBER

by following two main steps: (1) data generation,
where we compile a large set of video-caption pairs
with selectively blanked words; and (2) data an-
notation, where crowd workers provide additional
valid answers for these blanks.

Note that we could also develop a fill-in-the-
blanks dataset by completing only the first step:
the data generation. However, this would result in
only one valid answer (the original blanked word
or phrase), which can lead to unfair evaluations
that are too strict because of alternative correct
answers being dismissed (e.g., “child” provided
as an answer where the blanked word was “kid”).
Other than manual annotations, we found no high-
quality method to automatically obtain additional
correct answers. For example, “building” and “t-
shirt” in Table 7 are too dissimilar but both are
correct, “pink” and “yellow” in Fig. 1 are semanti-
cally close but only one is correct.

3.1 Data Generation

The dataset is constructed starting with the Va-
TeX (Wang et al., 2019) dataset. VaTeX is a multi-
lingual video captioning dataset, consisting of over
41,250 video clips, each of which is taken from a
unique public YouTube video, and lasts around 10
seconds. For each video clip, there are 10 English
and 10 Chinese captions associated with it.

We produce blanked captions by blanking noun
phrases in the English captions in VaTeX. We chose

to mask only noun phrases for three main reasons.
First, noun phrases often require visual information
for identification or understanding. They cover a
large variety of information regarding visual con-
tent, as their head nouns can describe people, ob-
jects, scenes, events, and more. A model often
needs to identify the related objects in the videos,
as well as the properties of objects (e.g., color, num-
ber, or size) to fill the blank correctly.

Second, nouns are usually essential to under-
standing of visual content and serve as reliable
predictors of the ability of a system to understand
a video. Other phrases, such as verbs or adjectives,
can more easily be guessed from the text only while
ignoring the visual information. To illustrate, con-
sider the example “A woman _____ in the pool,”
where a model can easily predict that the blank
should be “swims” from the textual content only,
which would not be the case for “A woman swims
in _____”, where the blank could be completed by
sea, pool, lake, water, and other similar nouns.

Third, in preliminary experiments, we found
that nouns lead to more robust annotations as com-
pared to e.g., adjectives, which can have low inter-
annotator agreement due to their subjectivity. As an
example, consider the phrase “A _____ hill stands
behind the house.” where the blank could be filled
with a color property, a size property, or another
attribute.

For each video, we choose the first English cap-
tion that contains at least one noun phrase as de-
tected by spaCy2 (Honnibal et al., 2020), and ran-
domly blank one of these noun phrases to generate
an instance. Accordingly, we generate our training,
validation, and test data starting with the VaTeX
v1.1 training set, a random subset of size 1,000
from the validation set, and a random subset of size
1,000 from the test set, respectively.

3.2 Data Annotation
We performed a crowdsourced annotation proce-
dure to collect additional correct answers for each
blank in the validation and test sets. As highlighted
earlier, the main reason for collecting these addi-
tional annotations is to reflect the natural diversity
of language, and have multiple alternative answers
for each blank.

We use Amazon Mechanical Turk (AMT) for the
annotation. Figure 2 shows the annotation interface

2We used the model en_core_web_trf from spaCy
v3. An error analysis identified only three tagging errors in a
sample of 247 sentences.
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Figure 2: Annotation interface.

and a highlight of the data collection instructions
(additional guidelines were provided, not shown
here for space reasons). For each blanked cap-
tion, workers were presented a video clip along
with the corresponding masked caption. They were
then asked to fill in the blank with a noun phrase.3

We also asked annotators to provide answers in
a confidence-descending order (the first answer
should be the most natural one to the annotator).

We presented five videos in each Human Intel-
ligence Task (HIT). Nine workers annotated each
of them with at least two answers for each blank.
We paid a bonus for each extra answer for each
blanked caption, from the second one to the fifth
one, to encourage them to provide more answers.
We calculated a $12 hourly rate for a worker that
provides at least five answers. We estimated the
time to annotate one video to be 30 seconds. Con-
sequently, the HIT pay rate was $0.2, which could
result in a total of $0.5 with the added bonus. Addi-
tionally, we offered another type of bonus of $0.2
to the worker with the largest number of correct an-
swers for every HIT, to encourage them to provide
more than five answers.

We required workers to be in Canada or the
United States,4 and to have completed at least 1,000

3We blanked multi-word spans for the task, rather than
single-word noun phrases, because blanking a single noun
at a time led to a lower annotator agreement in preliminary
experiments, likely due to the lower likelihood of overlap. For
example, annotator 1 might write “young boy” and annotator
2 might write “young child”, which would have at least some
overlap as compared to “boy” and “child” (no overlap).

4We restricted the task to these countries because it is a
good proxy for proficient English speakers and because our
task received lower-quality responses otherwise.

Statistic Original phrases Annotated

Noun phrases (before
filtering)

100% 95%

Unique answers per cap-
tion

∼ 13.0 ± 4.14

Unique answers per cap-
tion per annotator

∼ 2.63 ± 0.49

Characters per token 5.09 ± 1.89 5.27 ± 2.00
Tokens 1.47 ± 0.68 1.36 ± 0.68
Visual word use (color,
number, or size)

8.21% 3.31%

Table 1: Summary statistics for the originally blanked
phrases and the annotated answers. The token counts
are computed after the text normalization. The statistics
for the annotated answers correspond to the ones after
filtering for noun phrases (see Section 3.2), except for
the noun phrases percentage.

HITs on AMT with at least a 92% approval rate.
The interface also checked that for a given worker
and caption the answers were different. For this, we
first normalized the answers by lower-casing, strip-
ping punctuation and extra spaces, and removing
the determiners “the”, “a”, and “an.”

During the annotation, we manually reviewed a
sample to identify cases of incorrectly tagged noun
phrases (e.g., “inside” marked as a noun when it
should be a preposition) and factually incorrect
noun phrases (e.g., referring to bags as “eggs” with-
out any information on the contents of the bags);
we disqualified workers who consistently provided
incorrect annotations. After collecting annotations,
we filtered for noun phrases using the same method
as before, based on whether the text is parsed as
a noun phrase (including bare nouns, e.g. “man is
walking”), a wh-phrase (“who is speaking”), a sim-
ple gerund (“eating is a good way to stay healthy”),
or infinitive (“to eat is wonderful”).

We compute summary statistics on the annotated
data to determine the degree of similarity with the
originally blanked phrases. The statistics are shown
in Table 1. We find that, in general, annotators tend
to provide ∼3 unique answers for the provided data.
Compared to the original phrases, annotators tend
to use about the same number of tokens. Anno-
tators also use visual words at a much lower rate
than the original phrases, possibly because the task
encouraged the annotators to generate as many dis-
tinct nouns as possible without regard to descriptive
information.

3.3 Data Analysis
To further validate the utility of the annotations
collected in this study, we provide an extensive
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analysis of the answers (which is obtained from the
union of the annotations and the originally blanked
phrases).

We compute the most-frequent answers and find,
as expected, that noun phrases related to “person”
are the most frequent: the word “man” appears in
5.7% of total original phrases and 1.2% of total an-
notations (see Figure 5 in the Appendix). Note that
our annotations have a long tail distribution, as the
most-frequent noun phrase appears in only 1.2% of
total annotations. In addition, we find that answers
related to “person”, such as “another person” are
not trivial. On the contrary, in the third example in
Fig. 1, for example, a model has to reason about
the actions of both persons and distinguish between
them. The other two examples in Fig. 1 also reflect
how a model needs to understand both the video
and the text in order to complete the blanks.

Figure 3 shows what kind of answers are de-
picted in the videos. This analysis shows the diver-
sity and complexity of answers that a model needs
to fill in, demonstrating a strong video understand-
ing. As expected, the cluster Person-related has
the most answers, followed by the clusters: Ob-
jects (e.g., shoes, glasses), Places (e.g., mountain,
street), Materials (e.g., metal, wood), and Body
parts (e.g., fingers, head). Note also that the Person-
related cluster, among more typical answers such
as “male” and “female”, also contains complex
and diverse answers such as “dancer”, “workers”,
“musician” or “audience”.

3.4 Human Agreement

To establish a reference for the machine models, we
compute the agreement among annotators using the
evaluation metrics described in Section 5.1, which
we also use for model evaluation (Section 5.2).

Specifically, we apply a leave-one-out strategy
to construct the “test set” and the “ground truth
set.” We compare the first answer provided by
each crowd worker (which is their most natu-
ral/confident answer) against the complete set of
answers provided by the other crowd workers, us-
ing maximum F1 score (token overlap) and maxi-
mum exact match (EM) as agreement metrics, as
described in Section 5.1.

Table 2 shows the inter-annotator agreement. We
show the mean values of the agreement metrics per-
caption and per-answer (recall there are multiple
answers per caption, so in the former case we first
average among the answers within the caption and
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Figure 3: The 2D t-SNE (Van der Maaten and Hin-
ton, 2008) representation of the clustering of the
top 100 most frequent answers provided for the
blanks. The answers are first converted to singu-
lar form, to avoid showing redundant information.
The answers are represented using the pre-trained
model stsb-roberta-base (Liu et al., 2019) with
Sentence-BERT (Reimers and Gurevych, 2019). Each
color represents a different cluster. The answers are
manually mapped to the clusters by one of the authors.

Statistic %

F1 first answers (per caption) 82.6 (± 15.7)
Exact Match first answers (per caption) 75.3 (± 19.7)
F1 first answers (per answer) 70.0 (± 11.9)
Exact Match first answers (per answer) 58.1 (± 16.3)

Table 2: Agreement statistics for answers (leave-one-
worker-out-comparison; std. dev. in parentheses).

then across the captions). The higher rates of agree-
ment at the caption level, compared to the answer
level, indicate a high amount of answer diversity
among the workers.

To validate the quality of the crowdsourced an-
notations, we also compare them against human
annotations collected from two trusted annotators
(both researchers at the University of Michigan).
We sample 200 captions from the validation set
and ask these two annotators to perform the same
labeling task that the MTurk workers performed,
and then compare their agreement with the crowd-
sourced data. The annotators obtain a per-caption
average of 90.2% F1 score and 49.0% exact match
accuracy, comparable to the agreement scores of
the workers.
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3.5 Limitations
We identify several limitations of our benchmark,
which can be the objective of future work.

NPs vs. other phrases. By looking at a video
and filling a blank caption with a noun phrase can
sometimes indirectly capture other aspects such as
actions (verbs, adverbs) and object quality (adjec-
tives, modifiers). However, this is not always the
case. This is especially true for noun phrases that
are easier to guess (cf. Table 4).

Focus on human actions. Our data focuses
mostly on human-related activities (e.g., sports),
and may lack general representation available in
other datasets related to animals, nature, and tech-
nology, to name a few.

Availability of the videos. As we build upon Va-
TeX (Wang et al., 2019) and YouTube, some videos
may become unavailable over time. To mitigate
this issue, the VaTeX website offers to download
pre-extracted video features.5

Efficiency of the data annotation process. Not
all videos have multiple possible captions for noun
phrases. For example, “the fork” may be the only
reasonable answer for a given video and blanked
caption, and annotators may not have anything else
to add.

4 Multimodal Method for Video
Fill-in-the-Blanks

We propose an encoder-decoder multimodal
method to perform the task of video fill-in-the-
blanks. We first encode the text and visual modal-
ities together to obtain a semantic representation
of the blanked caption and video. The decoder
uses the semantic representation to generate text
corresponding only to the answer to the blank. To
correctly generate an answer, a model needs to
learn which parts of videos relate to the missing
parts of the caption. To accomplish this, we use the
original Transformer architecture (Vaswani et al.,
2017), whose self-attention mechanism is partic-
ularly effective for encoding relations within an
input sequence and have been shown to perform
well in many language understanding tasks.

We consider two types of encoders, namely
the early-fusion encoder and the late-fusion (two-
stream) encoder. The structure of our multimodal

5https://eric-xw.github.io/
vatex-website/download.html

Transformer Encoder

_____ performs a shot put at an 
outdoor course.

Transformer Decoder

Video Feature Extractor

v1 v2 vm

LinearEmbedding

...

Video Frames

Blanked Caption

g1 g2 gk...

A young person

t1 t2 tn...

(a)

Multimodal Transformer Encoder

Transformer Decoder

Video Feature Extractor

v1 v2 vm
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...

Video Frames
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g1 g2 gk...

A young person

Video Transformer EncoderText Transformer Encoder

_____ performs a shot put at an 
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Embedding

t1 t2 tn...

(b)

Figure 4: (a) Early-fusion multimodal model for video
fill-in-the-blanks. (b) Bate-fusion multimodal model for
video fill-in-the-blanks.

model with an early-fusion encoder is shown in
Fig. 4a. The input to the model consists of the tok-
enized blanked caption-text t1, . . . , tn, as well as a
representation of the video consisting of multiple
video sequence features v1, . . . , vm from a video
feature extractor. The blanked captions are embed-
ded by an embedding layer. The video features are
projected into the encoder by a linear layer. We
use a special token to represent the masked phrase
and another one to separate the input text and video
sequences. We add positional embeddings to each
input token or video feature to represent the se-
quence order, and another embedding to indicate
whether it belongs to the text or video sequence
similarly to BERT (Devlin et al., 2019).

The late-fusion model is shown in Fig. 4b. The
late-fusion model encodes the language and video
first separately and then jointly. This is because
the modalities may benefit from learning indepen-
dently about their own context before using them
together.
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4.1 Implementation Details

For the video encoder, we use the existing I3D (Car-
reira and Zisserman, 2017) features (size 1024
every 8 consecutive frames) provided by the Va-
TeX dataset (Wang et al., 2019), in which videos
were sampled at 25 fps. We initialize our multi-
modal model using T5 (Raffel et al., 2020), given
its ability to fill in variable-length blanks. T5 is
an encoder-decoder Transformer (Vaswani et al.,
2017) model that is a good starting point as it
provides state-of-the-art performance on text-only
tasks and it was pretrained to fill arbitrary-length
text spans that were previously masked. Building
upon T5 allows our model to not only leverage
the pre-trained large-scale language models that
already have strong language abilities but also to
fuse it with visual inputs. We initialize the early-
fusion model with pretrained T5-base weights.
For the late-fusion model, we use T5-base for
the text encoder and for the decoder. We use two
one-layer transformers to encode videos and fuse
text and video features, and the weights of these
two transformers are randomly initialized. Follow-
ing T5 model implementation, the special token
<extra_id_0> is used to represent the blanked
phrase, and <\s> is used to separate the text and
video sequences. The generated output follows T5
output format: the special token <extra_id_0>
followed by the predicted text for the blanked
phrase. See Appendix B.1 for more details.

4.2 Baselines

We compare our model to the following baselines.

Most Frequent Answer. The baseline makes use
of the most frequent answer in the training set (“a
man”) as the answer to all the blanked captions
during evaluation.

Text-based Transformer. Previous visual ques-
tion answering datasets found that a text-only
model can nearly match the performance of the
multimodal system (Antol et al., 2015). We ana-
lyze the degree to which language alone can con-
tribute to our video understanding framework by
conducting experiments based on text-only mod-
els. We use the off-the-shelf T5-base transformer
model (Raffel et al., 2020) as our baseline model.
We use both a zero-shot model (not trained on our
data) and a fine-tuned model. For the latter, we
use the base model v1.1 because it performed bet-
ter in our experiments on the validation set. The

decoding hyperparameters are the same as in the
multimodal models, except the beam size is 8 for
both the zero-shot one and 2 for the fine-tuned vari-
ant as we obtained the best validation results for
each one using these beam sizes.

Single video feature. We consider using a sin-
gle I3D feature per video to determine how well
the model does with a small portion of the video.
Based on a study of 50 randomly sampled videos,
the blanked entity in the caption appeared 95%
of the time in the third second of the video (see
Fig. 11 in the Appendix). For this method, we pick
the I3D feature which corresponds roughly to it
and apply it to the proposed multimodal methods
instead of using all the video features. Note I3D
takes a window of 16 frames as input, which in our
case corresponds to 640 milliseconds, centered at
the mentioned moment within the video. This can
be seen as a small generalization of the Image Un-
derstanding task, which considers a single image
(frame).

5 Experiments and Results

We perform experiments and evaluations using the
dataset described in Section 3.

5.1 Evaluation Metrics

We use exact match accuracy and ROUGE-1 F1
score (token-level) (Lin, 2004) to evaluate the out-
put of the generation models and to evaluate human
agreement (Section 3.4). For the exact match, we
count a generated text string as correct if it has at
least one string-level match among the provided
annotations. For the token-level F1, we compute
the token overlap (true positives) between the gen-
erated text string and each annotation, normalized
by the sum of the true positives and average of
the false negatives/positives. We then compute
the maximum across all annotations. For all eval-
uations, we computed the metrics based on the
normalized text (i.e., without articles).

5.2 Results

We evaluate the visual understanding ability of our
multimodal model by comparing its performance
with the text-only baseline and the human perfor-
mance. The results from the fill-in-the-blanks task
are shown in Table 3. The accuracy of the text-
only model and F1 score are low, indicating that
the language bias is controlled in our dataset. The

2931



val test
Method EM F1 EM F1

BASELINES

Most Frequent Answer 15.4 45.1 16.4 45.3

T5 zero-shot 39.3 52.0 37.4 49.2
T5 fine-tuned 58.0 73.8 54.5 70.9

OUR MULTIMODAL MODELS

T5 + 1f I3D 59.2 74.7 54.3 70.5
T5 + I3D 60.2 75.0 56.2 71.4

Late-fusion T5 + 1f I3D 53.7 70.3 50.3 67.6
Late-fusion T5 + I3D 53.5 69.7 51.6 67.8

UPPER BOUND (HUMAN AGREEMENT)

leave one worker out 75.3 82.6 75.0 82.5
new humans* 49.0 90.2 n/a n/a

Table 3: Results on the validation set. EM stands for
Exact Match, and F1 is the token-level F1 score (both in
percentage). 1f refers to the variant of the multimodal
model with a single I3D feature. The new humans’
performance is measured from a random sample of size
200. See Section 3.4 for more details on the human
baselines.

multimodal model outperforms the text-only base-
lines in both exact match accuracy and F1 score,
meaning that our multimodal model is able to learn
video features relevant to caption language during
training. We also note that the early-fusion multi-
modal model (T5 + I3D) slightly outperforms the
late-fusion multimodal model, which suggests that
the model learns more effectively without extra en-
coders (see Fig. 4b). Both the early-fusion and the
late-fusion multimodal models perform worse with
a single I3D feature. This suggests that the model
benefits from the whole video to correctly answer
the caption.

We also find a large performance gap between
the multimodal model performance and the human
performance. Therefore, plenty of space exists for
improvements to achieve human performance, and
the video fill-in-the-blanks task is worth investigat-
ing in future visual understanding research.

5.3 Error Analysis

Results per Semantic Label. To measure how
well the model understands different patterns in the
caption data, we compare the predictions generated
for blanks corresponding to words of different se-
mantic categories (the rest of the answers generally
belong to the same category as the blanked words).
Two of the authors annotated the originally blanked
phrases for common non-overlapping semantic cat-
egories, including people, passive entities, and lo-

Category Size (%) T5 zs T5 ft T5 + I3D

Passive entity 40.4 52.9 63.6 63.6
Person 33.4 37.0 81.8 83.2
Pronoun 6.1 73.5 85.6 84.3
Location 5.5 55.1 74.5 75.4
Preposition 4.5 81.6 95.7 97.5
Action 3.9 47.8 65.5 59.9
Audio 2.5 56.4 73.0 63.6
Abstract 2.2 59.6 70.0 77.9
Other 1.5 56.9 75.0 83.7
Event 1.0 70.0 68.0 84.0

Table 4: F1 scores on the validation set for blanks with
different semantic categories, in descending order based
on their size. The results correspond to the best T5
zero-shot, T5 fine-tuned, and T5 + I3D models. Person
corresponds to answers related to people, Passive en-
tity represents passive entities such as objects, Pronoun
includes subject or object pronouns, Location corre-
sponds to places in general, Preposition includes noun
phrases inside prepositional phrases (e.g., “order” in “in
order to”), Action involves activities (“a handstand” in
“perform a handstand”), Audio refers to noun phrases
indicated through audio (“the procedure” in “the person
describes the procedure”, which can only be understood
through access to the audio modality), Abstract cor-
responds to high-level concepts (e.g., “a great time”),
Event are long-running processes (“a party”), and Other
correspond to instances hard to label for the annotators
(e.g., “a video”).

cations.
We list the categories and their distribution/size

in Table 4, and we also show the performance
for the best text-only zero-shot method (T5 zero-
shot), text-only fine-tuned method (T5 fine-tuned),
and multimodal method (T5 + I3D). The results
of T5 zero-shot show some categories can be eas-
ily predicted, without fine-tuning on the dataset,
namely Preposition, Pronoun, and Event. How-
ever, fine-tuning T5 on our dataset yields improve-
ments for nearly all categories. The multimodal
(T5 + I3D) model improves the categories of Per-
son and Abstract nouns but performs worse for
others, namely Audio and Action. This finding fol-
lows from the fact that understanding higher-order
audio and visual concepts requires complex reason-
ing, for which the video-aware model may need
more training. In general, Action and Passive entity
will likely require extra attention in future work,
considering the comparatively low performance for
these categories.

Best Model vs. Human Performance. To gain
insights on how to improve our models for future
work, we measure where our best model (T5 +
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I3D) fails and humans perform well. We find three
main types of wrong predictions. The most com-
mon error is predicting “man” instead of “women”,
followed by predicting “person” instead of “child”
or “baby”. The majority of the remaining errors
are predictions close to the ground truth answers
such as “dance” instead of “exercise”, “pillow” in-
stead of “sheets”, “rug” instead of “sand”, “floor”
instead of “court”, “knife” instead of “spatula” or
“basketball game” instead of “wrestling”.

Based on these types of errors, in future work,
the model would benefit from pre-training on un-
biased data (both gender and age) and also from
pre-training on a large-scale multimodal (language
and video) dataset, to learn about more diverse
situations and objects.

6 Conclusions

This paper introduced the fill-in-the-blanks eval-
uation framework for video understanding. The
framework addresses drawbacks of alternative
video understanding tasks, such as multiple-choice
visual question answering or video captioning.

Our paper makes three important contributions.
First, we introduced FIBER, which is a large
dataset consisting of 28,000 videos and tests based
on filling blanks, building upon an existing video
captioning dataset with a new set of manual an-
notations, and using a modified annotation frame-
work to encourage diverse responses among an-
notators. This process can be easily replicated to
create new fill-in-the-blanks data for other datasets
and tasks. Second, we conducted extensive anal-
yses on the dataset to evaluate the quality of the
annotations and to understand the patterns and lim-
itations of the data. Finally, we introduced a mul-
timodal model that fuses language and visual in-
formation and found that the video-aware models
significantly outperform the text-only models. No-
tably, we found a consistent gap between model
performance and human performance, which sug-
gests room for improvement in future models ad-
dressing video understanding through the lens of
the fill-in-the-blanks task.

The FIBER dataset and our code are avail-
able at https://lit.eecs.umich.edu/
fiber/.

7 Ethical Considerations and Broader
Impact

Even though we compensated the annotators based
on the quality of the answers they produced (and
stated so in the instructions), they were rewarded
based on the number of answers they input since we
looked for diversity. These incentives may have en-
couraged the annotators to make many judgments
quickly and therefore make biased decisions. Due
to these biases, we cannot guarantee that annota-
tors’ guesses always match reality. Based on spot-
checking, it seems that annotators made reasonable
judgments, but others may disagree. We have also
observed our data is skewed toward more male
noun phrases (cf. Appendix A.5), which could be
due to a bias both in VaTeX and in the annotators
we hired.

Our evaluation weights all errors equally, even
though some errors may have a bigger impact than
others. For example, someone in a video may be
misgendered by being referred to as a “man” when
the correct reference should be “woman.”
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A Dataset

A.1 Most-Frequent Noun Phrases

We report the most-frequent noun phrases in the
original labels and in the annotations we collected,
in Fig. 5. The most frequent nouns for both an-
swer sets tend to reference people, which makes
sense considering the content of the videos. In the
annotation data, we see a greater variety of syn-
onyms for the same kind of person (“male”, “man”,
“guy”), likely a result of the task definition, which
encourages paraphrasing.

A.2 Part-of-speech Distribution

We compare the rate of use of words in different
part-of-speech categories for the originally blanked
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Figure 5: Top 20 nouns for the originally blanked
phrases and the annotations in the validation and test
data.

phrases and the annotations, using the same parser
specified earlier to label part-of-speech tags in the
noun phrases. The distributions are shown in Fig. 6,
and we see that the annotations have roughly the
same rate of part-of-speech tag use in all categories,
except among adjectives and pronouns where the
originally blanked phrases have a higher rate of
use. This is likely an artifact of the data collection
strategy, which encouraged annotators to generate
unique noun phrases rather than phrases with ad-
jectives or pronoun references.

A.3 Part-of-speech Sequence Distribution

Although the candidate answers collected from
crowd workers consist of noun phrases, they may
include different part-of-speech (POS) sequences
within the noun phrases. The distributions of POS
sequences in Fig. 7 show that the annotators tended
to write “bare” nouns without extra determiners
and proper nouns, more than the original phrases.
This makes sense considering that the task asked
annotators to provide many unique nouns without
consideration for the nouns’ structure.

A.4 Dependency Categories

Due to the sampling process, some of the answers
occur in different syntactic contexts, e.g. in a prepo-
sitional phrase in “A woman does push-ups on
_____” or as a subject in “_____ at a driving range
demonstrating...” (see Fig. 1). We plot the distri-
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Figure 6: Relative frequency of part-of-speech tags in
the originally blanked phrases and the annotated an-
swers.

Figure 7: Relative frequency of POS tag sequences in
the originally blanked phrases and the annotated an-
swers.

Figure 8: Dependency category counts (per caption).

Figure 9: Average number of unique answers per cap-
tion, grouped by the dependency category of the root
word of the originally blanked phrases. The categories
are sorted by their frequency.

bution of dependency categories in Fig. 8, which
shows that nouns occur in a wide range of posi-
tions but mostly occur in a preposition, subject,
and direct object positions.

Next, we test whether certain syntactic con-
texts tend to attract more answers from the anno-
tators than others, by computing the mean unique
number of answers per annotator within each syn-
tactic context (based on the dependency parse
connected to the masked NP). The distribution
is shown in Fig. 9. Captions that mask noun
phrases which occur in preposition (pobj) and di-
rect object (dobj) positions tend to attract slightly
fewer unique answers per annotator than the next
most-frequent categories, subject (nsubj) and
compounds (compound). This intuitively makes
sense, since annotators would likely have fewer
options for noun phrases when faced with a prepo-
sition or a direct object, as opposed to the less
restrictive subject noun position.

A.5 Gender Representation

Often, language processing models can learn to en-
code social bias due to non-representative training
data, such as image captions for photos of men and
women taken in stereotypical environments (Zhao
et al., 2017). We find a slight gender gap in our
own data: by using a gender word list, we find
that about 10.9% of the originally blanked phrases
are male-related words in contrast to 6.2% that are
female-related, and 9.1% of the annotations are
male-related while 5.9% are female-related. We
note that the gender imbalance is less severe for
the annotations than for the original phrases, and
the annotations do in fact use more gender-neutral
human words than the labels (6.6% for annotations
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vs. 6.0% for original phrases). While some of
the annotators may undoubtedly have some bias in
terms of their decisions, some of the bias may also
result from the original video clips. We acknowl-
edge this limitation as a direction for future work
in collecting video caption data.

We used the following lists for gendered words,
which were chosen to be in similar semantic cate-
gories (e.g. male “brother”, female “sister”, neutral
“sibling”):

• Male-oriented words: “boy”, “brother”, “fa-
ther”, “guy”, “he”, “him”, “himself”, “his”,
“male”, “man”, “son”

• Female-oriented words: “daughter”, “female”,
“girl”, “her”, “herself”, “lady”, “mother”,
“she”, “sister”, “woman”

• Gender-neutral words: “adult”, “baby”,
“child”, “human”, “kid”, “parent”, “people”,
“person”, “sibling”

A.6 Spatiotemporal Trends of the Blanked
Entities

One of the authors of this paper randomly sampled
50 videos to analyze spatiotemporal information on
the blanked entities. Figures 10 to 12 show trends
on where, when, and for how long the blanked
entities appear in the videos. As expected, the
blanked entity generally appears at the center of
frames, with a small tendency to be on the lower
side. We observe that around 93% of the time the
blanked entity appears between seconds 2 and 4 of
the video but that there is still a high chance (75%)
of seeing it at any given moment. 68% of the time
the blanked entities appear for the entire duration
of their corresponding video.

B Experiments and Results

B.1 More Implementation Details
We use the T5 model from the HuggingFace Trans-
formers library (Wolf et al., 2020). We train the
model with Adam (Kingma and Ba, 2014) on a
V100-16Gb with a batch size of 64 for 10 epochs
(4,000 steps) using a learning rate of 1e-4 with a
warm-up of one epoch and a linear decay. The train-
ing time is short, less than an hour. We compute
the loss as the cross-entropy between the model-
generated output and the originally blanked phrase.

For test-time decoding, we use beam search with
a beam size of 4 for the early-fusion model and
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Figure 10: Heat map showing how frequently (%) the
blanked entity appears within a given location of the
video, for a sample of 50 videos. Each frame is divided
into a 4 by 4 grid. For a given cell, a blanked entity is
counted if it touches the cell at any moment of a given
video. Note that multiple cells can be counted for a
given video because the entity is big enough, or because
the entity or the camera moves.
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Figure 11: Frequency (%) that the blanked entity ap-
pears at each one-second interval in a given video, for a
sample of 50 videos. A time interval is counted if the en-
tity appears at any moment of the one-second duration
interval.
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Figure 12: Distribution of the total time that each
blanked entity is seen within its video, for a sample
of 50 videos.
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1 2 4 8

T5 fine-tuned 72.9 74.2 73.8 73.8
T5 + I3D 73.0 74.0 74.3 74.2
Late-fusion T5 + I3D 69.0 69.6 69.7 69.7

Table 5: F1 scores on the validation set for the beam
sizes 1 (greedy search), 2, 4, and 8.

EM F1

t5-small 20.2 37.1
t5-base 34.9 50.2
t5-large 43.5 59.5
t5-3b 44.9 62.6

Table 6: Results on the validation set for different model
sizes of the T5 text-only zero-shot model.

8 for the late-fusion one, with a maximum token
length of 10. We stop the decoding early, if an
example has seen as many complete hypotheses
as the beam size (beam search early-stopping6).
We penalize the repetitions of bigrams within a
decoded text. For each example, we choose the
first beam that is a noun phrase, as detected by
spaCy (Honnibal et al., 2020), or the first one if
none. We show the effect of varying the beam
size in Appendix B.2. We find that modifying the
beam search early-stopping property does not lead
to major performance changes.

B.2 Beam Search

Table 5 shows the effect of varying the beam size
during the beam search decoding. In all cases,
using a beam search of at least size 2 is better than a
greedy search. However, the results are marginally
better or inconclusive when using beam size 4 or
8. This is probably related to the phenomenon
described by Meister et al. (Meister et al., 2020)
in which beam search does get us closer to the
true maximum a posteriori solution but the answers
actually start to get worse after a certain point.

B.3 Model Size

In Table 6 we show the result of changing the T5
model size for the text-only zero-shot baseline. We
note we could not fit the model variant t5-11b
into GPU memory. As expected, we note an in-
crease in the evaluation metrics as the model capac-
ity increases.

6https://huggingface.co/transformers/
internal/generation_utils.html#
transformers.BeamSearchScorer

B.4 Qualitative Analysis
We show in Table 7 several examples of answers
correctly predicted by the best multimodal method
but incorrectly answered by the best text-only
method. Even though the answers provided by
the text-only method are plausible by just looking
at the text, they do not make sense with the given
videos. In the second example, one can quickly tell
the person is not at a gym but instead is in some
kind of indoor room. For these examples, the mul-
timodal method seems to have identified what is
visually important.
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A person at the top of _____ with
ropes hanging down.

A guy is by the stairs in _____
doing the moonwalk in socks.

A man is showing and describing
a rock sample to _____.

correct an-
swers

adirondacks, cliff, climb, frozen
waterfall, gully, hill, ice, icy cliff,
ledge, mountain, ravine, slope,
snow

building, doors, entryway, foyer,
his home, his house, home,
house, living room, room, shorts,
t-shirt

audience, camera, consider
where its hinge goes, describe
how it looks, discuss its hinge,
explain his viewers, his audience,
his followers, his subscribers,
his viewers, people, students,
viewer, viewers

T5 fine-
tuned

a tree (0) a gym (0) a woman (0)

T5 + I3D a mountain (100) a room (100) a camera (100)

Table 7: Examples of instances correctly predicted by the best multimodal method but incorrectly predicted by the
best text-only method. The F1 score obtained by each answer is shown in parentheses. The correct answers are
shown normalized and separated by commas while the model predictions are shown verbatim. From each video, we
show a single frame illustrating the key moment.
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