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Abstract

While GPT has become the de-facto method
for text generation tasks, its application to
pinyin input method remains unexplored. In
this work, we make the first exploration
to leverage Chinese GPT for pinyin input
method. We find that a frozen GPT achieves
state-of-the-art performance on perfect pinyin.
However, the performance drops dramatically
when the input includes abbreviated pinyin. A
reason is that an abbreviated pinyin can be
mapped to many perfect pinyin, which links
to even larger number of Chinese characters.
We mitigate this issue with two strategies, in-
cluding enriching the context with pinyin and
optimizing the training process to help distin-
guish homophones. To further facilitate the
evaluation of pinyin input method, we create
a dataset consisting of 270K instances from
fifteen domains. Results show that our ap-
proach improves the performance on abbrevi-
ated pinyin across all domains. Model analysis
demonstrates that both strategies contribute to
the performance boost.

1 Introduction

GPT (Radford et al., 2018, 2019) is a Transformer-
based (Vaswani et al., 2017) language model that
predicts tokens in an autoregressive manner. With
a generic model architecture and the availability
of vast web text data, GPT has been successfully
developed for English, Chinese (Du, 2019; Zhang
et al., 2021b), and many other languages. It shows
extraordinary ability to generate fluent sentences
and has been successfully applied to a wide range
of natural language generation tasks. However, it
remains unexplored to what extent GPT handles
Chinese pinyin input method1, which is used by
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1https://en.wikipedia.org/wiki/Pinyin_

input_method

Character Perfect Pinyin Initial Final

我 wo w o
们 men m en

Table 1: Examples of initials and finals for Chinese
characters “我们 (we)”.

hundreds of millions people when they enter Chi-
nese characters on computers and cellphones.

Pinyin input method allows users to enter Chi-
nese characters based on their pronunciations.
Given a pinyin2 as the input, pinyin input method
returns a list of Chinese characters pronounced
with that pinyin. Fundamental elements of pinyin
include initials (声母) and finals (韵母). In most
cases, a Chinese character is spelled with one initial
followed by one final. For example, as shown in Ta-
ble 1, the initial and final for the Chinese character
“我 (me)” are w and o, respectively. People may
enter perfect pinyin (e.g., “wo men” for “我们”),
where initials and finals of all Chinese characters
are entered. There are about 420 perfect pinyin in
common use. Sometimes, especially when multi-
ple Chinese characters are entered at once, people
may use abbreviated pinyin by only entering the
initials of characters (e.g., “w m” for “我们”).

This work, to the best of our knowledge, is the
first one to explore the use of Chinese GPT for
pinyin input method. We start by testing the perfor-
mance of a frozen GPT. In this setting, we fix the
parameters of GPT and predict Chinese characters
from left to right in an autoregressive manner. At
each time step, only characters pronounced with
the same pinyin are legitimate candidates to be
predicted. We find that, when the input is perfect
pinyin, a frozen GPT performs comparably to state-
of-the-art systems on the benchmark dataset (Yang
et al., 2012). However, when the input is abbre-
viated pinyin with only initials of characters, the

2https://en.wikipedia.org/wiki/Pinyin
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Id Context of Characters Input Pinyin Target Pinyin Type

s1 我下周有时间，除了 li bai yi you dian shi 礼拜一有点事 Perfect
s2 我下周有时间，除了 l b y y d s 礼拜一有点事 Abbreviated
s3 老板帮我解决了难题， l b y y d s 老板永远滴神 Abbreviated

Table 2: Illustrative examples of the task of pinyin input method with perfect pinyin and abbreviated pinyin. In s3,
the input pinyin “l b y y d s” is the abbreviation of “lao ban yong yuan di shen”. The translations
of s1 and s3 are “I am free next week except for the next Monday.” and “Boss helps me overcome the obstacle.
You are the greatest of all time.”, respectively.

performance of GPT has a drastic drop. A ma-
jor reason is that an abbreviated pinyin maps to
many perfect pinyin. For example, the initial “w”
can be the abbreviation for “wo”, “wei”, “wang”,
“wai”, “wu”, etc. This would lead to exponen-
tially larger number of legitimate candidates of
Chinese characters. We mitigate this problem by
incorporating pinyin information from two direc-
tions. One is to enrich the input by adding pinyin
as additional context. The other is learning over
pinyin-constrained vocabulary, which enhances the
model’s ability to distinguish between Chinese
characters pronounced with the same pinyin.

To further facilitate the research on pinyin in-
put method, we construct a new dataset based
on the WuDaoCorpora (Yuan et al., 2021). Our
dataset includes 270K instances from 15 commonly
used news domains.3 To evaluate towards multiple
facets, the dataset covers instances with different
numbers of context characters and pinyin. From
our experiment results, we have these key findings:

1. On perfect pinyin, frozen GPT achieves state-
of-the-art results.

2. On abbreviated pinyin, the performance of
frozen GPT drops drastically. Context enrich-
ment with pinyin and pinyin-constrained train-
ing both improve the performance.

3. The performance of GPT-based models in-
creases as the context of Chinese characters
becomes longer.

2 Task

The input of pinyin input method includes a se-
quence of Chinese characters C = {w1, . . . , wn}
as the context and a sequence of pinyin P =
{pn+1, . . . , pn+k}, where wi ∈ Vw, pn+j ∈ Vp,
and Vw and Vp are the vocabularies of words and

3Our code and data will be released at https://
github.com/VisualJoyce/Transformers4IME

pinyin, respectively. The output is a sequence
of Chinese characters O = {wn+1, . . . , wn+k},
where wn+i ∈ Vw. The number of output char-
acters is the same as the number of pinyin (i.e.,
k) and each character should be pronounced with
the corresponding pinyin. The output sequence is
desired to follow the context of Chinese characters
to form a coherent sentence. As mentioned earlier
in the introduction section, the input pinyin might
be perfect (e.g., “wo men”) or abbreviated (e.g.,
“w m”). Examples of the task are given in Table 2.4

In our definition, one situation is that the context
of characters is empty, which corresponds to the
scenario that people are entering pinyin at the be-
ginning of a sentence. The other situation is that
the context includes real words, which stands for
the scenario that people are entering pinyin in the
middle of a written sentence.

In this paper, we assume that the oracle pinyin
segmentation results are provided. Sometimes, a
raw pinyin sequence can be mapped to different
segmentation results. For example, the raw pinyin
input “jianshi” can be segmented as “ji an
shi” (“集安市”, a city in the southwestern part of
Jilin province, China) or “jian shi” (“见识”,
which is translated as “experience” in English).
Pinyin segmentation is a subtask (Zhao et al., 2006;
Zhou et al., 2007) of pinyin input method, which
is well solved with the accuracy of 98% (Zhang
et al., 2017). We leave the integration of pinyin
segmentation as future work.

3 Models

In this section, we first introduce standard text-
based GPT models adopted in this work (Sec-
tion 3.1). Afterwards, we introduce how to extend
GPT models for pinyin input method with enriched
pinyin context (Section 3.2) and pinyin-constrained

4People may also input pinyin like “l b y you dian
shi”, we leave this as a future work.
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training (Section 3.3), respectively.

3.1 GPT Baselines

In this work, we use character-level Chinese GPT
as the backbone. We describe character-level GPT
models in this subsection.

We start with a publicly available character-level
GPT (Du, 2019)5, which we call GPT (public).
The model has the same configuration as the stan-
dard 12-layer GPT6. It is trained on the CLUECor-
pusSmall dataset of 14GB (Xu et al., 2020), which
consists of Chinese news, Wikipedia, online forum
message, and consumer comments. We have tried
another well known Chinese pretrained language
model called CPM (Zhang et al., 2021b), which is
trained on 100GB data. The vocabulary of CPM
contains both Chinese characters and words.7 We
built a baseline with the CPM model of 12 layers8

and forced the generated token to be a Chinese
character. However, this baseline does not work
well on pinyin input method, partly because our
character-level decoding is inconsistent with the
way how CPM is trained. It is promising to lever-
age the advantage of CPM on word-level decoding,
and we leave this as a future work.

To build a stronger Chinese GPT baseline, we
use GPT (public) as the starting point and further
pretrain on a 800GB data crawled by us that is
composed of news, Wikipedia, and novel texts.
The model is trained with a batch size of 2,560
on 32x Tesla V100 GPUs. We adopt the Adam op-
timizer (Kingma and Ba, 2015) and set the learning
rate to 1e-5 with a linear warmup scheduler. We run
the warmup process for 10k steps and train 100k
steps in total. We call this 12-layer GPT model as
GPT (ours).

To apply GPT (public) and GPT (ours) to pinyin
input method, we use the traditional decoding
pipeline of GPT to generate the sequence of Chi-
nese characters in an autoregressive way. After
encoding all the context of characters, the model
predicts a Chinese character at each time step con-
ditioned on the pinyin. Only Chinese characters
pronounced with the same pinyin are legitimate

5https://github.com/Morizeyao/
GPT2-Chinese

6https://huggingface.co/gpt2
7A Chinese word may consist of multiple Chinese char-

acters. For example, the word “我们” (we) includes two
characters “我” and “们”.

8https://github.com/TsinghuaAI/
CPM-1-Distill

candidates to be predicted. Without further clarifi-
cation, this strategy is used in all the experiments.

3.2 Incorporating Pinyin Context
We explore two simple ways to incorporate pinyin
information and build two models correspondingly.
The first model uses pinyin information horizon-
tally by concatenating pinyin input to the context of
characters. The second model incorporates pinyin
information vertically by adding a pinyin embed-
ding layer at the bottom of GPT.

PinyinGPT-Concat In this model, we append a
pinyin sequence to the context of Chinese charac-
ters. In the inference stage, the input has the form
of x = [w1, . . . , wn,[SEP], pn+1, . . . , pn+k,
[SEP]], where [SEP] is a special token to sep-
arate text and pinyin. The model largely follows
the architecture of the standard GPT. Since there
is one-one relationship between pinyin tokens and
generated Chinese characters (i.e., the pronuncia-
tion of wn+j is pn+j), we adjust the absolute posi-
tions of the characters to be generated. We assign
the position of pn+j to wn+j , expecting the model
to learn the alignments between pinyin and target
characters.9 We further expand the vocabulary of
the word embedding layer by adding pinyin tokens.

In the training stage, given an training in-
stance of [w1, . . . , wn,[SEP], pn+1, . . . , pn+k,
[SEP], wn+1, . . . , wn+k], the model is trained
to minimize the following loss function, where
w<n+j stands for the characters before wn+j and
p = [pn+1, . . . , pn+k].

Lconcat = −
k∑

j=1

log p(wn+j |w<n+j ,p) (1)

PinyinGPT-Embed The original GPT model in-
cludes a word embedding layer and a position em-
bedding layer. In this model, we add a pinyin em-
bedding layer. The basic idea is to provide the
model with the pinyin of the character to be gen-
erated next. Specifically, the embedding of each
character is the sum of the token embedding of
the current character, the position embedding of
the current character and the pinyin embedding of
the next character. When a word (e.g., numbers,
punctuations and symbols) has no corresponding
pinyin, we use a special token [unk] to repre-
sent it instead. The training process is similar with

9On abbreviated pinyin, this strategy could bring 0.3 points
in terms of P@5.
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我 下 周 有 时 间 ， 除 了 l b y y d s[SEP] [SEP] 礼 拜 一 有 点 事
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我 下 周 有 时 间 ， 除 了 礼 拜 一 有 点 事 [EOS]

我 下 有 时 间 ，周 除 了[CLS] 礼 拜 一 有 点 事

[unk]

Figure 1: An illustration of the training process of Pinyin-Concat (top) and Pinyin-Embed (bottom), respectively.
The example is same as the instance of s2 from Table 2.

the standard GPT, as shown in Figure 1. The loss
function is given as follows.

Lembed = −
n+k∑
j=1

log p(wj |w<j ,p<j+1) (2)

In the inference stage, we transform the input se-
quence to the same format.

3.3 Pinyin-Constrained Training

We describe training details in this subsection. In
standard GPT, the loss function is computed over
the whole vocabulary. However, this is suboptimal
for pinyin input method because the major chal-
lenge in the inference stage is how to select the
best one from characters pronounced with the same
pinyin (as described in the end of Section 3.1). This
leads to inconsistency between training and infer-
ence stages. Therefore, in the training stage, the
probability of a character is calculated over char-
acters pronounced with the same pinyin, which is
formulated as follows.

p(wi) =
exp (g(wi))∑

wj∈Vpi
exp (g(wj))

, (3)

where Vpi is the set of Chinese characters whose
pinyin is pi and g is the logit before the softmax
layer.

4 Experiment

In this section, we show the results on pinyin input
method over the two settings (i.e., perfect pinyin
and abbreviated pinyin).

4.1 Settings

We describe the two datasets used in the following
experiments and the evaluation metric.

PD Dataset PD dataset (Yang et al., 2012) is a
commonly used benchmark dataset for the evalu-
ation of pinyin input method (Jia and Zhao, 2014;
Zhang et al., 2017; Huang et al., 2018; Zhang et al.,
2019). The texts in PD are extracted from the Peo-
ple’s Daily10 from 1992 to 1998. It contains 5.04
million segments of consecutive Chinese charac-
ters (or Maximum Input Unit in some literature) for
training and 2,000 segments for testing. For each
test case, the input pinyin are all perfect pinyin and
the context is null.

WD Dataset Since the PD data includes out-of-
date news from 20 years ago and does not support
us to study the scenario where the context includes
real words, we construct a new dataset called WD.
We use the WuDaoCorpora (Yuan et al., 2021) that
contains 3TB Chinese corpus collected from 822
million Web pages. Currently, 200GB of the corpus

10http://www.people.com.cn/
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has been made publicly available 11. We randomly
select 15 domains from WuDaoCorpora. For each
domain, we first use an off-the-shelf Chinese seg-
mentation toolkit (Zhang et al., 2020) to segment
the documents into sentences. Then we automat-
ically obtain the perfect pinyin and abbreviated
pinyin of characters with pinyin converting tools.
For each sentence, we randomly choose a context
with a range from 0-3, 4-9 and 10+ words. Consec-
utively, we choose the target to be 1-3, 4-9 or 10+
words, respectively. It’s further required that the
target should be continuous characters that each has
its own pinyin. We call each context-target length
tuple like (4-9, 10+) as an evaluation configuration.
For each configuration, we sample 2,000 test cases.
In total, there are 9 configurations of 18,000 cases
for each domain. The whole dataset consists of
270,000 examples. We investigate extremely long
target lengths for the purpose of research that these
configurations may not appear in real cases. All
the instances in the WD dataset are only used for
evaluation.

Evaluation Metric We use precision at top-
K (P@K) as the evaluation metric, which is widely
adopted in the literature (Jia and Zhao, 2014;
Zhang et al., 2017, 2019). It measures if the
ground truth exists in the top-K generated results.
Some existing works also use keystroke-based met-
rics (Jia and Zhao, 2013; Huang et al., 2015) and
human evaluation, which we don’t use in this work
because the evaluation process is more complex
and time-consuming.

Other Settings We train both PinyinGPT models
with the training data of GPT (ours). To preprocess
the corpus, we use a public library pypinyin12 to get
the pinyin of Chinese characters.13 We initialize
both PinyinGPT models with GPT (ours). Both
models are trained for 100k steps on 32 GPUs of
NVIDIA V100 Tensor Core with a bach size of
25,000. The learning rate is 5e-5. We maintain
a maximum of 128 tokens for every training ex-
ample. We use a probability of 50% to sample a
target sequence with less than 5 words, otherwise
we randomly sample a target sequence with 6 to
25 words. This rate is empirically selected as it’s
less practical for users to type very long sequences.

11https://resource.wudaoai.cn/home
12https://github.com/mozillazg/

python-pinyin
13If there are heteronym issues, we further verify them with

an online dictionary ZDic (https://www.zdic.net/).

Model P@1 P@5 P@10

Google IME 70.90 78.30 82.30
On-OMWA 64.40 72.90 77.90
On-P2C 71.30 80.50 81.30

GPT (public) 67.35 79.95 81.60
GPT (ours) 73.15 84.10 85.45

Table 3: Comparison with different methods over PD
using perfect pinyin.

During inference stage, we use beam search with a
beam size of 16 for text generation.

4.2 Results on Perfect Pinyin

We report results on the PD dataset (Yang et al.,
2012). We use pinyin-constraint training in all
configurations and train PinyinGPT models with
different pinyin vocabularies for perfect pinyin and
abbreviated pinyin, respectively. We compare with
the following baselines.

• Google IME is a commercial Chinese IME
which provides a debuggable API.

• On-OMWA (Zhang et al., 2017) is an online
model for word acquisition which adaptively
learns new words for Chinese IME.

• On-P2C (Zhang et al., 2019) is a neural pinyin-
to-Chinese character conversion model, which
is augmented by an online updated vocabulary
to support open vocabulary learning.

In Table 3, the first group (top) shows the results
of the aforementioned baselines, which are directly
extracted from On-P2C (Zhang et al., 2019). The
bottom group shows the performance of GPT (pub-
lic) and GPT (ours) with frozen parameters. We can
find that GPT (public) achieves comparative perfor-
mance with existing systems in terms of P@5 and
P@10. After being trained with a larger corpus,
GPT (ours) surpasses all the baseline models in
terms of all metrics. It is worth noting that existing
baselines are supervised models that are fine-tuned
on training instances. The results demonstrate the
effectiveness of GPT models pretrained on vast
amount of texts.

4.3 Results on Abbreviated Pinyin

In this section, we report results for both perfect
pinyin and abbreviated pinyin on WD.
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Model
Fix GPT

Perfect Pinyin Abbreviated Pinyin

Parameters P@1 P@5 P@10 P@1 P@5 P@10

GPT (public) 76.55 87.07 88.58 22.22 29.99 31.48
GPT (ours) 80.22 90.20 91.09 26.90 35.56 37.03

PinyinGPT-Embed Y 72.41 83.44 84.78 26.95 35.56 37.06
PinyinGPT-Embed N 69.34 81.54 82.99 23.73 31.80 33.33
PinyinGPT-Concat Y 80.24 90.21 91.10 26.91 35.56 37.03
PinyinGPT-Concat N 78.12 90.38 92.06 27.75 40.66 44.20

Table 4: Overall results on WD dataset for perfect pinyin and abbreviated pinyin, respectively.

Model
1-3 4-9 10+

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

0-3 GPT (ours) 30.11 42.27 45.25 13.33 18.24 18.99 4.16 5.86 6.00
PinyinGPT-Concat 31.72 48.09 53.94 15.21 24.39 26.94 5.58 9.22 10.09

4-9 GPT (ours) 49.83 65.03 67.96 25.53 34.48 35.89 9.38 12.70 13.03
PinyinGPT-Concat 50.78 70.11 75.58 26.44 41.51 45.52 10.20 17.02 18.80

10+ GPT (ours) 59.39 75.00 77.60 35.42 46.32 47.94 14.96 20.11 20.63
PinyinGPT-Concat 59.89 78.81 83.33 34.99 51.99 56.62 14.93 24.78 27.03

Table 5: Results of different context-target configurations over WD for abbreviated pinyin. The first column and
top row stand for context length range and target length range, respectively.

In Table 4, we list the overall experiment re-
sults of two GPT baselines as well as our Piny-
inGPT models. We have several findings based on
the results. First, from each row, we can see that
there is a drastic performance drop for all models.
The reason is that each abbreviated pinyin can be
mapped to a large amount of candidate characters,
so that the problem is more challenging compared
to perfect pinyin. We also believe that the evalua-
tion metric of P@1 might be too strict for abbrevi-
ated pinyin because sometimes the top predictions
might be correct (as reflected in Figure 3) even
though they may be different from the ground truth.
Second, adding pinyin information to GPT obtains
limited improvement on perfect pinyin, but boosts
the abbreviated setting by 5 points on P@5 and 7
points on P@10, respectively. Third, concatenating
pinyin context horizontally is better than adding
pinyin embedding vertically. Last, fine-tuning all
the parameters performs better than keeping the
parameters of GPT fixed.

4.4 Model Analysis: Ablation Study

In this section, we conduct experiments to under-
stand the importance of pinyin context and pinyin-
constrained training. Results are given in Figure 2.
The baseline model is GPT (ours). The model +

Pinyin Context means that we concatenate pinyin
context (i.e., PinyinGPT-Concat) and learn over the
whole vocabulary. The model + Pinyin Context +
PC-LOSS means that we use both pinyin context
and pinyin-constrained training. The figure shows
that taking pinyin as extra context works well to
improve results in terms of P@5 and P@10. When
the two components are adopted, the performance
is further improved.

P@1 P@5 P@10
0

10

20

30

40

50

60

26.9

35.6 37.0

24.7

37.5
41.5

27.8

40.7
44.2

GPT (ours)
+ Pinyin Context
+ Pinyin Context + PC-Loss

Figure 2: Ablation study for concatenating pinyin con-
text and pinyin-constrained training.

4.5 Model Analysis: Context-Target Length

To analyze how context length and target length af-
fect performance, we aggregate experiment results

1904



Id Case Predictions

1

Context:

Pinyin:

Abbreviated:

Target:

Translation:

奥斯卡组委会
qing xiang yu kan hao

No

倾向于看好
The Oscar Organizing Committee 

inclined to prefer

GPT (ours):

1. 倾向于看好
inclined to prefer

2. 倾向于看豪
inclined to look at

PinyinGPT-Concat:

1. 倾向于看好
inclined to prefer

2. 倾向与看好
tendency and optimism

2

Context:

Pinyin:

Abbreviated:

Target:

Translation:

奥斯卡组委会
q x y k h

Yes

倾向于看好
The Oscar Organizing Committee 

inclined to prefer

GPT (ours):

1. 旗下一款很
one of its very

2. 旗下一款豪
one of its luxury

PinyinGPT-Concat:

1. 倾向于看好
inclined to prefer

2. 倾向于抗衡
inclined to fight against

3

Context:

Pinyin:

Abbreviated:

Target:

Translation:

而中国队作为本次
j s d c b g

Yes

竞赛的承办国
And the Chinese team as 

the host country of this contest

GPT (ours):

1. 决赛的承办国
the host country of the finals

2. 决赛的场边观
at the ringside of the finals

PinyinGPT-Concat:

1. 决赛的承办国
the host country of the finals

2. 竞赛的承办国
the host country of the contest

Figure 3: Case study for GPT (ours) and PinyinGPT-Concat in both perfect pinyin and abbreviated pinyin.

to form a matrix of accuracy for each configura-
tion in Table 5. Each score is averaged over all
the domains. From each column, we can see that
longer context benefits both GPT and our model in
pinyin input method, which verifies the power of
context understanding ability of GPT models. An
interesting finding is that, when the context is long
enough (e.g., 10+), adding pinyin does not help
improve the P@1.

4.6 Model Analysis: Case Study
We list three cases in Figure 3 to compare model
outputs produced by GPT (ours) and PinyinGPT-
Concat. The first case shows that, given per-
fect pinyin as the input, both GPT (ours) and
PinyinGPT-Concat make the correct predictions.
In the second case, abbreviated pinyin is given as
the input. PinyinGPT-Concat makes the correct pre-
diction while the prediction of GPT (ours) does not
fit to the context well. In Case 3, even if PinyinGPT-
Concat ranks the ground truth as the second best,
the top 1 prediction still makes much sense and fit
well with the context. In all cases, GPT (ours) usu-
ally generate predictions which are grammatically
sound but semantically inappropriate.

4.7 Model Analysis: Domains
In this subsection, we analyze how performance
differs with respect to domains. We sample six
domains for illustration in Table 6.14 The table
shows that PinyinGPT-Concat achieves consistent
improvement over GPT on all domains. We also

14The table of all 15 domains is attached in the Appendix.

find that the absolute scores vary a lot across do-
mains. This reflects different predictability for texts
on different domains. For example, the P@10 score
of the Culture domain is 16 points lower than the
Medical domain. In the Medical domain, the texts
contain plenty of descriptions of symptoms and in-
structions of medicines, which are somehow canon-
ically used. While in the Culture domain, the texts
are less constrained and have more variations.

4.8 Model Analysis: Accuracy versus
Latency

Considering pinyin input method requires both ac-
curacy and efficiency, we further train a 6-layer
GPT to investigate the trade-off. Our 6-layer GPT
is directly truncated and initialized from the 12-
layer GPT and is continually trained for 50k steps
with the same configuration of 12-layer GPT.

The evaluation is conducted over the 9 configura-
tions of context-target length and averaged across
all domains. Specifically, each configuration is
inferred using a data center GPU NVIDIA V100
Tensor Core, and the GPU is fully occupied by
one model. The beam size is set to be 16. We
report the average inference time in millisecond as
well as accuracy in terms of P@K of PinyinGPT-
Concat. Table 7 is the result for the configuration
(4-9, 4-9). The table shows that the inference time
of the model with 6-layer transformer is almost
30% faster than that with 12-layer. However, the
performance of the 6-layer model drops consis-
tently in the abbreviated setting. 15

15We also list the experiment results for all configurations
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Model
Games Culture Sports

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

GPT (ours) 24.04 32.78 34.23 21.86 29.33 30.94 28.54 37.13 38.69
PinyinGPT-Concat 25.78 38.26 41.89 22.10 33.33 36.72 29.81 43.56 46.95

Real Estate Medical Finance

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

GPT (ours) 26.53 35.27 36.74 33.59 43.54 44.93 29.00 37.24 38.47
PinyinGPT-Concat 27.28 40.16 43.86 34.76 49.28 52.56 29.17 42.17 45.52

Table 6: Performance of six sample domains over WD using abbreviated pinyin.

Model Time (ms) P@5

GPT (ours, 6L) 94 27.45
GPT (ours, 12L) 142 34.48
PinyinGPT-Concat (6L) 94 32.70
PinyinGPT-Concat (12L) 145 41.51

Table 7: Average inference time for one instance and
the overall P@5 for the configuration of (4-9, 4-9).

5 Related work

Pinyin Input Method We describe existing
works based on whether the input pinyin is per-
fect or abbreviated. A majority of existing works
focus on perfect pinyin. Traditional models are typ-
ically based on statistical language models (Chen
and Lee, 2000) and statistical machine transla-
tion (Yang et al., 2012). Recent works are usu-
ally built with neural network. For example, Moon
IME (Huang et al., 2018) integrates attention-based
neural network and an information retrieval mod-
ule. Zhang et al. (2019) improves an LSTM-
based encoder-decoder model with online vocab-
ulary adaptation. For abbreviated pinyin, Co-
CAT (Huang et al., 2015) uses machine transla-
tion technology to reduce the number of the typ-
ing letters. Huang and Zhao (2018) propose an
LSTM-based encoder-decoder approach with the
concatenation of context words and abbreviated
pinyin as input. Our work differs from existing
works in that we are the first one to exploit GPT
and verify the pros and cons of GPT in different sit-
uations. In addition, there are some works handling
pinyin with typing errors. Chen and Lee (2000) in-
vestigate a typing model which handles spelling
correction in sentence-based pinyin input method.
CHIME (Zheng et al., 2011) is a error-tolerant Chi-

in the Appendix. We recommend readers to select models in a
more cost-effective way based on their requirements.

nese pinyin input method. It finds similar pinyin
which will be further ranked with Chinese specific
features. Jia and Zhao (2014) propose a joint graph
model to globally optimize the tasks of pinyin in-
put method and typo correction. We leave error-
tolerant pinyin input method as a future work.

Pinyin-enhanced Pretrained Models Our
methodology also relates to pretrained models
that use pinyin information. Sun et al. (2021)
propose a general-purpose Chinese BERT with
new embedding layers to inject pinyin and
glyph information of characters. There are also
task-specific BERT models, especially for the task
of grammatical error correction since an important
type of error is caused by characters pronounced
with the same pinyin. Zhang et al. (2021a) add
a pinyin embedding layer and learns to predict
characters from similarly pronounced candidates.
PLOME (Liu et al., 2021) add two embedding
layers implemented with two GRU networks
to inject both pinyin and shape of characters,
respectively. Xu et al. (2021) add a hierarchical
encoder to inject the pinyin letters at character and
sentence levels, and add a ResNet encoder to use
graphic features of character image.

6 Conclusion

In this paper, we explore how to adapt pretrained
Chinese GPT to pinyin input method. To begin
with, we find that a frozen GPT with decoding
conditioned on pinyin can reach state-of-the-art
performance on perfect pinyin. However, in abbre-
viated setting, the performance drops by a large gap.
Through our experiments, we find that both con-
text enrichment with pinyin and pinyin-constrained
training improve the performance. In the future, we
would like to investigate more challenging settings
including error-tolerant pinyin input method and
mixtures of perfect pinyin and abbreviated pinyin.
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Model Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10

Entertainment Automobile Technology

GPT (ours) 26.84 35.97 37.73 27.84 36.56 38.03 26.01 34.48 35.86
PinyinGPT-Concat 28.74 41.68 45.48 28.74 41.55 45.28 26.82 40.17 43.65

Education Agriculture Economy

GPT (ours) 27.31 36.71 38.28 26.57 35.08 36.59 27.93 36.04 37.20
PinyinGPT-Concat 27.65 41.17 44.87 27.27 39.73 43.17 28.47 40.99 44.53

Games Culture Sports

GPT (ours) 24.04 32.78 34.23 21.86 29.33 30.94 28.54 37.13 38.69
PinyinGPT-Concat 25.78 38.26 41.89 22.10 33.33 36.72 29.81 43.56 46.95

International Society Military

GPT (ours) 26.42 34.82 36.24 26.57 36.15 37.78 24.46 32.26 33.75
PinyinGPT-Concat 27.49 40.16 43.66 27.34 40.94 44.89 24.82 36.73 40.03

Real Estate Medical Finance

GPT (ours) 26.53 35.27 36.74 33.59 43.54 44.93 29.00 37.24 38.47
PinyinGPT-Concat 27.28 40.16 43.86 34.76 49.28 52.56 29.17 42.17 45.52

Table 8: Results of different domains over WD using abbreviated pinyin. Each score is averaged over all the
context-target length configurations.

Models
1-3 4-9 10+

T P@1 P@5 P@10 T P@1 P@5 P@10 T P@1 P@5 P@10

0-3

GPT (ours, 6L) 38 26.74 38.45 41.50 98 10.46 14.41 15.19 201 2.72 3.70 3.85
GPT (ours, 12L) 58 30.11 42.27 45.25 148 13.33 18.24 18.99 303 4.16 5.86 6.00
PinyinGPT-Concat (6L) 40 29.17 45.17 50.73 98 11.92 19.55 21.84 197 3.20 5.67 6.22
PinyinGPT-Concat (12L) 61 31.72 48.09 53.94 148 15.21 24.39 26.94 305 5.58 9.22 10.09

4-9

GPT (ours, 6L) 38 44.02 59.02 62.32 94 20.02 27.45 28.76 198 5.72 8.05 8.31
GPT (ours, 12L) 57 49.83 65.03 67.96 142 25.53 34.48 35.89 301 9.38 12.70 13.03
PinyinGPT-Concat (6L) 38 45.66 65.08 70.56 94 20.25 32.70 36.14 192 5.98 10.23 11.29
PinyinGPT-Concat (12L) 58 50.78 70.11 75.58 145 26.44 41.51 45.52 298 10.20 17.02 18.80

10+

GPT (ours, 6L) 42 54.38 69.94 72.92 99 28.81 38.98 40.41 198 10.32 14.18 14.64
GPT (ours, 12L) 64 59.39 75.00 77.60 149 35.42 46.32 47.94 301 14.96 20.11 20.63
PinyinGPT-Concat (6L) 43 53.91 73.21 78.14 98 27.21 42.36 46.45 198 9.15 15.49 17.05
PinyinGPT-Concat (12L) 66 59.89 78.81 83.33 154 34.99 51.99 56.62 306 14.93 24.78 27.03

Table 9: Experiment results for different configurations over WD using abbreviated pinyin, each score is averaged
over all the domains. The first column is the context length while the first row is the target length. The field T is
the average inference time in millisecond.
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