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Abstract
Pre-trained multilingual language models such
as mBERT and XLM-R have demonstrated
great potential for zero-shot cross-lingual
transfer to low web-resource languages (LRL).
However, due to limited model capacity, the
large difference in the sizes of available mono-
lingual corpora between high web-resource
languages (HRL) and LRLs does not provide
enough scope of co-embedding the LRL with
the HRL, thereby affecting the downstream
task performance of LRLs. In this paper, we
argue that relatedness among languages in a
language family along the dimension of lexical
overlap may be leveraged to overcome some of
the corpora limitations of LRLs. We propose
Overlap BPE (OBPE), a simple yet effec-
tive modification to the BPE vocabulary gener-
ation algorithm which enhances overlap across
related languages. Through extensive exper-
iments on multiple NLP tasks and datasets,
we observe that OBPE generates a vocabulary
that increases the representation of LRLs via
tokens shared with HRLs. This results in im-
proved zero-shot transfer from related HRLs
to LRLs without reducing HRL representation
and accuracy. Unlike previous studies that dis-
missed the importance of token-overlap, we
show that in the low-resource related language
setting, token overlap matters. Synthetically
reducing the overlap to zero can cause as much
as a four-fold drop in zero-shot transfer accu-
racy.

1 Introduction

Zero-shot cross-lingual transfer is the ability of a
model to learn from labeled data in one language
and transfer the learning to another language with-
out any labeled data. Transformer (Vaswani et al.,
2017) based multilingual models pre-trained on un-
labeled data from multiple languages are the state-
of-the-art means for cross-lingual transfer (Ruder
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et al., 2019; Devlin et al., 2019a). While pre-
training based cross-lingual transfer holds great
promise for low web-resource languages (LRLs),
such techniques are found to be more effective
for transfer within high web-resource languages
(HRLs) (Wu and Dredze, 2020).

Vocabulary generation is an important step in
multilingual model training, where vocabulary size
directly impacts model capacity. Usually, the vo-
cabulary is generated from a union of HRL and
LRL data. This often results in under-allocation of
vocabulary bandwidth to LRLs, as LRL data is sig-
nificantly smaller in size compared to HRL. This
under-allocation of model capacity results in lower
LRL performance (Wu and Dredze, 2020), as men-
tioned previously. In response, prior research has
explored development of region-specific models
(Antoun et al.; Khanuja et al., 2021), generating vo-
cabulary specific to language clusters (Chung et al.,
2020), and exploring relatedness among languages
to build better LMs for LRLs (Khemchandani et al.,
2021). However, none of these methods have uti-
lized relatedness among languages for better vocab-
ulary generation during multilingual pre-training.

In this paper, we hypothesize that exploiting lan-
guage relatedness can result in an overall more
effective vocabulary, which is also better represen-
tative of LRLs. Closely related languages (e.g., lan-
guages belonging to a single family) have common
origins for words with similar meanings. We show
some examples across three different families of re-
lated languages in Table 10. Morphological inflec-
tions of the root word lead to lexically overlapping
tokens across languages. Learning representations
for such subwords in lexically overlapping words
shared across HRL and its related LRLs can enable
better transfer of supervision from HRL to LRLs.
During Masked Language Modelling (MLM) pre-
training (Devlin et al., 2019a), the shared tokens
can serve as anchors in learning contextual repre-
sentations of neighboring tokens. However, choos-
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Language
and Token
frequencies

English: University (10), versity (6);
German: Universitaten (2); Dutch: Uni-
versiteit (1); Western Frisian: Univer-
siteiten (1)

Starting Vocab Uni, versit, U,n,i,v,e,r,s,i,t,y,a
BPE Vocab versity, Uni, versit, U,n,i,v,e,r,s,i,t,y,a
OBPE Vocab

Universit, Uni, versit, U,n,i,v,e,r,s,i,t,y,a

Table 1: First row shows lexically overlapping tokens
in four different languages with their corpus frequen-
cies (in brackets), with English (En) as the High Web-
Resource Language (HRL). From a starting vocabulary
shown in the second row, BPE merges tokens based
on greater overall frequency, adding new vocabulary
item versity as it has the highest overall frequency (16).
OBPE instead adds Universit since it also rewards
cross-lingual overlap, even though Universit has lower
overall frequency (15).

ing the correct granularity of sharing automatically
is tricky. On one extreme, we can choose a vo-
cabulary which favours longer units frequent in
HRL without regard for sharing, thereby leading to
better semantic representation of the tokens but no
cross-lingual transfer. On the other extreme, we can
choose character-level vocabulary (Ma et al., 2020),
where every token is shared across languages but
have no semantic significance.

Given text from a mix of high and low Web-
resource languages (HRL and LRL, respectively),
Byte Pair Encoding (BPE) (Sennrich et al., 2016)
and its variants like Wordpiece (Schuster and Naka-
jima, 2012) and Sentencepiece (Kudo and Richard-
son, 2018) prefer frequent tokens, most of those
from the HRLs. This would cause most long HRL
tokens to get included, leaving only a limited bud-
get of short tokens for the LRL. Any sub-token
level overlap between HRL and LRL could get
lost in this process. In a zero-shot setting, since
available supervision is HRL based, this creates
a bottleneck when transferring supervision from
HRL to LRLs. Oversampling LRLs is a common
strategy to offset this imbalance but that hurts HRL
performance as shown in (Conneau et al., 2020a).

In this paper, we propose Overlap BPE (OBPE).
OBPE chooses a vocabulary by giving token over-
lap among HRL and LRLs a primary consideration.
OBPE prefers vocabulary units which are shared
across multiple languages, while also encoding the
input corpora compactly. Thus, OBPE tries to bal-
ance the trade-off between cross-lingual subword
sharing and the need for robust representation of
individual languages in the vocabulary. This re-

sults in a more balanced vocabulary, resulting in
improved performance for LRLs without hurting
HRL accuracy. Table 1 shows an example to high-
light this difference between OBPE and BPE.

Recently K et al. (2020); Conneau et al. (2020b)
concluded that token overlap is unimportant for
cross-lingual transfer. However, they studied lan-
guage pairs where either both languages had a
large corpus, or where the languages were not suf-
ficiently related. We focus on related languages
within a family and observe drastic drop in zero-
shot accuracy when we synthetically reduce the
overlap to zero (58% F1 drops to 17% for NER,
71% drops to 30% for text classification).

This paper offers the following contributions
• We present OBPE, a simple yet effective mod-

ification to the popular BPE algorithm to pro-
mote overlap between LRLs and a related
HRL during vocabulary generation. OBPE
uses a generalized mean based formulation to
quantify token overlap among languages.

• We evaluate OBPE on twelve languages
across three related families, and show con-
sistent improvement in zero-shot transfer over
state-of-the art baselines on four NLP tasks.
We analyse the reasons behind the gains ob-
tained by OBPE and show that OBPE in-
creases the percentage of LRL tokens in the
vocabulary without reducing HRL tokens.
This is unlike over-sampling strategies where
increasing one reduces the other.

• Through controlled experiments on the
amount of token overlap on a related HRL-
LRL pair, we show that token overlap is ex-
tremely important in the low-resource, related
language setting. Recent literature which con-
clude that token overlap is unimportant may
have overlooked this important setting.

The source code for our experiments is available
at https://github.com/Vaidehi99/OBPE.

2 Related Work

Transformer-based multilingual language models
such as mBERT (Devlin et al., 2019b) and XLM-R
(Conneau et al., 2020a) are now established as the
de-facto method for zero-shot cross-lingual trans-
ferability, and thus hold promise for low resource
domains. However, recent studies have indicated
that even the current state-of-the-art models such
as XLM-R (Large) do not yield reasonable transfer
performance across low resource target languages
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with limited data (Wu and Dredze, 2020). This has
led to a surge of interest in enhancing cross-lingual
transfer of multilingual models to the low-resource
setting. We categorize existing work based on the
stage of the pre-training pipeline where it is rele-
vant:

Input Data In the data creation stage, Conneau
et al. (2020a) propose over-sampling of LRL doc-
uments to improve LRL representation in the vo-
cabulary and pre-training steps. Khemchandani
et al. (2021) specifically target related languages
and propose transliteration of LRL documents to
the script of related HRL for greater lexical overlap.
We deploy both these tricks in this paper.

Tokenization Rust et al. (2021) study that even the
tokenization step could have a crucial impact on
performance accrued to each language in a multi-
lingual models. They propose the use of dedicated
tokenizer for each language instead of the auto-
matically generated multilingual mBERT tokenizer.
However, they continue to use the default mBERT
vocabulary generator.

Vocabulary Generation Sennrich et al. (2016)
highlighted the importance of subword tokens in
the vocabulary and proposed use of the BPE algo-
rithm (Gage, 1994) for efficiently growing such a
vocabulary incrementally. Variants like Wordpiece
(Schuster and Nakajima, 2012) and Sentencepiece
(Kudo and Richardson, 2018) either build on top
of BPE or follow a very similar process. Kudo
(2018) is a variant method that chooses tokens
based on unigram LM score. We obtained better
results with BPE and continued with that. All these
BPE variants incrementally add subwords based
on overall frequency in the combined corpus, and
they all ignore language boundaries. Chung et al.
(2020) observed that such a combined approach
could under-represent several languages, and pro-
posed instead to separately create vocabularies for
clusters of related languages and take a union of
each cluster-specific vocabulary. However, within
each cluster they continue to use the default vocab-
ulary generator. Our approach can be used as a
drop-in replacement to further enhance the quality
of the cluster-specific vocabulary that they obtain.
Wang et al. (2019); Gao et al. (2020) propose a
soft-decoupled encoding approach for exploiting
subword overlap between LRLs and HRLs. How-
ever, their focus is NMT models and does not easily
integrate in existing multilingual models such as
mBERT. (Maronikolakis et al., 2021) targets tok-

enization compatibility based purely on vocabulary
size and does not focus on choosing the tokens that
go in the vocabulary.
Pre-Training and Adaptation Several previous
works have proposed to include additional align-
ment loss between parallel (Cao et al., 2020) or
pseudo-parallel (Khemchandani et al., 2021) sen-
tences to co-embed HRLs and LRLs. Another ap-
proach is to design language-specific Adapter lay-
ers (Pfeiffer et al., 2020a,b; Artetxe et al., 2020;
Üstün et al., 2020) that can be easily fine-tuned for
each new language. Pfeiffer et al. (2021) leverages
the pre-trained embeddings of lexically overlap-
ping tokens between the vocabulary of pre-trained
model and that of unseen target language to ini-
tialize the corresponding embeddings of target lan-
guage. However, they did not attempt to increase
the fraction of such tokens in the vocabulary.

We are not aware of any prior work that explicitly
promotes overlapping tokens between LRLs and
HRLs in the vocabulary of multilingual models.

3 Overlap-based Vocabulary Generation

We are given monolingual data D1, ..., Dn in a set
of n languages L = {L1, ..., Ln} and a vocabulary
budget V. Our goal is to generate a vocabulary V
that when used to tokenize each Di in a multilin-
gual model would provide cross-lingual transfer to
LRLs from related HRLs. We use LLRL to denote
the subset of the n languages that are low-resource,
the remaining languages L − LLRL are denoted as
the set LHRL of high resource languages.

Existing methods of vocabulary creation start
with a union D of monolingual data D1, ..., Dn,
and choose a vocabulary V that most compactly
represents D. We first present an overview of BPE,
a popular algorithm for vocabulary generation.

3.1 Background: BPE
Byte Pair Encoding (BPE) (Gage, 1994) is a simple
data compression technique that chooses a vocabu-
lary V that minimizes total size ofD = ∪iDi when
encoded using V .

V = argmin
S:|S|=V

n∑
i=1

|encode(Di, S)| (1)

The size of the encoding |encode(Di, S)| can be
alternately expressed as the sum of frequency of
tokens in S whenDi is tokenized using S. This mo-
tivates the following efficient greedy algorithm to
implement the above optimization (Sennrich et al.,

221



Algorithm 1 Overlap based BPE (OBPE)
for i ∈ {1, 2, ..., n} do

Split words in Di into characters Ci with a special
marker after every word
end for
V = ∪n

i=1Ci

while |V| < V do
Update token and pair frequency on {Di},V
Add to V token k formed by merging pairs u, v ∈ V

with the largest value of

(1− α)
∑
j

fkj + α
∑

i∈LLRL

max
h∈LHRL

(
fp
ki + fp

kh

2

) 1
p

end while

2016). Let fki denote the frequency of a candidate
token k in the corpus Di of language Li. The BPE
algorithm grows V incrementally. Initially, V com-
prises of characters in D. Then, until |V| ≤ V,
it chooses the token k obtained by merging two
existing tokens in V for which the frequency in D
is maximum.

V = V ∪ argmax
k=[u,v]:u,v∈V

∑
i

fki (2)

A limitation of BPE on multilingual data is that
tokens that appear largely in low-resource Di may
not get added to V , leading to sentences in Li being
over-tokenized. For a low resource language, the
available monolingual data Di is often orders of
magnitude smaller than another high-resource lan-
guage. Models like mBERT and XLM-R address
this limitation by over-sampling documents of low-
resource languages. However, over-sampling LRLs
might compromise learned representation of HRLs
where task-specific labeled data is available. We
propose an alternative strategy of vocabulary gener-
ation called OBPE that seeks to maximize transfer
from HRL to LRL.

3.2 Our Proposal: OBPE

The key idea in OBPE is to maximize the overlap
between an LRL and a closely related HRL while
simultaneously encoding the input corpora com-
pactly as in BPE. When labeled data DT

h for a task
T is available in an HRL Lh, then a multilingual
model fine-tuned withDT

h is likely to transfer better
to a related LRL Li when Li and Lh share several
tokens in common. Thus, the objective that OBPE

seeks to optimize when creating a vocabulary is:

V =argmin
S:|S|=V

[
(1− α)

n∑
i=1

|encode(Di, S)|

− α
∑

i∈LLRL

max
j∈LHRL

overlap(Li, Lj , S)

 (3)

where 0 ≤ α ≤ 1 determines importance of the
two terms. The first term in the objective compactly
represents the total corpus, as in BPE’s (Eq (1)).
The second term additionally biases towards vocab-
ulary with greater overlap of each LRL to one HRL
where we expect task-specific labeled data to be
present. There are several ways in which we can
measure the overlap between two languages with
respect to a current vocabulary. First, we encode
each of Di and Dj using the vocabulary S, which
then yields a multiset of tokens in each corpus. In-
spired by the literature on fair allocation (Barman
et al., 2021), we explore a continuously parameter-
ized function that expresses overlap between two
languages’ encoding as a generalized mean func-
tion as follows:

overlap(Li, Lh, S) =
∑
k∈S

(
fpki + fpkh

2

) 1
p

, p ≤ 1

(4)
where fki denotes the frequency of token k when
Di is encoded with S. For different values of p,
we get different tradeoffs between fairness to each
language and overall goodness. When p = −∞,
generalized mean reduces to the minimum function,
and we get the most egalitarian allocation. How-
ever, this ignores the larger of the two frequencies.
When p = 1, we get a simple average which is
what the first term in Equation (3) already covers.
For p = 0,−1, we get the geometric and harmonic
means respectively. Due to smaller size of LRL
monolingual data, the frequency of a token which
is shared across languages is likely to be much
higher in HRL monolingual data as compared to
that in LRL monolingual data, Hence, setting p to
large negative values will increase the weight given
to LRLs and thus increase overlap. We will present
an exploration of the effect of p on zero-shot trans-
fer in the experiment section.

The greedy version of the above objective that
controls the candidate vocabulary item to be in-
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Family HRL LRLs Number of HRL Docs
BALANCED SKEWED

West Germanic English (en) German (de), Dutch (nl), Western Frisian (fy) 0.16M 1.00M
Romance French (fr) Spanish (es), Portuguese (pt), Italian (it) 0.16M 0.50M
Indo-Aryan Hindi (hi) Marathi (mr), Punjabi (pa), Gujarati (gu) 0.16M 0.16M

Table 2: Twelve Languages simulated as HRLs and LRLs across with two different corpus distribution: BALANCED
and SKEWED. Number of documents in languages simulated as LRLs is 20K.

ducted in each iteration of OBPE is thus:

V = V ∪ argmax
k=[u,v]:u,v∈V

(1− α)
∑
j

fkj

+α
∑

i∈LLRL

max
h∈LHRL

(
fpki + fpkh

2

) 1
p

(5)

The data structure maintained by BPE to efficiently
conduct such merges can be applied with little
changes to the OBPE algorithm. The only dif-
ference is that we need to separately maintain the
frequency in each language in addition to overall
frequency. Since the time and resources used to cre-
ate the vocabulary is significantly smaller than the
model pre-training time, this additional overhead
to the pre-training step is negligible.

4 Experiments

We evaluate by measuring the efficacy of zero-
shot transfer from the HRL on four different
tasks: named entity recognition (NER), part of
speech tagging (POS), text classification(TC), and
Cross-lingual Natural Language Inference (XNLI).
Through our experiments, we evaluate the follow-
ing questions:

1. Is OBPE more effective than BPE for zero-
shot transfer? (Section 4.2)

2. What is the effect of token overlap on overall
accuracy? (Section 4.3)

3. How does increased LRL representation in the
vocabulary impact accuracy? (Section 4.4)

We report additional ablation and analysis experi-
ments in Section 4.5.

4.1 Setup
Pre-training Data and Languages As our pre-
training dataset {Di}, we use the Wikipedia dumps
of all the languages as used in mBERT. We pre-
train with 12 languages grouped into three families
of four related languages as shown in Table 2. In
each family, we simulate as HRL the most popu-
lous language, and call the remaining as LRLs. The
number of documents for languages simulated as

Dataset split
Lang Number of sentences

NER POS TC XNLI

Train:HRL
hi 5.0 53.0 25.0
en 10.5 18.0 10.0 393.0
fr 7.5 16.5 10.0 393.0

Validation:HRL
hi 1.0 3.0 4.0
en 6.0 4.0 10.0 2.5
fr 4.0 2.0 10.0 2.5

Test data
hi 0.2 12.0 7.0
en 6.0 4.6 10.0 5.0
fr 4.0 4.1 10 5.0
mr 0.8 9.5 6.5 -
pa 0.2 13.4 7.9 -
gu 0.3 14.0 8.0 -
de 12.0 19.3 10.0 5.0
nl 8.0 1.0 - -
fy 0.8 - - -
es 5.0 3.1 10.0 5.0
pt 4.0 2.5 - -
it 5.0 3.4 - -

Table 3: Task-specific data sizes. Number of sentences
in thousands.

LRLs is set to 20K. For the HRLs, we consider two
corpus distributions:

• BALANCED : all three HRLs get 160K docu-
ments each

• SKEWED : English gets one million, French
half million, and Hindi 160K documents

We evaluate twelve-language models in each of
these settings, and present results for separate
four language models per family in Table 12 in
the Appendix. For the Indo-Aryan languages set,
the monolingual data of Punjabi and Gujarati is
transliterated to Devanagari, the script of Hindi and
Marathi. We use libindic’s indictrans library (Bhat
et al., 2015) for transliteration. Languages in the
other two sets do not require transliteration as they
have a common script. Thus, all four languages
in each set are in the same script so their lexical
overlap can be leveraged.
Pre-Training Details To ensure that LRLs are not
under-represented, we over-sample using exponen-
tially smoothed weighting similar to multilingual
BERT (Devlin et al., 2019b) with exponentiation
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factor 0.7. We perform MLM pretraining on a
BERT base model with 110M parameters from
scratch. We generate a vocabulary of size of 30k.
We chose batch size as 2048, learning rate as 3e-5
and maximum sequence length as 128. Pre-training
of BERT was done with duplication factor 5 for
for 64k iterations for HRLs. For all LRLs, duplica-
tion factor was 20 and training was done for 24K
iterations. MLM pre-training was done on Google
v3-8 Cloud TPUs where 10K iterations required
2.1 TPU hours.
Task-specific Data We evaluate on four down-
stream tasks: (1) NER: data from WikiANN (Pan
et al., 2017) and XTREME (Hu et al., 2020), (2)
XNLI: data from (Conneau et al., 2018), (3) POS:
data from XTREME (Hu et al., 2020) and TDIL1,
and (4) Text Classification (TC): data from TDIL
and XGLUE (Liang et al., 2020). We downsam-
pled the TDIL data for each language to make them
class-balanced. The POS tagset for Indo-Aryan
languages used was the BIS Tagset (Sardesai et al.,
2012). Table 3 presents a summary. The test set to
compute LRL perplexity was formed by sampling
10K sentences from Samanantar corpus(Ramesh
et al., 2021) for Indic languages and from Tatoeba
corpus2 for other languages. The perplexity re-
ported for a language is the average of sentence
perplexity over all the sentences sampled from that
language’s corpus.
Task-specific fine-tuning details We perform task-
specific fine-tuning of pre-trained BERT on the
task-specific training data of HRL and evaluate on
all languages in the same family. Here we used
learning-rate 2e-5 and batch size 32, with train-
ing duration as 16 epochs for NER, 8 epochs for
POS and 3200 iterations for Text Classification and
XNLI. The models were evaluated on a separate
validation dataset of the HRL and the model with
the minimum validation loss, maximum F1-score,
accuracy and minimum validation loss was selected
for final evaluation for XNLI, NER, POS and Text
Classification respectively. All fine-tuning exper-
iments were performed on Google Colaboratory.
The results reported for all the experiments are an
average of 3 independent runs.

4.2 Effectiveness of OBPE

We evaluate the impact of OBPE on improving
zero-shot transfer from HRLs to LRLs within the

1Technology Development for Indian Languages (TDIL),
https://www.tdil-dc.in

2Tatoeba , https://tatoeba.org

same family across four different tasks. We com-
pare with four existing methods that represent dif-
ferent methods of vocabulary creation and alloca-
tion of budget across languages:
Methods compared

1. BPE (Sennrich et al., 2016), the existing de-
fault method of vocabulary generation.

2. Clustered vocabulary (CV) (Chung et al.,
2020) Since the paper uses a SentencePiece
unigram for vocabulary, we followed the same
approach for this comparison. We allocate
each family equal number of vocabulary to-
kens which is V/3.

3. BPE-dropout (BPE-dp) (Provilkov et al.,
2020) uses the vocabulary generated by BPE
but tokenizes the text using a dropout rate of
0.1. This allows the training of tokens that are
subsumed by larger tokens in the vocabulary.

4. Compatibility of Tokenizations (Tok-
Comp) (Maronikolakis et al., 2021) uses
a method to select meaningful vocabulary
sizes in an automated manner for all language
using compression rates. Since their best per-
formances are found, when the compression
rates are similar, we choose a size for each
language corresponding to compression rate
of 0.5. The tokenizer used in this method is
WordPiece. .

5. OBPE (Ours) with default α = 0.5, p =
−∞. We also do ablation on these.

In Table 4 we observe that across all four tasks,
zero-shot LRL accuracy improves compared to
BPE. For example, the average accuracy on XNLI
for the LRL languages improves from 55.6 to 58.1
just by changing the set of tokens in the vocabulary.
These gains are obtained without compromising
HRL performance on the tasks. The Clustered Vo-
cabulary (CV) approach is much worse than BPE.
These experiments are on the Balanced-12 model.
In the supplementary section, we report the results
on the Skewed-12 (Table 5) and Balanced-4 models
(Table 12) and show similar gains even with these
models. In this table, we averaged the gains over
nine LRLs, and in the Supplementary Table 14 we
show consistent gains for individual languages.

In addition to improving zero-shot transfer
from HRLs to LRLs on downstream tasks, OBPE
also leads to better intrinsic representation of
LRLs. We validate that by measuring the pseudo-
perplexity (Salazar et al., 2020) of a test set of LRL
sentences. We find that average perplexity of LRL
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Method
LRL Performance (↑) HRL Performance (↑)

NER TC XNLI POS NER TC XNLI POS
BPE (Sennrich et al., 2016) 64.48 65.52 52.07 84.64 83.26 82.07 62.71 95.20
BPE-dp (Provilkov et al., 2020) 63.92 64.15 52.66 84.75 81.73 81.07 63.74 94.61
CV (Chung et al., 2020) 59.58 61.91 49.30 81.68 81.15 80.93 64.51 94.47
TokComp (Maronikolakis et al., 2021) 63.79 65.77 53.94 85.49 82.43 80.93 66.10 94.86
OBPE (This paper) 65.72 68.02 54.03 85.26 83.98 81.91 66.27 95.09

Table 4: Zero-shot performance of models in the Balanced-12 setting trained on 9 LRL and 3 HRL languages.
Performance is measured on four tasks: NER (F1), Text Classification (Accuracy), POS (Accuracy), and XNLI
(Accuracy). For all metrics, higher is better (↑). Zero-shot transfer to LRL improves without hurting HRL accuracy.
P-value of paired-t-test between BPE and OBPE LRL gains has values 0.01, 0.04, 0.02, 0.01 for each of the 4 tasks
establishing statistical significance. Detailed results for each language is pesented in Table 14. Section 4.2 has
further discussion.

Method
LRL Performance (↑) HRL Performance (↑)

NER TC XNLI POS NER TC XNLI POS
BPE (Sennrich et al., 2016) 52.91 51.68 48.57 74.79 81.78 80.04 64.96 95.03
CV (Chung et al., 2020) 52.73 54.40 44.28 76.70 79.84 77.74 57.18 94.60
OBPE (This paper) 55.09 55.37 50.01 75.05 82.94 80.31 65.57 95.09

Table 5: Zero-shot performance of models in the Skewed-12 setting of Table 2 on same four tasks as Table 4.
OBPE shows gains here too. Detailed numbers in Table 11 of Supplementary. Section 4.2 has further discussion.
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Figure 1: Percentage reduction in Pseudo perplex-
ity (Salazar et al., 2020) for different LRLs as we go
from BPE to OBPE vocabulary. (Section 4.2)

sentences drops by 2.6% when we go from the
BPE to OBPE vocabulary. More details on this
experiment appear in Figure 1.

In order to investigate the reasons behind the
OBPE gains, we first inspected the percentage of to-
kens in the vocabulary that belong to LRLs, HRLs,
and in their overlap. We find that with OBPE both
LRL tokens and overlapping tokens increase. Ei-
ther of these could have led to the observed gains.
We analyze the effect of each of these factors in the
following two sections.

4.3 Effect of Token Overlap

We present the impact of token overlap via two sets
of experiments: first, a controlled setup where we

en-es
High (es: 1 GB) Low: (es: 20K)

NER -1.4 -11.7
XNLI 0.7 -1.3

hi-mr
High (mr: 110K) Low (mr: 20K)

NER -12.2 -41.6
TC -2.7 -41.3
POS -6.6 -7.8

Table 6: Drop in Accuracy of Zero-shot transfer when
we synthetically reduce token overlap to zero. Trans-
fer is from English (en) as HRL to Spanish (es) and
from Hindi (hi) as HRL to Marathi (mr) in two set-
tings: (1) High where es, mr have sizes comparable to
the HRL and (2) Low where their sizes are only 20K.
Token overlap is important in the low-resource and re-
lated language setting (Section 4.3)

synthetically vary the fraction of overlap and sec-
ond where we measure correlation between overlap
and gains of OBPE on the data as-is.

For the controlled setup we follow (K et al.,
2020) for synthetically controlling the amount of
overlap between HRL and LRL. We trained a
bilingual model between Hindi (HRL 160K) and
Marathi (LRL 20K) — two closely related lan-
guages in the Indo-Aryan family. To find the set of
overlapping tokens between Hindi and Marathi, we
first run OBPE on Hindi-Marathi language pair to
generate a vocabulary and label all tokens present
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Figure 2: Zero-shot performance vs Overlap of models trained on unicode shifted HRL data to simulate increasing
overlap between HRL (SynthHindi) and LRL (mr). Performance is measured on three tasks: Text Classification
(Accuracy), NER (F1) and POS (Accuracy). On TC and NER observe the huge drop in LRL accuracy as we
decrease overlap from 100 down to 0. Further discussions in Section 4.3.

in both languages as overlapping tokens. We then
incrementally sample 10%, 40%, 50%, 90% of the
tokens from this set. We shift the Unicode of the
entire Hindi monolingual data except the set of sam-
pled tokens so that there are no overlapping tokens
between Hindi (hi) and Marathi (mr) monolingual
data other than the sampled tokens. Let us call this
Hindi data SynthHindi. We then run OBPE on
SynthHindi-Marathi language pair to generate a
vocabulary to pretrain the model. The task-specific
Hindi data is also converted to SynthHindi during
fine-tuning and testing of the model.

Figure 2 shows results with increasing overlap.
We observe increasing gains in LRL accuracy as
we go from no overlap to full overlap on all three
tasks. NER accuracy increases from 17% to 58%
for the LRL (mr) even while the HRL (hi) accu-
racy stays unchanged. For TC we observe similar
gains. For POS, even without token overlap, we
get good cross-lingual transfer because POS tags
are more driven by structural similarity, and Hindi
and Marathi follow similar structure.

Our results contradict the conclusions of (K et al.,
2020) which claimed that token overlap is unimpor-
tant for cross-lingual transfer. However, there are
two key differences with our setting: (1) unlike (K
et al., 2020), we explore low-resource settings, and
(2) except for English-Spanish, the other language
pairs they considered are not linguistically related.
To explain the importance of both these factors, in
Table 6 we present accuracy of English-Spanish in
a simulated low-resource setting where we sample
20K Spanish documents and 160K English doc-
uments. Also, we repeat our Hindi-Marathi ex-
periments where Marathi is not low-resource. We
observe that (1) Spanish as LRL benefits signifi-
cantly on overlap with English. (2) Marathi gains
from token overlap with Hindi even in the high
resource setting.

Thus, we conclude that as long as languages are
related, token overlap is important and the benefit
from overlap is higher in the low resource setting.
Overlap Vs Gain: Real data setup We further
substantiate our hypothesis that the shared tokens
across languages favoured by OBPE enable trans-
fer of supervision from HRL to LRL via statis-
tics on real-data. In Table 9 we show the Pearson
product-moment correlation coefficient between
overlap gain and performance gain within LRLs of
the same family and task. We get a high positive
correlation coefficient, with an average of 0.644.

4.4 Effect of Increased LRL representation
We next investigate the impact of increased repre-
sentation of LRL tokens in the vocabulary. OBPE
increases LRL representation by favoring overlap-
ping tokens, but LRL tokens can also be increased
by just over-sampling LRL documents. We train
another BALANCED12 model but with further over-
sampling LRLs with exponentiation factor of 0.5
instead of 0.7. We observe in Figure 8 that this
increases LRL fraction but reduces HRL tokens
in the vocabulary. Table 7 also shows the com-
parison of zero-shot transfer accuracy with over-
sampled BPE against over-sampled OBPE. We find
that OBPE even with default exponentiation factor
achieves highest LRL gains, whereas aggressively
over-sampled BPE hurts HRL accuracy. Within
the same sampling setting, OBPE is better than
corresponding BPE.

4.5 Ablation study
We conducted experiments for different values of
p that controls the amount of overlap in the gener-
alized mean function (Equation (5)). Figure 3 and
Table 14 show the results for various p. Setting
p = 1 gives the original BPE algorithm. Setting
p = 0,−1 gives geometric and harmonic mean
respectively, setting p = −∞ gives minimum. We
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Method LRL Performance (↑) HRL Performance (↑)
NER TC XNLI POS NER TC XNLI POS

BPE 64.5 65.5 52.1 84.6 83.3 82.1 62.7 95.2
+overSample 64.4 67.6 52.1 84.6 82.4 82.0 62.0 95.2
OBPE 65.7 68.0 54.0 85.3 84.0 81.9 66.3 95.1
+overSample 64.6 67.9 53.5 85.1 82.7 81.7 65.7 94.8

Table 7: Zero-shot performance of models in the same setting
as Table 4 but comparing default sampling with oversampling
(exponentiation factor S=0.5). Note, even if BPE_overSamp
improves LRL somewhat, it causes HRL to drop. OBPE
with default sampling is best for both LRLs and HRLs. Also
OBPE_overSampled is better than BPE_overSampled (Sec-
tion 4.4).

-0.5

0.0

0.5

1.0

1.5

2.0

LRL HRL shared

OBPE BPE_overSample OBPE_overSample

Table 8: Percentage rise over BPE in rep-
resentation of LRL, HRL and Shared (per-
centage of tokens shared between HRL and
LRL weighted by frequency) in vocabulary
generated by OBPE and BPE_overSample
and OBPE_overSample (Section 4.4).

Lang family Task Pearson Correlation

Indo-Aryan NER 0.835
POS 0.690

West Germanic NER 0.387
POS 0.348

Romance NER 0.946
POS 0.595

Table 9: Correlation coefficient between performance
gain and overlap gain within languages in a family for
various tasks. (Section 4.3).

compare the task-specific results for different val-
ues of p as shown in Table 14 and find that the gains
we obtain are highest in the p = −∞ (minimum)
setting (Figure 3).

−6 −4 −2 0
66

68

70

72

74

Pe
rf

or
m

an
ce

NER TC

Figure 3: Zero-shot LRL performance of models in the
same setting as Table 4 for different values of p eval-
uated on NER and Text Classification. Best results at
p = −∞.(Section 4.5)

We also experiment with α = 0.7, and find that
for most languages the results were not better than
our default α = 0.5.

5 Conclusion

In this paper, we address the problem of cross-
lingual transfer from HRLs to LRLs by exploiting

relatedness among them. We focus on lexical over-
lap during the vocabulary generation stage of mul-
tilingual pre-training. We propose Overlap BPE
(OBPE), a simple yet effective modification to the
BPE algorithm, which chooses a vocabulary that
maximizes overlap across languages. OBPE en-
codes input corpora compactly while also balanc-
ing the trade-off between cross-lingual subword
sharing and language-specific vocabularies. We fo-
cus on three sets of closely related languages from
diverse language families. Our experiments pro-
vide evidence that OBPE is effective in leveraging
overlap across related languages to improve LRL
performance. In contrast to prior work, through
controlled experiments on the amount of token
overlap between two related HRL-LRL language
pairs, we establish that token overlap is important
when a LRL is paired with a related HRL.
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A Appendix

A.1 Examples of Token Overlap within
Language Families

Table 10 shows examples of overlapping tokens
within three different language families, and Fig-
ure 4 shows a real example of how OBPE chooses
shared tokens.

A.2 Limitations

• Our approach is expected to improve cross-
lingual transfer from HRL to LRL only when
the HRL and LRL are related linguistically
since it relies on the presence of lexically over-
lapping tokens

• It requires the transliteration of LRL data to
the script of its related HRL if LRL does not
have the same script.

A.3 Potential risks

Language models may amplify bias in data and also
introduce new ones. Multilingual models explored
in the paper are not immune to such issues. Detect-
ing such biases and mitigating them is a topic of
ongoing research. We are hopeful that our focus on
better representation of LRLs in the vocabulary is
a step towards more inclusive models.

Figure 4: Similar meaning words with shared root
forms across related Indo-Aryan languages. BPE vo-
cabulary does not capture the tokens corresponding to
Punjabi as it is a LRL and will thus tokenize Niyukata
into multiple tokens which do not captures its meaning
whereas Niyukata when tokenized by OBPE tokenizer
will contain Niyuk which captures most of the mean-
ing of the token Niyukata whose representation will
be learnt when pretraining using Punjabi monolingual
data

A.4 Replicability

BERT configuration parameters used in our
experiments are as follows:

"attention_probs_dropout_prob": 0.1, "hid-
den_act": "gelu", "hidden_dropout_prob":
0.1, "hidden_size": 768, "initial-
izer_range": 0.02, "intermediate_size":
3072, "max_position_embeddings": 512,
"num_attention_heads": 12, "num_hidden_layers":
12, "type_vocab_size": 2, "vocab_size": 30000
All the task-specific fine-tuning experiments are
done using GPUs on Google Colaboratory where
each fine-tuning experiment requires 2 GPU hours.

A.5 License

Tatoeba data, GLUE data, Wikipedia dumps use
the Creative Commons licenses. TDIL data used
for Indic languages uses Research license type and
Xtreme dataset uses Apache License 2.0. To the
best of our knowledge, the use of scientific artifacts
in this work is consistent with their intended use.
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Indo-Aryan Hindi:Vaapariyo, Marathi:Vaapartat , Punjabi:Vaaparan, Gujarati:Vaaparvana
Hindi:Jaate, Marathi:Jaaoon , Punjabi:Jaana, Gujarati:Jaao

West-Germanic English:Category, German:Kategorie, Dutch:Categorie, Western Frisian:Kategory
English:University, German:Universitaten, Dutch:Universiteit, Western Frisian:Universiteiten

Romance French:Association, Spanish:Associacion, Portuguese:Associacao, Italian:Associazione
French:Certifie, Spanish:Certificar, Portuguese:Certificado, Italian:Certificato

Table 10: Lexically overlapping tokens with similar meanings across four languages in each of three families.
OBPE, our proposed method, exploits such meaning-preserving overlap among related languages to induce vocab-
ulary for multilingual learning.

Lang hi mr pa gu en de nl fy fr es pt it LRL HRL
HRL HRL HRL avg avg

NER
BPE 83.66 45.03 25.85 24.25 75.94 52.42 62.83 62.63 85.75 70.53 68.34 64.34 52.91 81.78
CV 83.83 47.67 32.69 33.43 72.35 46.89 55.13 57.88 83.34 71.78 66.45 62.61 52.73 79.84
OBPE 85.92 47.55 26.05 32.79 77.15 52.72 62.87 65.55 85.76 73.35 70.25 64.69 55.09 82.94

TC
BPE 75.8 51.46 49.88 51.9 88.27 49.5 76.05 55.64 51.68 80.04
CV 76.46 54.37 55.49 56.33 81.94 51.5 74.81 54.31 54.40 77.74
OBPE 76.58 55.38 53.98 54.06 88.3 57.85 76.06 55.59 55.37 80.31

POS
BPE 93.96 74.84 59.34 65.87 94.81 69.18 74.96 96.33 86.66 84.67 82.81 74.79 95.03
CV 93.67 77.68 71.28 75.81 94.1 67.68 72.75 96.04 84.33 82.44 81.65 76.70 94.60
OBPE 94.11 75.46 58.84 68.5 94.94 68.1 75.18 96.22 86.54 84.3 83.46 75.05 95.09

XNLI
BPE 67.05 45.51 62.87 51.62 48.57 64.96
CV 54.87 39.87 59.48 48.68 44.28 57.18
OBPE 67.71 47.33 63.43 52.69 50.01 65.57

Table 11: Zero-shot performance of models in the Skewed-12 setting trained on 9 LRL and 3 HRL languages.
Performance is measured on four tasks: NER (F1), Text Classification (Accuracy), POS (Accuracy), and XNLI
(Accuracy). For all metrics, higher is better . Zero-shot transfer to LRL improves without hurting HRL accuracy.
Averages results across HRLs and LRLs are presented in Table 5. OBPE shows gains here too. Section 4.2 has
further discussion.

A.6 Data bias
We have used standard Wikipedia corpus, and
there have been some studies on bias in such cor-
pus.(Hube, 2017)
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Lang hi mr pa gu en de nl fy fr es pt it LRL HRL
HRL HRL HRL avg avg

NER
BPE 85.49 54.88 75.35 40.5 74.99 53.16 62.91 66.54 84.24 70.14 70.2 63.86 61.95 81.57
OBPE(α = 0.5) 86.59 59.23 76.15 41.84 74.74 56.95 63.19 67.92 83.73 69.99 69.76 64.91 63.33 81.69
OBPE(α = 0.7) 85.99 59.54 75.59 41.37 75.36 54.6 63.43 66.86 83.95 71.77 69.27 66.29 63.19 81.77

TC
bpe 83.97 68.01 74.24 77.1 88.2 57.6 77.45 53.45 66.08 83.21
OBPE(α = 0.5) 83 71.78 75.21 78.28 88.28 62.41 76.88 54.19 68.37 82.72
OBPE(α = 0.7) 83.56 69.3 74.84 77.09 87.93 57.9 77.11 57.84 67.39 82.87

POS
bpe 94.14 81.7 86.57 86.86 94.5 69.2 80.39 95.79 88.62 84.8 85.74 82.99 94.81
OBPE(α = 0.5) 94.18 82.79 86.63 86.5 94.6 70.53 79.49 95.94 88.79 86.62 86.41 83.47 94.91
OBPE(α = 0.7) 94.1 81.56 87.04 86.55 94.38 70.67 79.99 96.17 89.8 87.77 86.19 83.70 94.88

XNLI
bpe 65.79 48.3 63.21 54.93 51.62 64.50
OBPE(α = 0.5) 66.77 50.84 66.77 53.27 52.06 66.77
OBPE(α = 0.7) 66.37 48.54 63.57 54.85 51.70 64.97

Table 12: Zero-shot performance of three different models each trained on 3 LRLs and 1 HRL in the respective
families 2 in the BALANCED-4 setting . Performance is measured on four tasks: NER (F1), Text Classification
(Accuracy), POS (Accuracy), and XNLI (Accuracy). For all metrics, higher is better . Zero-shot transfer to LRL
improves without hurting HRL accuracy. OBPE shows gains here too. Languages in Romance family show some
improvements in α = 0.7 setting as compared to α = 0.5. (Section sec:ablation)

% overlap retained
En-Es Hi-Mr

High Low High Low
es en es hi mr hi mr

NER 100 72.3 75.1 63.4 85.9 55.6 86.3 58.2
0 70.9 67.7 51.7 82.7 43.4 85.1 16.6

TC 100 88.2 63.7 84.4 75.1 84.6 71.4
0 82.6 53.8 78.9 72.4 84.5 30.1

POS 100 94.7 82.9 94.2 83.3 94.2 81.9
0 92.8 60.4 94.0 76.7 94.2 74.1

XNLI 100 61.9 66.6 55.2
0 62.6 61.5 53.9

Table 13: Accuracy of Zero-shot transfer from English (En) as HRL to Spanish (Es) and from Hindi(Hi) as HRL
to Marathi(Mr) in two settings: (1) High where Es,Mr have sizes comparable to the HRL and (2) Low where their
sizes are only 20K. As the percentage of overlapping tokens retained is decreased from 100% to 0%, the accuracy
drops but the drop is higher in the low-resource setting. Task-specific accuracy numbers in first column(En-Es-
High-es) have been taken from (K et al., 2020). Table 6 contains the reduction in accuracy on decreasing overlap
from 100% to 0 % i.e. the difference between the rows corresponding to 100% and 0%
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Lang hi mr pa gu en de nl fy fr es pt it avg
Method(p) NER
OBPE(1)=BPE 86.57 59.71 69.71 41.89 77.42 60.14 67.87 69.73 85.79 72.96 71.02 67.31 69.18
OBPE(0) 87.29 61.86 67.21 41.46 76.08 59.50 67.30 66.86 86.02 69.80 70.89 67.54 68.48
OBPE(-1) 86.67 64.19 72.38 39.93 77.17 58.25 67.09 69.86 85.83 72.99 70.43 66.02 69.23
OBPE(-2) 86.17 60.91 67.30 44.43 76.47 59.66 67.13 70.03 85.25 75.02 71.82 66.53 69.23
OBPE(-3) 87.14 62.68 72.25 44.73 77.24 61.41 67.38 69.87 86.15 69.82 71.06 65.37 69.59
OBPE(-∞) 87.09 62.96 72.17 44.25 77.93 60.44 68.65 70.23 86.92 74.14 72.55 66.05 70.28
BPE-dp 85.54 62.64 71.46 39.75 75.51 59.29 67.76 70.42 84.15 67.43 68.82 67.74 68.38
TokComp 86.43 61.12 72.82 45.88 76.57 55.25 65.28 67.85 84.22 71.04 68.87 66.00 68.44
CV 84.27 55.66 43.37 50.19 74.99 53.51 65.36 65.39 84.20 73.05 66.16 63.49 64.97
Bsamp 84.68 59.73 67.31 40.62 76.76 61.34 67.29 71.80 85.89 73.71 71.20 66.69 68.92
Osamp 84.71 63.22 67.82 42.03 77.83 62.35 68.08 71.59 85.50 69.16 70.06 66.70 69.09

TC
OBPE(1)=BPE 80.35 61.45 69.00 72.32 88.63 62.27 77.23 62.58 71.73
OBPE(0) 80.11 64.07 68.26 70.48 87.61 54.96 76.53 62.23 70.53
OBPE(-1) 80.00 64.37 69.10 72.10 87.89 66.25 77.33 65.36 72.80
OBPE(-2) 79.21 64.83 68.58 70.41 88.17 65.76 76.78 58.71 71.56
OBPE(-3) 81.00 62.79 68.17 73.20 89.38 68.34 77.50 63.84 73.03
OBPE(−∞) 80.68 68.90 70.03 72.14 87.92 66.05 77.14 63.00 73.23
BPE-dp 79.68 63.45 69.43 70.36 87.39 59.75 76.15 57.76 70.50
TokComp 82.06 67.17 70.42 72.48 88.02 58.47 77.22 60.29 72.02
CV 79.90 61.33 65.68 68.96 87.98 55.79 74.92 57.79 69.04
Bsamp 81.00 65.29 70.97 72.30 88.05 66.11 76.92 63.51 73.02
Osamp 80.11 66.08 70.11 72.38 88.39 66.25 76.57 64.58 73.06

POS
OBPE(1)=BPE 94.22 79.60 86.83 86.21 94.91 77.70 82.00 96.47 89.74 87.79 87.27 87.52
OBPE(0) 94.13 76.26 86.53 85.03 94.85 76.09 82.48 96.31 88.78 87.01 86.62 86.74
OBPE(-1) 94.20 79.13 86.23 85.14 94.87 78.22 82.56 96.32 89.62 87.25 87.27 87.34
OBPE(-2) 93.98 81.07 86.54 85.86 94.68 76.80 82.08 96.23 89.14 86.31 86.45 87.19
OBPE(-3) 94.31 79.55 86.67 86.65 95.03 76.34 83.63 96.30 89.97 87.76 88.00 87.66
OBPE(−∞) 94.18 81.55 87.01 86.76 94.98 79.28 82.38 96.40 90.04 88.01 88.21 87.94
BPE-dp 93.26 80.03 86.31 85.23 94.49 77.90 83.07 96.10 90.01 87.84 87.63 87.44
TokComp 93.99 80.38 86.75 86.79 94.79 79.50 84.91 95.80 89.87 87.05 88.70 88.05
CV 93.12 74.82 84.62 81.56 94.28 74.74 79.41 96.01 87.51 85.52 85.27 85.17
Bsamp 94.3 77.81 86.35 85.68 94.93 77.2 82.94 96.34 89.93 88.05 88.54 87.46
Osamp 94.01 81.22 86.66 86.36 94.35 76.99 82.93 96.04 89.75 88.24 88.43 87.73

XNLI
OBPE(1)=BPE 64.35 50.36 61.06 53.77 57.39
OBPE(0) 64.33 49.06 59.96 54.71 57.02
OBPE(-1) 64.35 48.62 61.40 53.51 56.97
OBPE(-2) 65.05 50.36 64.45 55.31 58.79
OBPE(-3) 67.86 50.64 64.85 57.11 60.11
OBPE(−∞) 67.41 50.76 65.13 57.29 60.15
BPE-dp 64.31 50.16 63.17 55.17 58.20
TokComp 67.98 53.05 64.21 54.83 60.02
CV 65.19 47.43 63.83 51.16 56.90
Bsamp 63.41 51.02 60.58 53.09 57.03
Osamp 67.13 50.38 64.25 56.64 59.60

Table 14: Zero-shot performance of models in the Balanced-12 setting trained on 9 LRL and 3 HRL languages.
Performance is measured on four tasks: NER (F1), Text Classification (Accuracy), POS (Accuracy), and XNLI
(Accuracy). For all metrics, higher is better . Zero-shot transfer to LRL improves without hurting HRL accuracy.
Averages results across HRLs and LRLs are presented in Table 4. Section 4.2 has further discussion.Table 4
contains the values corresponding to rows BPE, BPE-dp, CV, TokComp, OBPE(−∞) averaged over LRLs and
HRLs, Table 7 contains the values corresponding to rows Bsamp, Osamp averaged over LRLs and HRLs, , Figure
3 plots the rows correponding to varying p values. (Section 4.5)
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