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Abstract

Cross-lingual named entity recognition task
is one of the critical problems for evaluating
the potential transfer learning techniques on
low resource languages. Knowledge distilla-
tion using pre-trained multilingual language
models between source and target languages
have shown their superiority in transfer. How-
ever, existing cross-lingual distillation models
merely consider the potential transferability
between two identical single tasks across both
domains. Other possible auxiliary tasks to im-
prove the learning performance have not been
fully investigated. In this study, based on the
knowledge distillation framework and multi-
task learning, we introduce the similarity met-
ric model as an auxiliary task to improve the
cross-lingual NER performance on the target
domain. Specifically, an entity recognizer and
a similarity evaluator are first trained in par-
allel as two teachers from the source domain.
Then, two tasks in the student model are super-
vised by these teachers simultaneously. Empir-
ical studies on the three datasets across 7 dif-
ferent languages confirm the effectiveness of
the proposed model.

1 Introduction

Named entity recognition, NER in short, refers to
identifying entity types, i.e. location, person, orga-
nization, etc., in a given sentence. The exploiting
of deep neural networks, such as Bi-LSTM-CRF
(Lample et al., 2016), Bi-LSTM-CNN (Chiu and
Nichols, 2016) makes this task achieve significant
performances. However, since deep neural net-
works highly rely on a large amount of labelled
training data, the annotation acquiring process is
expensive and time consuming. This situation is
more severe for zero-resource languages. With the
help of transfer learning (Ruder et al., 2019) and
multilingual BERT (short as mBERT) (Devlin et al.,
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Figure 1: Comparison between previous cross-
lingual NER models. Directly: direct model trans-
fer; TSL: teacher-student learning model; MTMT:
proposed multiple-task and multiple-teacher Model.
NER / NERtea: learned NER model for source lan-
guage; NERstu: learned NER model for target lan-
guage; SIMtea learned similarity model for source
language; {X,Y }src: labeled data in source lan-
guage; {X}tgt: unlabeled data in target language;
{X,P}tgt: labeled data in target language with
probability; {X,S}tgt: labeled data in target lan-
guage with entity similarity score.

2019), it is possible to transfer the annotated train-
ing samples or trained models from a rich-resource
domain to a zero-resource domain.

Many studies have been done to solve this cross-
lingual NER problem. Existing models can be sep-
arated into three categories, shared feature space
based, translation based and knowledge distilla-
tion based. Shared feature space based models
exploit language-independent features, which lacks
the domain-specific features for the target language
(Tsai et al., 2016; Wu and Dredze, 2019; Keung
et al., 2019). Translation based models generate
pseudo labeled target language data to train the
cross-lingual NER model, but the noise from trans-
lation process restrains its performance. (Mayhew
et al., 2017; Xie et al., 2018; Wu et al., 2020b).
Knowledge distillation based models train a stu-
dent model using soft labels of the target language
(Wu et al., 2020a,b; Chen et al., 2021; Liang et al.,
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2021).
Although the above-mentioned models solve the

cross-lingual NER problem to some extent, the
auxiliary tasks, as in multi-task learning, have not
been studied in this problem. Due to the distributed
representation of natural languages, the relatedness
among the embedding of target languages, which
is measured by the similarity, can be utilized to
further boost the learned encoder and improve the
final NER performance on target languages.

Here we give a concrete example to illustrate the
importance of similarity between every two tokens
under the situation when only the English data is
labeled. Given a Spanish sentence “Arévalo (Avila),
23 may (EFE).”, the token “Arévalo” is recognized
as ORG type using the learned model from the En-
glish domain. In the meantime, the token “Arévalo”
has high similarity scores with the Spanish tokens
“Viena” from sentence “Viena, 23 may (EFE).", and
“Madrid” from sentence “Madrid, 23 may (EFE).”.
Also, the tokens “Viena” and “Madrid” are recog-
nized correctly as LOC type using the same English
model mentioned above. Then “Arévalo” can be
recognized correctly as LOC type under the super-
visory signal using the similarity between “Viena”
and “Madrid”.

To leverage the similarity between the tokens of
the source languages, we design an multiple-task
and multiple-teacher model (short as MTMT, as
shown in Figure 1), which helps the NER learning
process on the target languages. Specifically, we
first introduce the knowledge distillation to build
entity recognizer and similarity evaluator teachers
in the source language and transfer the learned pat-
terns to the student in the target language. In the
student model, we then borrow the idea of multi-
task learning to incorporate a similarity evaluation
task as an auxiliary task into the entity recogni-
tion classifier. During the student learning process,
we input unlabelled samples from the target lan-
guages into the entity recognizer and evaluator, and
take output pesudo labels as supervisory signals for
these two tasks in the student model. Note that a
weighting strategy is also provide therein to take
into consideration of the reliability of the teachers.

We validate the model performance on the three
commonly-used datasets across 7 languages and
the experimental results show the superiority of our
presented MTMT model.

Our main contributions are as follows:

• We propose an unsupervised knowledge dis-

tillation framework for cross-lingual named
entity recognition and develop a teaching and
learning procedure under this framework.

• We present a novel multiple-task and multiple-
teacher model that introduces an entity sim-
ilarity evaluator to boost the performance of
student recognizer on target languages.

• We conduct extensive experiments on 7 lan-
guages compared with state-of-the-art base-
lines and the results confirm the effectiveness
of the presented model.

2 Related Work

Our approach is closely related to the existing
works on cross-lingual NER, knowledge distilla-
tion, and siamese network.

Cross-Lingual NER aims to extract entities from
a target language but assumes only source language
is annotated. The existing models can be catego-
rized to a) Shared feature space based models, b)
Translation based models, c) Knowledge distilla-
tion based models.

Shared feature space based models generally
train a language-independent encoder using source
and target language data (Tsai et al., 2016). Re-
cently, the pre-trained multilingual language model
is effective to address the challenge (Devlin et al.,
2019). Moreover, some research introduces new
components on top of the mBERT by directly trans-
ferring the model learned from the labeled source
language to that of target languages (Keung et al.,
2019). The performance is still weak due to the
lack of annotations of target languages.

Translation based models generally generate
pseudo-labeled target data to alleviate target data
scarcity. For example, (Wu et al., 2020b; Zhang
et al., 2021) gain an improvement by translating
the labeled source language to the target language
word-by-word. Our model achieves considerable
improvement by learning entity similarity in target
language data without translation.

Knowledge distillation based models include
a teacher model and a student model (Wu et al.,
2020c). The teacher model is trained on the labeled
source language. The student model learns from
the soft label predicted by the teacher model on un-
labeled target language data. Therefore, the student
model can capture the extra knowledge about target
languages. In our work, the student model not only
learns the recognizer teacher knowledge, but also
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learns the entity similarity knowledge inspired by
multi-task learning.

Siamese Network is originally introduced by
(Bromley et al., 1994) to treat signature verifica-
tion as a matching problem. It has been success-
fully applied to transfer learning such as one-shot
image recognition (Koch et al., 2015), text simi-
larity (Neculoiu et al., 2016). However, there is
a dilemma to adapt the siamese network to token-
level recognition tasks such as NER. Siamese net-
work assumes the input is a pair, and the output
is a similarity score. To handle this issue, we re-
construct the data to pair format. To the best of
our knowledge, we are the first to learn the entity
similarity by siamese network.

3 Framework

In this section, we introduce our framework and its
detailed implementation. Our framework is con-
sist of two models: teacher training model learned
from the source language and teacher-student dis-
tillation learning model learned from the target lan-
guage. In the teacher training model, there are two
sub-models, i.e. an entity recognizer teacher and a
similarity evaluator teacher. These two models are
two parallel tasks, wherein the entity recognition
teacher focuses on identifying the named entities
and the similarity evaluator teacher is to decide if
two tokens are in the same type.

We then present a teacher-student distillation
learning model to learn from the two learned
teacher models simultaneously. We note that, in
this learning process, such a knowledge distillation
makes the student model combine the advantages
of both source language patterns of entity recog-
nition and entity similarity evaluation. During the
learning process, the samples from the target lan-
guage are fed into the teacher model and the out-
puts are taken as the supervisory signal for two
tasks in the student model. To guarantee the stu-
dent learning performance, we assign weights for
each supervisory signal correspond to the output
confidence of teacher sub-models. We argue that
the student entity recognition task and the student
entity similarity evaluation task improve the rep-
resentation learning of the student encoder in the
siamese structure.

3.1 Problem Definition

Following standard practice, we formulate cross-
lingual NER as a sequence labeling task. Given a
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Figure 2: The training process of teacher models.

sentence x = {xi}Li=1 with L tokens, a NER model
produces a sequence of labels y = {yi}Li=1, where
xi is the i-th token and yi is the corresponding
label of xi. In the source language, we denote the
labeled training data as DS

train = {(x,y)} and test
data as DS

test. In the target language, we denote the
unlabeled train data as DT

train = {x} and the test
data asDT

test. Formally, our goal is to train a model
with DS

train and DT
train to perform well on DT

test.

3.2 Teacher Models

Here we first consider the training of two teacher
models. For every two tokens, we define Entity
Similarity Metric as a score which is the probabil-
ity that two tokens belong to the same entity type.
We aim to find entity similarity to help the cross-
lingual NER model in the target language. It is
a non-trivial task since we lack golden labels to
help us distinguish target named entities. To ad-
dress this challenge, we propose a binary classifier
called similarity evaluator to leverage the labeled
source language data for similarity prediction. Our
similarity evaluator model, inspired by siamese
network (Koch et al., 2015), are able to acquires
more powerful features via capturing the invari-
ances to transformation in the input space. Figure
2 illustrated the two teacher models training. The
following subsections will illustrate the two teacher
models sequentially.

3.2.1 Entity Recognizer

Since the cross-lingual NER task, we unitize mul-
tilingual mBERT (Wu and Dredze, 2019) as basic
sequence feature extractor backbone to derive the
sequence embedding representation throughout this
paper. And a linear classifier with softmax upon
the pre-trained mBERT output. The model network
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structure could be formulated as,

h = mBERT(x)

ŷi = softmax(Whi + b)

where h = {hi}Li=1 and hi denotes the output of
the pre-trained mBERT that corresponds to the in-
put token xi. ŷi denotes the predicted probability
distribution for xi. W and b are trainable param-
eters. For some sentence sample (x,y) ∈ DS

train

and an entity token query index i, the loss function
is,

LER(x,y, i) = LCE(yi, ŷi)

We train this entity recognition teacher model
on the source lingual training corpus DS

train =
{(x,y)} directly.

3.2.2 Siamese Entity Similarity Evaluator
To leverage the entity similarity to boost the unsu-
pervised cross-lingual NER performance, we will
present our entity pairs construction method and
the siamese network model in the following.

Entity Similarity Pairs Construction Accord-
ing to entity labels, we randomly select sentences
pair < x,x′ > with their some token pair <
xi, x

′
j > and associated labels< yi, y

′
j > inDS

train,
to form the siamese supervision training dataset,
DS−siam

train = {(x,x′, i, j, t)}where the target t = 1
indicates yi = y′j , and 0 otherwise. And the testing
entity pairs DS−siam

test is constructed likewisely.

Siamese Entity Similarity Network Our simi-
larity backbone model is a siamese neural network
with mBERT as feature extraction layer. Wherein h
and h′ represent latent sequences encoding features
derived by the two symmetric twins with respect to
input sentence x and x′ respectively.

The inter-entities similarity is measured on the
hidden representations hi and h′j of the tokens
queried by the entity indices < i, j > on the se-
quences representations. The cosine function oper-
ator is added to compute on the entity token latent
vectors’ distance, s to measure the similarity be-
tween each siamese twin, which is fed into a single
sigmoid output unit for target t̂ estimation.

More precisely, for a specific entity pair
(x,x′, i, j, t) ∈ DS−siam

train , the siamese network
could be formulated as,

h =mBERT(x), h′ = mBERT(x′)

t̂(x,x′, i, j) = σ(cos(hi, h
′
j))
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Figure 3: Teacher-student distillation learning.

where cos is the cosine similarity metric func-
tion, σ is the sigmoid activation function, t̂ ∈
[σ(−1), σ(1)] denotes the predicted similarity of
two queried tokens pair < xi, x

′
j >. Larger t̂ value

indicates higher similarity between the two queried
entities tokens.

The loss function of the similarity prediction can
be formulate as,

LSIM (x,x′, i, j, t) = LBCE(t, t̂).

Finally, we can train the siamese entity similar-
ity evaluator on DS−siam

train , and evaluate the per-
formance on test dataset DS−siam

test . Together with
entity recognizer model, this entity similarity eval-
uator are used as teachers in following knowledge
distillation learning process, and transfer knowl-
edge from source to target lingual corpus.

3.3 Teacher-student Distillation Learning

In this section, we consider transferring the named
entity type and similarity knowledge learned on
labeled source language corpus to unlabeled tar-
get language NER task. To this end, we propose
a knowledge distillation learning process to train
a target language student NER model with its su-
pervisory signals mimicked by the entity type pre-
diction probability by the entity recognizer teacher
model and entity representation similarity target
by the entity siamese similarity evaluator teacher
model. Based on the original unlabeled target sen-
tence training data DT

train, we again construct unla-
beled target-language siamese pairwise entity data
DT−sim

train = {(xT ,x
′
T , i, j)}, with the sentence pair

< xT ,x
′
T > randomly sample fromDT

train and the
entity token indices pair < i, j > uniformly sam-
pled from the sentences therein.
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The mBERT is also used as an encoder for the
sentence siamese pair, and the entity token fea-
ture is queried from the latent sequence encoding
representation. Specifically, for a sentence pair
(xT ,x

′
T , i, j) ∈ D

T−sim
train , the student model trans-

form them as follows,

hT = mBERT(xT )

ŷTi = softmax(WhT i + b)

h′
T = mBERT(x′

T )

ŷ′Tj
= softmax(Wh′T j + b)

t̂T (xT ,x
′
T , i, j) = σ(cos(hT i, h

′
T j))

Then for a specific sentence pair sample in the
target siamese dataset, the student loss function has
three breaches, LER(xT ,yS , i), LER(x

′
T ,y

′
S , j),

and LSIM (xT ,x
′
T , i, j, t̂S). Note that supervision

information yS , y′S , and t̂S are taught by the three
teacher models. Summering over all the samples
in DT−sim

train = {(xT ,x
′
T , i, j)}, the total student

model training loss takes form,

L = γ
∑

(xT ,x′T ,i,j)∈DT−sim
train

(α1LER(xT ,yS , i)

+α2LER(x
′
T ,y

′
S , j)

+βLBCE(t̂T (xT ,x
′
T , i, j), t̂S))

where α1, α2, β, and γ are weights in loss func-
tion which are set to make the student model learns
less noisy knowledge from teachers. The weights
are set as follows: α1(α2) is an increasing func-
tion concerning the output of the entity recognizer
teacher as shown in Figure 4. And β is set such
that it is high when the output of the entity simi-
larity teacher is close to 0 or 1, and it is low when
the output is close to 0.5. γ indicates consistency
level between the outputs from two teacher models,
e.g. for two input tokens, if the output from entity
similarity teacher is high, and the similarity level
computed from the outputs of the entity recognizer
teacher is low, then their consistency level is low.
We want the student model to learn from the two
teachers as follows: the higher the prediction of the
entity recognizer teacher is (the further away from
0.5 the prediction of the entity similarity teacher
is, the higher the consistency level is), the more
accurate the prediction is, thus the more attention
the student model pays attention to the input tokens,
and vice versa. Therefore, we heuristically devises
the three weights scheduling as functions of the
inputs,
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Figure 4: Weights of loss. (a) indicates the weight
α(·) of LER. (b) indicates the weight β of LBCE .

α(·) = (max(ŷTi))
2

β = (2t̂T (xT ,x
′
T , i, j)− 1)2

γ = 1− |σ(cos(ŷTi , ŷ
′
Tj
))− t̂T (xT ,x

′
T , i, j)|

4 Experiment

In this section, we evaluate our multiple-task and
multiple-teacher model for cross-lingual NER and
compare our model with a series of state-of-the-art
models.

4.1 Dataset

We conducted experiments on three benchmark
datasets: CoNLL2002 (Tjong Kim Sang, 2002),
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003) and WikiAnn (Pan et al., 2017). CoNLL2002
includes Spanish and Dutch, CoNLL2003 includes
English and German, and WikiAnn includes En-
glish and three non-western languages: Arabic,
Hindi, and Chinese. Each language is divided
into a training set, a development set and a test
set. All datasets were annotated with four entity
types: LOC, MISC, ORG, and PER. Following
(Wu and Dredze, 2019), all datasets are annotated
using the BIO entity labelling scheme. To imitate
the zero-resource cross lingual NER case, follow-
ing (Wu and Dredze, 2019), we used English as the
source language and other languages as the target
language. In cross-lingual NER, the training set
without entity label of the target language is also
available when training the model. We trained the
model with the labeled training set of the source
language and evaluated the model on the test set
of each target language. Table 1 and 2 shows the
statistics of all datasets.

4.2 Implementation Details

We use PyTorch 1.7.1 to implement our model. All
of the feature encoders mentioned in this paper use
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Language Type Train Dev Test
English-en Sentence 14,987 3,466 3,684

(CoNLL-2003) Entity 23,499 5,942 5,648
German-de Sentence 12,705 3,068 3,160

(CoNLL-2003) Entity 11,851 4,833 3,673
Spanish-es Sentence 8,323 1,915 1,517

(CoNLL-2002) Entity 18,798 4,351 3,558
Dutch-nl Sentence 15,806 2,895 5,195

(CoNLL-2002) Entity 13,344 2,616 3,941

Table 1: Statistics of CoNLL.

Language Type Train Dev Test
English-en Sentence 20,000 10,000 10,000

Entity 27,931 14,146 13,958
Arabic-ar Sentence 20,000 10,000 10,000

Entity 22,500 11,266 11,259
Hindi-hi Sentence 5,000 1,000 1,000

Entity 6,124 1,226 1,228
Chinese-zh Sentence 20,000 10,000 10,000

Entity 25,031 12,493 12,532

Table 2: Statistics of WikiAnn.

pre-trained mBERT model (Devlin et al., 2019) in
HuggingFace Transformer1, which has 12 Trans-
former blocks, 12 attention heads, and 768 hidden
units.

We set our hyperparameters empirically follow-
ing (Wu et al., 2020c) with some modifications.
We do not freeze any layers and we use the output
of the last layer as our hidden feature vector. We
set the batch size to be 32, maximum sequence
length to be 128, dropout rate to be 0.2, and we use
Adam as optimizer (Kingma and Ba, 2014). For the
training of recognition teacher model and similarity
teacher model, we set the learning rate to be 1e-5
and 5e-6 separately. For knowledge distillation, we
use a learning rate of 1e-6 for the student models
training. Note that if a word is divided into several
subwords after tokenization, then only the first sub-
word is considered in the loss function. Following
(Tjong Kim Sang, 2002), we use the entity level
F1-score as the evaluation metric. Moreover, we
conduct each experiment 5 times and report the
mean F1-score.

4.3 Comparison

Table 3 and 4 report the zero-resource cross-lingual
NER results of different models on 6 target lan-
guages.

1https://github.com/huggingface/transformers

Model de es nl
Wiki(Tsai et al., 2016) 48.12 60.55 61.56
WS(Ni et al., 2017) 58.50 65.10 65.40
TMP(Jain et al., 2019) 61.50 73.50 69.9
BERT-f(Wu and Dredze, 2019) 69.56 74.96 77.57
AdvCE(Keung et al., 2019) 71.90 74.3 77.6
TSL(Wu et al., 2020a) 73.16 76.75 80.44
Unitrans(Wu et al., 2020b) 74.82 79.31 82.90

w/o translation 73.61 77.3 81.20
AdvPicker(Chen et al., 2021) 75.01 79.00 82.90
RIKD(Liang et al., 2021) 76.08 79.78 82.96

w/o IKD 74.86 78.90 81.02
TOF(Zhang et al., 2021) 76.57 80.35 82.79

w/o continual learning 76.39 79.44 81.64
MTMT 76.80 81.82 83.41

Table 3: Performance comparisons on CoNLL.

Model ar hi zh
BERT-f(Wu and Dredze, 2019) 42.30 67.60 52.90
TSL(Wu et al., 2020a) 43.12 69.54 48.12
RIKD(Liang et al., 2021) 45.96 70.28 50.40
MTMT 52.77 70.76 52.26

Table 4: Performance comparisons on WikiAnn.

Wiki (Tsai et al., 2016) introduces a language in-
dependent model building on cross-lingual wikifi-
cation for cross-lingual NER.
WS (Ni et al., 2017) presents two weakly super-
vised approaches for cross-lingual NER.
TMP (Jain et al., 2019) leverages machine transla-
tion to improve annotation projection approaches
to cross-lingual NER.
BERT-f (Wu and Dredze, 2019) applys the mBERT
to cross-lingual NER.
AdvCE (Keung et al., 2019) improves upon
mBERT via adversarial learning for cross-lingual
NER.

Model de es nl
MTMT 76.80 81.82 83.41

MTST
74.11
(-2.69)

78.61
(-3.21)

81.97
(-1.44)

MTMT w/o weighting
76.08
(-0.72)

80.84
(-0.98)

82.96
(-0.45)

MTMT w/o similarity
73.82
(-2.98)

77.53
(-4.29)

80.82
(-2.59)

Table 5: Ablation study on cross-lingual NER.
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#1
Spanish

Entity Recognizer Teacher: Arévalo[B-ORG] (Avila[B-LOC]), 23 may (EFE[B-ORG]).
Student: Arévalo[B-LOC] (Avila[B-LOC]), 23 may (EFE[B-ORG]).
Entity Recognizer and Entity Similarity Evaluator Teachers:

a. Viena[B-LOC, 0.7157] , 23 may (EFE[B-ORG]).
b. Madrid[B-LOC, 0.7156] , 23 may (EFE[B-ORG]).

#2
Dutch

Entity Recognizer Teacher: Universiteit[B-ORG] Antwerpen[I-ORG] ( Ruca[B-LOC] )...
Student: Universiteit[B-ORG] Antwerpen[I-ORG] ( Ruca[B-ORG] ) en De...
Entity Recognizer and Entity Similarity Evaluator Teachers:

a. ...voor[I-ORG] het[I-ORG] Preventiebeleid[I-ORG] ( VSPP[B-ORG,0.7134] ) is...
b. Transparency[B-ORG] International[I-ORG] ( TI[B-ORG,0.7130] ), de onderhand...

#3
German

Entity Recognizer Teacher: Hessischen[B-ORG] Staatskanzlei[O] auf das Thema...
Student: Hessischen[B-ORG] Staatskanzlei[I-ORG] auf das Thema...
Entity Recognizer and Entity Similarity Evaluator Teachers:

a. Internationalen[B-ORG] Bund[I-ORG] für[I-ORG] Sozialarbeit[I-ORG,0.7162] ...
b. Kickers[B-ORG] Offenbach[I-ORG] II[I-ORG,0.7157] - Rotweiß[B-ORG] ...

Table 6: Case study on cross-lingual NER. The GREEN (RED) highlight indicates a correct (incorrect)
label. The real-valued numbers indicate the entity similarity score.

TSL (Wu et al., 2020c) proposes a teacher-student
learning model for cross-lingual NER.
Unitrans (Wu et al., 2020b) unifies a data transfer
and model transfer for cross-lingual NER.
AdvPicker (Chen et al., 2021) proposes a adver-
sarial discriminator for cross-lingual NER.
RIKD (Liang et al., 2021) develops a reinforced
iterative knowledge distillation for cross-lingual
NER.
TOF (Zhang et al., 2021) transfers knowledge from
three aspects for cross-lingual NER.

It can be seen that our model outperforms the
state-of-the-arts. Specifically, compared with the
remarkable RIKD, AdvPicker, and Unitrans, which
also use knowledge distillation but ignore the en-
tity similarity knowledge, our model obtains sig-
nificant and consistent improvements in F1-score
ranging from 0.23 for German[de] to 6.81 for Ara-
bic[ar]. That demonstrates the benefits of our pro-
posed MTMT model, compared to direct model
transfer (Wu and Dredze, 2019).

Note that BERT-f performs better than our model
on the Chinese dataset due to their re-tokenization
of the dataset. Moreover, compared with the latest
model TOF, RIKD, Unitrans, our model requires
much lower computational costs for both trans-
lation and iterative knowledge distillation, mean-
while reaching superior performance. For a fair
comparison, we compare our model against the ver-
sion of TOF w/o continual learning (Zhang et al.,
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Figure 5: t-SNE plot of embeddings of teacher and
student models. (a) Entity recognizer teacher. (b)
Entity similarity evaluator teacher. (c) Student.

2021), RIKD w/o IKD (Liang et al., 2021) and Uni-
trans w/o translation (Wu et al., 2020b) as reported
in their paper.

4.4 Ablation Study
To demonstrate the effectiveness of our approach,
we designed the following ablation studies. Table
5 presents the results.

(1) MTST, which combines the multiple-teacher
to single-teacher. That is, the teacher model
has the same as the neural network structure of
the student model. This causes a performance
drop across all languages due to two single
teachers cannot make a difference with the
combination.

(2) MTMT w/o weighting, which set the α(·), β
and γ all to be 1 in the loss of student learn-
ing. It can be seen that the performance de-
crease in terms of F1-score ranges from 0.45
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for Dutch(nl) to 0.98 for Spanish(es), which
validates that weighting loss can bring more
confident knowledge to the student model.

(3) MTMT w/o similarity, which removes the
similarity teacher model. In this case, our
approach degrades into the single teacher-
student learning model as in TSL (Wu et al.,
2020a). Without the similarity knowledge fed
into the student model, the performance drops
significantly.

4.5 Case Study

We give a case study to show that the failed cases
of baseline models can be corrected by our model.
We try to bring up insights on why the proposed
multiple-task and multiple-teacher model works.

The proposed MTMT model can help to correct
labels using the Entity Similarity defined in sec-
tion 3.2. Specifically, if there is a set of tokens in
which every two of them have a high Entity Simi-
larity score, and one of the tokens is predicted to
have a distinct label while other tokens have iden-
tical labels, then the one with the distinct label is
predicted wrongly and is corrected by the student
model to have the label of all other tokens. As
shown in Table 6, in example #1, the entity recog-
nizer teacher fails to identify “Arévalo” as B-ORG
type, while the student model can correctly pre-
dict it. The reason lies in that the entity recognizer
teacher predicts “Viena”(‘Madrid”) as B-LOC type
correctly, and the similarity evaluator teacher pre-
dicts “Viena”(“Madrid”) to have a high similarity
score(0.7157, 0.7156) with “Arévalo”. The student
learns from both teachers and predict the correct
label for “Arévalo”. Examples #2 and #3 present
the same results with different sentences.

4.6 Embedding Distribution

This section investigates the effect of embeddings
of the two different teacher models. It can be
seen that the embedding distribution of the student
model is close to similarity evaluator teacher, as
illustrated in Figure 5. We conjecture that the stu-
dent model captures similarity knowledge from the
similarity evaluator teacher, i.e. the same class of
examples tend to cluster and the different class of
examples tend to segregate in the embedding distri-
bution. This validates the proposed MTMT model
not only transfers cross-lingual NER knowledge
from source language, but also learns the similarity
knowledge of target language data.
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Figure 6: Weights analysis of student learning.
(a) α, F1-score in different probability interval.
(b) β, F1-score in different similarity score interval.
(c) F1-score of yS , y′S , and t̂S in different γ inter-
val.

4.7 Effect of Weights

In this section, we evaluate the effectiveness of
weight loss in student learning from a quantitative
perspective. All of the following experiments are
conducted on Spanish(es) data.

For α analysis, we calculate the F1-score in
different probability intervals of entity recognizer
teacher, we find that the recognizer teacher tends to
predict more correct in higher probability interval,
as illustrated in Figure 6a. Therefore, the student
model is better suited to the target language with
learning fewer low-confidence misrecognitions for
the target language.

For β analysis, we observe that F1-score are in-
creasing with the entity similarity score from 0.5 to
both sides 0 and 1 in Figure 6b. The encoder of the
student model obtains the clustering information of
the target language with the help of β.

For γ analysis, we consider the consistency of
recognition results and similarity score by teachers.
The F1-score and similarity score of teachers are
all higher in the higher γ intervals, as shown in
Figure 6c. The student model learns less from un-
reasonable results, and it can make more accurate
entity recognition for the target language.

5 Conclusion

In this paper, we propose an unsupervised multiple-
task and multiple-teacher model for cross-lingual
NER. The student model learns two source lan-
guage patterns of entity recognition and entity
similarity evaluation. Moreover, to guarantee the
student learning performance, we also propose a
weighting strategy to take into consideration the
reliability of the teachers. Our experimental results
show that the proposed model yields significant im-
provements on six target language datasets and out-
performs the existing state-of-the-art approaches.
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