
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1713 - 1726

May 22-27, 2022 c©2022 Association for Computational Linguistics

Skill Induction and Planning with Latent Language

Pratyusha Sharma Antonio Torralba Jacob Andreas
Massachusetts Institute of Technology
{pratyuss,torralba,jda}@mit.edu

Abstract

We present a framework for learning hierarchi-
cal policies from demonstrations, using sparse
natural language annotations to guide the
discovery of reusable skills for autonomous
decision-making. We formulate a generative
model of action sequences in which goals
generate sequences of high-level subtask de-
scriptions, and these descriptions generate se-
quences of low-level actions. We describe
how to train this model using primarily unan-
notated demonstrations by parsing demonstra-
tions into sequences of named high-level sub-
tasks, using only a small number of seed anno-
tations to ground language in action. In trained
models, natural language commands index a
combinatorial library of skills; agents can use
these skills to plan by generating high-level
instruction sequences tailored to novel goals.
We evaluate this approach in the ALFRED
household simulation environment, providing
natural language annotations for only 10% of
demonstrations. It achieves task completion
rates comparable to state-of-the-art models
(outperforming several recent methods with
access to ground-truth plans during training
and evaluation) while providing structured and
human-readable high-level plans.1

1 Introduction

Building autonomous agents that integrate high-
level reasoning with low-level perception and con-
trol is a long-standing challenge in artificial intelli-
gence (Fikes et al., 1972; Newell, 1973; Sacerdoti,
1973; Brockett, 1993). Fig. 1 shows an example: to
accomplish a task such as cooking an egg, an agent
must first find the egg, then grasp it, then locate a
stove or microwave, at each step reasoning about
both these subtasks and complex, unstructured sen-
sor data. Hierarchical planning models (e.g. Sut-
ton et al., 1999)—which first reason about abstract

1Code and visualizations: https://sites.google.com/
view/skill-induction-latent-lang/.

Annotated demonstrations (10%) Unannotated demonstrations (90%)

Training: Semi-supervised Skill Learning with Latent Language

Deployment : Planning with Language

Pick up
an egg.

…

Heat and cool an egg.

grasp(ob1) open(ob3)turn(left)

Grab the
ladle.

Go to the
sink.

…

Put a clean ladle on the counter

turn(right) forwardgrasp(obj1)

Put the
ladle down.

… …

Find a
knife.

Place tomato
in the fridge.

Slice and chill a tomato.

forward grasp(ob4)turn(right) …

Goal

Plan Heat the egg in
the microwave.

Alignments

Actions

Model Architecture

Find an egg.

embed

cond.
LM

open(ob3)

observation action mask

Slice the
tomato.

Find a
tomato.

Language Model Planner

cond. LM Policy

observed

Legend

inferred / predicted

Figure 1: Hierarchical imitation learning using weak
natural language supervision. During training, a small
number of seed annotations are used to automatically
segment and label unannotated training demonstrations
with natural language descriptions of their high-level
structure. When deployed on new tasks, learned poli-
cies first generate sequences of natural language sub-
task descriptions, then modularly translate each de-
scription to a sequence of low-level actions.

states and actions, then ground these in concrete
control decisions—play a key role in most existing
agent architectures. But training effective hierarchi-
cal models for general environments and goals re-
mains difficult. Standard techniques either require
detailed formal task specifications, limiting their
applicability in complex and hard-to-formalize en-
vironments, or are restricted to extremely simple
high-level actions, limiting their expressive power
(Bacon et al., 2017; Sutton et al., 1999; Dietterich,
1999; Kaelbling and Lozano-Pérez, 2011).

Several recent papers have proposed to overcome
these limitations using richer forms of supervision—
especially language—as a scaffold for hierarchi-
cal policy learning. In latent language policies
(LLPs; Andreas et al., 2018), controllers first map

1713

https://sites.google.com/view/skill-induction-latent-lang/.
https://sites.google.com/view/skill-induction-latent-lang/.

from high-level goals to sequences of natural lan-
guage instructions, then use instruction following
models to translate those instructions into actions.
But applications of language-based supervision for
long-horizon policy learning have remained quite
limited in scope. Current LLP training approaches
treat language as a latent variable only during pre-
diction, and require fully supervised (and often
impractically large) datasets that align goal spec-
ifications with instructions and instructions with
low-level actions. As a result, all existing work
on language-based policy learning has focused on
very short time horizons (Andreas et al., 2018),
restricted language (Hu et al., 2019; Jacob et al.,
2021) or synthetic training data (Shu et al., 2018;
Jiang et al., 2019).

In this paper, we show that it is possible to train
language-based hierarchical policies that outper-
form state-of-the-art baselines using only minimal
natural language supervision. We introduce a pro-
cedure for weakly and partially supervised training
of LLPs using ungrounded text corpora, unlabeled
demonstrations, and a small set of annotations link-
ing the two. To do so, we model training demon-
strations as generated by latent high-level plans: we
describe a deep, structured latent variable model
in which goals generate subtask descriptions and
subtask descriptions generate actions. We show
how to learn in this model by performing inference
in the infinite, combinatorial space of latent plans
while using a comparatively small set of annotated
demonstrations to seed the learning process.

Using an extremely reduced version of the AL-
FRED household robotics dataset (Shridhar et al.,
2020)—with 10% of labeled training instructions,
no alignments during training, and no instructions
at all during evaluation—our approach performs
comparably a state-of-the-art model that makes
much stronger dataset-specific assumptions (Blukis
et al., 2021), while outperforming several models
(Zhang and Chai, 2021; Suglia et al., 2021; Kim
et al., 2021) that use more information during both
training and evaluation. Our method correctly seg-
ments and labels subtasks in unlabeled demonstra-
tions, including subtasks that involve novel compo-
sitions of actions and objects. Additional experi-
ments show that pretraining on large (ungrounded)
text corpora (Raffel et al., 2020) contributes to this
success, demonstrating one mechanism by which
background knowledge encoded in language can
benefit tasks that do not involve language as an

input or an output.
Indeed, our results show that relatively little in-

formation about language grounding is needed for
effective learning of language-based policies—a
rich model of natural language text, a large number
of demonstrations, and a small number of annota-
tions suffice for learning compositional libraries of
skills and effective policies for deploying them.

2 Preliminaries

We consider learning problems in which agents
must perform multi-step tasks (like cooking an egg;
Fig. 1) in interactive environments. We formalize
these problems as undiscounted, episodic, partially
observed Markov decision processes (POMDPs)
defined by a tuple (S,A, T,Ω, O), where S is a set
of states, A is a set of actions, T : S ×A → S is
an (unknown) state transition function, Ω is a set
of observations, and O : S → Ω is an (unknown)
observation function.2 We assume that observa-
tions include a distinguished goal specification g
that remains constant throughout an episode; given
a dataset D of consisting of goals g and demon-
strations d (i.e.D = {(d1, g1), (d2, g2) . . .};d =
[(o1, a1), (o2, a2), . . .]; o ∈ Ω, a ∈ A), we
aim to learn a goal-conditional policy π(at |
a:t−1,o:t, g) = π(at | a1, . . . , at−1, o1, . . . , ot, g)
that generalizes demonstrated behaviors to novel
goals and states.

For tasks like the ones depicted in Fig. 1, this
learning problem requires agents to accomplish
multiple subgoals (like finding an egg or oper-
ating an appliance) in a feasible sequence. As
in past work, we address this challenge by fo-
cusing on hierarchical policy representations that
plan over temporal abstractions of low-level ac-
tion sequences. We consider a generic class of
hierarchical policies that first predict a sequence
of subtask specifications τ from a distribution
πC(τi | τ:i−1, g) (the controller), then from each
τ generate a sequence of actions a1 . . . an from a
distribution πE(ai | a:i−1,o:i, τ) (the executor).3

At each timestep, πE may either generate an action
from A; or a special termination signal STOP; af-
ter STOP is selected, control is returned to πC and
a new τ is generated. This process is visualized

2For notational convenience, we assume without loss of
generality that T and O are deterministic.

3In past work, πE often conditions on the current observa-
tion as well as goal and history of past subtask specifications;
we found that this extra information was not needed for the
tasks studied here.

1714

g τ1 Grab
an egg.

Heat in the
microwave.τ2

a1 turn(left) grasp(ob1)a2 a3 open(ob3)

Segmentation Labeling Param. update

a

α

τ τ′

a

α

τ

a′

α′

Find most probable subtask
alignment for each action.

Update subtask desc. for aligned
actions using inference network.

Choose model and inf.
network params to max
complete likelihood.

θ η

τ

α

a

(b)

STOP

Heat and
cool an egg.

α1 = α2 = 1 α3 =
s1 = [1, 2] s2 = [3,…]

1 2

(a)

g τ1 Grab
an egg.

Heat in the
microwave.τ2

a1 turn(left) grasp(ob1)a2 a3 open(ob3)

Segmentation Labeling Param. update

a

α

τ τ′

a

α

τ

a′

α′

Find most probable subtask
alignment for each action.

Update subtask desc. for aligned
actions using inference network.

Choose model and inf.
network params to max
complete likelihood.

θ η

τ

α

a

(b)

STOP

Heat and
cool an egg.

α1 = α2 = 1 α3 =
s1 = [1, 2] s2 = [3,…]

1 2

(a)
Figure 2: (a) When a hierarchical policy is deployed, πC generates a sequence of subtask specifications, and πE

translates each of these to a low-level action sequence ending in STOP. At training time, this hierarchical structure
is not available, and must be inferred to train our model. To do so, we assign each action ai an auxiliary alignment
variable αi identifying the subtask that produced it. Alignments divide an action sequence into a sequence of seg-
ments s containing actions aligned to the same subtask. Automatically segmenting training demonstrations makes
it possible to learn modular, reusable policies for individual subtasks without direct supervision. (b) Overview of
the proposed learning algorithm (SL)3, which alternates between segmenting (by aligning) actions to fixed subtask
specifications; labeling segments given fixed alignments, and updating model parameters.

in Fig. 2(a). Trajectories generated by hierarchi-
cal policies themselves have hierarchical structure:
each subtask specification τ generates a segment
of a trajectory (delimited by a STOP action) that
accomplishes a specific subgoal.

Training a hierarchical policy requires first defin-
ing a space of subtask specifications τ , then param-
eterizing controller and executor policies that can
generate these specifications appropriately. Most
past research has either pre-defined an inventory of
target skills and independently supervised πC and
πE (Sutton et al., 1999; Kulkarni et al., 2016; Dayan
and Hinton, 1992); or performed unsupervised dis-
covery of a finite skill inventory using clustering
techniques (Dietterich, 1999; Fox et al., 2017).

Both methods have limitations, and recent work
has explored methods for using richer supervision
to guide discovery of skills that are more robust
than human-specified ones and more generalizable
than automatically discovered ones. One frequently
proposed source of supervision is language: in la-
tent language policies, πC is trained to generate
goal-relevant instructions in natural language, πE is
trained to follow instructions, and the space of ab-
stract actions available for planning is in principle
as structured and expressive as language itself. But
current approaches to LLP training remain imprac-
tical, requiring large datasets of independent, fine-
grained supervision for πC and πE. Below, we de-
scribe how to overcome this limitation, and instead
learn from large collections of unlabeled demon-
strations augmented with only a small amount of
natural language supervision.

3 Approach

Overview We train hierarchical policies on unan-
notated action sequences by inferring latent natural
language descriptions of the subtasks they accom-
plish (Fig. 2(b)). We present a learning algorithm
that jointly partitions these action sequences into
smaller segments exhibiting reusable, task-general
skills, labels each segment with a description, trains
πC to generate subtask descriptions from goals, and
πE to generate actions from subtask descriptions.

Formally, we assume access to two kinds of
training data: a large collection of unannotated
demonstrations D = {(d1, g1), (d2, g2), . . .}
and a smaller collection of annotated demon-
strations Dann = {(d1, g1, τ 1), (d2, g2, τ 2), . . .}
where each τ consists of a sequence of natural
language instructions [τ1, τ2, . . .] corresponding
to the subtask sequence that should be generated
by πC. We assume that even annotated trajectories
leave much of the structure depicted in Fig. 2(a)
unspecified, containing no explicit segmentations
or STOP markers. (The number of instructions |τ |
will in general be smaller than the number of ac-
tions |d|.) Training πE requires inferring the cor-
respondence between actions and annotations on
Dann while inferring annotations themselves on D.

Training objective To begin, it will be conve-
nient to have an explicit expression for the probabil-
ity of a demonstration given a policy (πC, πE). To
do so, we first observe that the hierarchical genera-
tion procedure depicted in Fig. 2(a) produces a la-
tent alignment between each action and the subtask

1715

τ that generated it. We denote these alignments α,
writing αi = j to indicate that ai was generated
from τj . Because πC executes subtasks in sequence,
alignments are monotonic, satisfying αi = αi−1 or
αi = αi−1 + 1. Let seg(α) denote the segmenta-
tion associated with α, the sequence of sequences
of action indices [[i : αi = 1], [i : αi = 2], . . .]
aligned to the same instruction (see Fig. 2(a)).
Then, for a fixed policy and POMDP, we may write
the joint probability of a demonstration, goal, an-
notation, and alignment as:

p(d, g,τ ,α) ∝
∏

s∈seg(α)

[
πC(τs | τ<s, g)

×
(∏
i∈1..|s|

πE(ai | as:i−1 ,os:i , ταi)
)

× πE(STOP | as,os)
]
. (1)

Here <s (in a slight abuse of notation) denotes all
segments preceding s, and si is the index of the
ith action in s. The constant of proportionality in
Eq. (1) depends only on terms involving T (s′ |
s, a), O(o | s) and p(g), all independent of πC or
πE; Eq. (1) thus describes the component of the
data likelihood under the agent’s control (Ziebart
et al., 2013).

With this definition, and given D and Dann as de-
fined above, we may train a latent language policy
using partial natural language annotations via or-
dinary maximum likelihood estimation, imputing
the missing segmentations and labels in the train-
ing set jointly with the parameters of πC and πE

(which we denote θ) in the combined annotated
and unannotated likelihoods:

arg max
τ̂ ,α̂,θ̂

L(τ̂ , α̂, θ̂) + Lann(α̂, θ̂) (2)

where

L(τ̂ , α̂, θ̂) =
∑

(d,g)∈D

log p(d, g, τ̂ , α̂) (3)

Lann(α̂, θ̂) =
∑

(d,g,τ)∈Dann

log p(d, g, τ , α̂) (4)

and where we have suppressed the dependence
of p(d, g, τ ,α) on θ̂ for clarity. This objective
involves continuous parameters θ̂, discrete align-
ments α̂, and discrete labelings τ̂ . We optimize it
via block coordinate ascent on each of these compo-
nents in turn: alternating between re-segmenting

demonstrations, re-labeling those without ground-
truth labels, and updating parameters. The full
learning algorithm, which we refer to as (SL)3
(semi-supervised skill learning with latent lan-
guage), is shown in Algorithm 1, with each step
of the optimization procedure described in more
detail below.

Segmentation: arg maxα̂ L(τ̂ , α̂, θ̂)+Lann(α̂, θ̂)

The segmentation step associates each low-level ac-
tion with a high-level subtask by finding the highest
scoring alignment sequence α for each demonstra-
tion in D and Dann. While the number of possible
alignments for a single demonstration is exponen-
tial in demonstration length, the assumption that
πE depends only on the current subtask implies the
following recurrence relation:

max
α1:n

p(d1:n, g, τ 1:m,α1:n)

= max
i

(
max
α1:i

p(d1:i, g, τ 1:m−1,α1:i)

× p(di+1:n, g, τm,αi+1:n = m)
)

(5)

This means that the highest-scoring segmentation
can be computed by an algorithm that recursively
identifies the highest-scoring alignment to each pre-
fix of the instruction sequence at each action (Al-
gorithm 2), a process requiring O(|d||τ |) space
and O(|d|2|τ |) time. The structure of this dy-
namic program is identical to the forward algorithm
for hidden semi-Markov models (HSMMs), which
are widely used in NLP for tasks like language
generation and word alignment (Wiseman et al.,
2018). Indeed, Algorithm 2 can be derived imme-
diately from Eq. (1) by interpreting p(d, g, τ ,α)
as the output distribution for an HSMM in which
emissions are actions, hidden states are alignments,
the emission distribution is πE and the transition
distribution is the deterministic distribution with
p(α+ 1 | α) = 1.

This segmentation procedure does not produce
meaningful subtask boundaries until an initial ex-
ecutor policy has been trained. Thus, during the
first iteration of training, we estimate a segmenta-
tion by by fitting a 3-state hidden Markov model to
training action sequences using the Baum–Welch
algorithm (Baum et al., 1970), and mark state tran-
sitions as segment boundaries. Details about the
initialization step may be found in Appendix B.

1716

Algorithm 1: (SL)3: Semi-Supervised Skill Learn-
ing with Latent Language

Input: Unannotated demonstrations
D = {(d1, g1), (d2, g2), . . .};

Annotated demonstrations
Dann = {(d1, g1, τ 1), (d2, g2, τ 2), . . .}

Output: Inferred alignments α̂, labels τ̂ , and
parameters θ for πC and πE.

// Initialization
Initialize policy parameters θ using a pretrained

language model (Raffel et al., 2020).

Initialize inference network parameters
η ← argmaxη̂

∑
d∈Dann

∑
s,τ log qη(τ | as,os).

for iteration t← 1 . . . T do

// Segmentation
// Infer alignments between actions and subtasks.
if t = 1 then

Initialize α̂ using the Baum–Welch
algorithm (Baum et al., 1970)

else
α̂← argmaxα̂ L(τ̂ , α̂, θ̂) + Lann(α̂, θ̂)

[Algorithm 2].
end

// Labeling
// Infer subtask labels for unannotated demos D.
τ̂ ← argmaxτ̂ L(τ̂ , α̂, θ̂)

// Parameter Update
// Fit policy and proposal model parameters.
θ̂ ← argmaxθ̂ L(τ̂ , α̂, θ̂) + L

ann(α̂, θ̂)
η̂ ← argmaxη̂

∑
d

∑
s,τ log qη(τ̂ | as,os)

end

Algorithm 2: Dynamic program for segmentation
Input: Demonstration d = [(o1, a1), . . . , (on, an);
Task specifications τ = [τ1, . . . , τm].
Executor πE(a | o, τ) =

∏
i π

E(ai | a:i−1,o:i, τ)

Output: Maximum a posteriori alignments α.

scores← an n×m matrix of zeros
// scores[i, j] holds the log-probability of the
// highest-scoring sequence whose final action i is
// aligned to subtask j.

for i← 1 . . . n do
for j ← 1 . . . |τ | do

scores[i, j]← −∞
for k ← 1 . . . i− 1 do

scores[i, j]← max (
scores[i, j],
scores[k, j − 1]

+ log πE(ak+1:i | ok+1:i, τj))
end

end
end

The optimal alignment sequence may be obtained
from scores via back-tracing (Rabiner, 1989).

Labeling: arg maxτ̂ L(τ̂ , α̂, θ̂)

Inference of latent, language-based plan descrip-
tions in unannotated demonstrations involves an
intractable search over string-valued τ . To ap-
proximate this search tractably, we used a learned,
amortized inference procedure (Wainwright and
Jordan, 2008; Hoffman et al., 2013; Kingma and
Welling, 2014) to impute descriptions given fixed
segmentations. During each parameter update step
(described below), we train an inference model
qη(τ | as(i) ,as(i+1) , g) to approximate the posterior
distribution over descriptions for a given segment
given a goal, the segment’s actions, and the actions
from the subsequent segment.4 Then, during the
labeling step, we label complete demonstrations by
choosing the highest-scoring instruction for each
trajectory independently:

arg max
τ

log p(d, g, τ ,α) ≈[
arg max

τ
q(τ |as(i) ,as(i+1) , g)

∣∣∣ s(i)∈seg(α)
]

(6)

Labeling is performed only for demonstrations in
D, leaving the labels for Dann fixed during training.

Param update: arg maxθ̂ L(τ̂ , α̂, θ̂)+Lann(α̂, θ̂)

This is the simplest of the three update steps: given
fixed instructions and alignments, and πE, πC pa-
rameterized as neural networks, this objective is
differentiable end-to-end. In each iteration, we
train these to convergence (optimization details are
described in Section 4 and Appendix C). During
the parameter update step, we also fit parameters
η of the proposal model to maximize the likeli-
hood

∑
d

∑
s,τ log qη(τ̂ | as,os) with respect to

the current segmentations ŝ and labels τ̂ .

As goals, subtask indicators, and actions may
all be encoded as natural language strings, πC and
πE may be implemented as conditional language
models. As described below, we initialize both
policies with models pretrained on a large text
corpora.

4 Experimental Setup

Our experiments aim to answer two questions.
First, does the latent-language policy representa-
tion described in Section 3 improve downstream
performance on complex tasks? Second, how many
natural language annotations are needed to train

4In our experiments, conditioning on observations or
longer context did not improve the accuracy of this model.

1717

an effective latent language policy given an initial
dataset of unannotated demonstrations?

Environment We investigate these questions in
the ALFRED environment of Shridhar et al. (2020).
ALFRED consists of a set of interactive simulated
households containing a total of 120 rooms, accom-
panied by a dataset of 8,055 expert task demonstra-
tions for an embodied agent annotated with 25,743
English-language instructions. Observations o are
bitmap images from a forward-facing camera, and
actions a are drawn from a set of 12 low-level nav-
igation and manipulation primitives. Manipulation
actions (7 of the 12) additionally require predicting
a mask over the visual input to select an object for
interaction. See Shridhar et al. (2020) for details.

While the ALFRED environment is typically
used to evaluate instruction following models,
which map from detailed, step-by-step natural lan-
guage descriptions to action sequences (Shridhar
et al., 2020; Singh et al., 2020; Corona et al., 2021),
our experiments focus on an goal-only evaluation in
which agents are given goals (but not fine-grained
instructions) at test time. Several previous studies
have also considered goal-only evaluation for AL-
FRED, but most use extremely fine-grained super-
vision at training time, including full supervision
of symbolic plan representations and their align-
ments to demonstrations (Min et al., 2021; Zhang
and Chai, 2021), or derived sub-task segmentations
using ALFRED-specific rules (Blukis et al., 2021).
In contrast, our approach supports learning from
partial, language-based annotations without seg-
mentations or alignments, and this data condition
is the main focus of our evaluation.

Modeling details πC and πE are implemented
as sequence-to-sequence transformer networks
(Vaswani et al., 2017). πC, which maps from
text-based goal specifications to text-based instruc-
tion sequences, is initialized with a pre-trained
T5-small language model (Raffel et al., 2020). πE,
which maps from (textual) instructions and (image-
based) observations to (textual) actions and (image-
based) object selection masks is also initialized
with T5-small; to incorporate visual input, this
model first embeds observations using a pretrained
ResNet18 model (He et al., 2016) and transforms
these linearly to the same dimensionality as the
word embedding layer. Details about the architec-
ture of πC and πE may be found in Appendix C.

Model variants for exploration In ALFRED,
navigation in the goal-only condition requires ex-
ploration of the environment, but no exploration is
demonstrated in training data, and techniques other
than imitation learning are required for this specific
skill. To reflect this, we replace all annotations con-
taining detailed navigation instructions go to the
glass on the table to your left with generic ones find
a glass. Examples and details of how navigation in-
structions are modified can be found in Appendix E
and Fig. 7. The ordinary (SL)3 model described
above is trained on these abstracted instructions.

A key advantage of (SL)3 is modularity: individ-
ual skills may be independently supervised or re-
implemented. To further improve (SL)3’s naviga-
tion capabilities, we introduce two model variants
in which sub-task specifications beginning Find. . .
are executed by a either a planner with ground-truth
environment information or a specialized naviga-
tion module from the HLSM model (Blukis et al.,
2021) rather than πE. Outside of navigation, these
models preserve the architecture and training pro-
cedure of (SL)3, and are labeled (SL)3+planner
and (SL)3+HLSM in experiments below.

Baselines and comparisons We compare the
performance of (SL)3 to several baselines:
seq2seq: A standard (non-hierarchical) goal-

conditioned policy, trained on the (g,d) pairs in
D ∪Dann to maximize

∑
a,o,g log π(a | o, g), with

π parameterized similar to πE.
seq2seq2seq: A supervised hierarchical policy

with the same architectures for πC and πE as in
(SL)3, but with πC trained to generate subtask se-
quences by maximizing

∑
τ ,g log πC(τ | g) and πE

trained to maximize
∑

a,o,τ ,g log πE(a | o, τ , g)
using only Dann. Because πE maps from complete
task sequences to complete low-level action se-
quences, training of this model involves no explicit
alignment or segmentation steps.
no-pretrain, no-latent: Ablations of the

full (SL)3 model in which πC and πE are, respec-
tively, randomly initialized or updated only on
Lann(α̂, θ̂) during the parameter update phase.

We additionally contextualize our approach by
comparing it to several state-of-the-art models
for the instruction following task in ALFRED: S+
(Shridhar et al., 2020), MOCA (Singh et al., 2020),
Modular (Corona et al., 2021), HiTUT (Zhang and
Chai, 2021), ABP (Kim et al., 2021), ET (Pashe-
vich et al., 2021), EmBERT (Suglia et al., 2021),
and FILM (Min et al., 2021). Like seq2seq, these

1718

are neural sequence-to-sequence models trained
to map instructions to actions; they incorporate
several standard modeling improvements from the
instruction following literature, including progress
monitoring (Ma et al., 2019) and pretrained object
recognizers (Singh et al., 2020). Many of these
models are trained with stronger supervision than
(SL)3, including instructions and alignments dur-
ing training, and ground truth instructions during
evaluation; see Table 3 for details.

Evaluation Following Shridhar et al. (2020), Ta-
ble 1(a) computes the online, subtask-level accu-
racy of each policy, and Table 1(b) computes the
end-to-end success rate of each policy. See the AL-
FRED paper for details of these evaluations. For
data-efficiency experiments involving a large num-
ber of policy variants (Table 2, Fig. 4), we instead
use an offline evaluation in which we measure the
fraction of subtasks in which a policy’s predicted
actions (ignoring object selection masks) exactly
match the ground truth action sequence.

5 Results

Table 1 compares (SL)3 with flat and hierarchical
imitation learning baselines. The table includes
two versions of the model: a 100% model trained
with full instruction supervision (|D|= 0, |Dann|=
21000) and a 10% model trained with only a small
fraction of labeled demonstrations (|D|= 19000,
|Dann|= 2000). seq2seq and seq2seq2seq models
are always trained with 100% of natural language
annotations. Results are shown in Table 1. We find:

(SL)3 improves on flat policies: In both the
10% and 100% conditions, it improves over the
subtask completion rate of the seq2seq (goals-to-
actions) model by 25%. When either planner- or
mapping-based navigation is used in conjunction
with (SL)3, it achieves end-to-end performance
comparable to the HLSM method, which relies
on similar supervision. Strikingly, it outperforms
several recent methods with access to even more
detailed information at training or evaluation time.

Language-based policies can be trained with
sparse natural language annotations: Perfor-
mance of (SL)3 trained with 10% and 100% natural
language annotations is similar (and in both cases
superior to seq2seq and seq2seq2seq trained on
100% of data). Appendix Fig. 4 shows more de-
tailed supervision curves. Ablation experiments in
Table 2 show that inference of latent training plans
is important for this result: with no inference of

(a) Online subtask success rate for (SL)3 and baselines

Model Av
g

C
le

an

C
oo

l

H
ea

t

P
ic

k

P
ut

Sl
ic

e

To
gg

le

G
oT

o

(SL)3 (10%) 50 56 75 74 50 48 54 32 13
(SL)3 (100%) 53 68 82 75 50 45 55 32 15
seq2seq 25 16 33 64 20 15 25 13 14
seq2seq2seq 39 15 69 58 29 42 50 32 15

(b) End-to-end task success rates for (SL)3 and other models.

Goal + partial plan sup. Extra information

Model SR Model SR

(SL)3 (10%) 0.0 FILM (Min+21) 20.1
(SL)3 +HLSM (10%) 15.5 (SL)3 +planner (10%) 40.4
HLSM (Blukis+21)∗ 17.2 HiTUT (Zhang+21) 11.1
seq2seq 0.0 EmBERT (Suglia+21) 5.7
seq2seq2seq 0.0 ET (Pashevich+21) 7.3

ABP (Kim+21) 12.6
S+ (Shridhar+20) 0.1
MOCA (Singh+21) 5.4

Table 1: (a) Evaluation of (SL)3 and baselines using
the subtask evaluation from Shridhar et al. (2020). All
models in this section were trained with both goals
g and annotated subtask descriptions τ , but observed
only goals during evaluation. (b) Evaluation of (SL)3

and concurrent work using the success rate evaluation
from Shridhar et al. (2020). Models in the left col-
umn use only goals and partial subtask descriptions at
training time, and only goals at test time. (The HLSM
model also uses a rule-based, ALFRED-specific proce-
dure for converting action sequences to high-level plan
specifications.) Models on the right use extra informa-
tion, including ground-truth training segmentations and
alignments, and ground-truth test-time plans. *Result of
our HLSM reproduction using public code and trained models.

latent instructions (i.e. training only on annotated
demonstrations), performance drops from 56% to
52%. Fig. 3 shows an example of the structure
inferred for an unannotated trajectory: the model
inserts reasonable segment boundaries and accu-
rately labels each step.

Language model pretraining improves auto-
mated decision-making. Ablation experiments in
Table 2 provide details. Language model pretrain-
ing of πC and πE (on ungrounded text) is crucial
for good performance in the low-data regime: with
10% of annotations, models trained from scratch
complete 49% of tasks (vs 56% for pretrained mod-
els). We attribute this result in part to the fact that
pretrained language models encode information
about the common-sense structure of plans, e.g. the
fact that slicing a tomato first requires finding a
knife. Such models are well-positioned to adapt
to “planning” problems that require modeling re-
lations between natural language strings. These

1719

Figure 3: Example of an inferred segmentation and la-
beling for an unannotated trajectory. The trajectory is
parsed into a sequence of 10 segments and qη assigns
high scoring natural-language labels to the segmented
actions. These are consistent with the objects, recep-
tacles and sub-tasks. The overall sequence of latent-
language skills is a good plan for the high-level goal.

Model Average

(SL)3 (10%) 56
(SL)3 (100%) 58
(SL)3 (ground-truth α) 65
no-pretrain 49
no-latent 52

Table 2: Ablation experiments. Providing ground-truth
alignments at training time improves task completion
rates, suggesting potential benefits from an improved
alignment procedure. Pretraining and inference of la-
tent task representations contribute 7% and 4% respec-
tively to task completion rate with 10% of annotations.

experiments point to a potentially broad role for
pretrained language models in tasks that do not
involve language as an input or an output.

One especially interesting consequence of the
use of language-based skills is our model’s ability
to produce high-level plans for out-of-distribution
goals, featuring objects or actions that are not part
of the ALFRED dataset at all. Examples are pro-
vided in Fig. 5 and discussed in Appendix A. While
additional modeling work is needed to generate
low-level actions for these high-level plans, they
point to generalization as a key differentiator be-
tween latent language policies and ordinary hierar-
chical ones.

6 Related Work

Our approach draws on a large body of research
at the intersection of natural language processing,
representation learning, and autonomous control.

1 5 10 40 80 100

Amount of annotated data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

A
cc

ur
ac

y

(SL)3

(SL)3(no-latent)

(SL)3(GT α)
seq2seq
seq2seq2seq

Figure 4: Offline subtask success rate as a function of
the fraction of annotated examples. Only a small frac-
tion of annotations (5–10%) are needed for good per-
formance; inference of latent instructions is beneficial
in the low-data regime.

Language-based supervision and representa-
tion The use of natural language annotations to
scaffold learning, especially in computer vision
and program synthesis applications, has been the
subject of a number of previous studies (Brana-
van et al., 2009; Frome et al., 2013; Andreas et al.,
2018; Wong et al., 2021). Here, we use language to
support policy learning, specifically by using natu-
ral language instructions to discover compositional
subtask abstractions that can support autonomous
control. Our approach is closely related to previous
work on learning skill libraries from policy sketches
(Andreas et al., 2017; Shiarlis et al., 2018); instead
of the fixed skill inventory used by policy sketches,
(SL)3 learns an open-ended, compositional library
of behaviors indexed by natural language strings.

Hierarchical policies Hierarchical policy learn-
ing and temporal abstraction have been major areas
of focus since the earliest research on reinforce-
ment learning and imitation learning (McGovern
and Barto, 2001; Konidaris et al., 2012; Daniel
et al., 2012). Past work typically relies on direct
supervision or manual specification of the space
of high-level skills (Sutton et al., 1999; Kulkarni
et al., 2016) or fully unsupervised skill discov-
ery (Dietterich, 1999; Bacon et al., 2017). Our
approach uses policy architectures from this lit-
erature, but aims to provide a mechanism for su-
pervision that allows fine-grained control over the
space of learned skills (as in fully supervised ap-
proaches) while requiring only small amounts of
easy-to-gather human supervision.

Language and interaction Outside of
language-based supervision, problems at the

1720

Figure 5: Successes and failures of πC in out-of-distribution (OOD) settings including novel (a) sub-task orders (b)
objects (c) verbs. The use of a pretrained LM as the backbone of the planning model means that models produce
correct or plausible plans for many of these out-of-distribution goals. (d) Other failure modes: The model fails to
predict actions based on the true affordances of objects and cannot generate arbitrarily long plans.

intersection of language and control include
instruction following (Chen and Mooney, 2011;
Branavan et al., 2009; Tellex et al., 2011; Anderson
et al., 2018; Misra et al., 2017), embodied question
answering (Das et al., 2018; Gordon et al., 2018)
and dialog tasks (Tellex et al., 2020). As in our
work, representations of language learned from
large text corpora facilitate grounded language
learning (Shridhar et al., 2021), and interaction
with the environment can in turn improve the
accuracy of language generation (Zellers et al.,
2021); future work might extend our framework
for semi-supervised inference of plan descriptions
to these settings as well.

7 Conclusion

We have presented (SL)3, a framework for learning
hierarchical policies from demonstrations sparsely
annotated with natural language descriptions. Us-
ing these annotations, (SL)3 infers the latent struc-
ture of unannotated demonstrations, automatically

segmenting them into subtasks and labeling each
subtask with a compositional description. Learn-
ing yields a hierarchical policy in which natural
language serves as an abstract representation of
subgoals and plans: a controller sub-policy maps
from goals to natural language plan specifications,
and a modular executor that maps each compo-
nent of the plan to a sequence of low-level actions.
In simulated household environments, this model
can complete abstract goals (like slice a tomato)
with accuracy comparable to state-of-the-art mod-
els trained and evaluated with fine-grained plans
(find a knife, carry the knife to the tomato, . . .).

While our evaluation has focused on household
robotics tasks, the hierarchical structure inferred by
(SL)3 is present in a variety of learning problems,
including image understanding, program synthesis,
and language generation. In all those domains, gen-
eralized versions of (SL)3 might offer a framework
for building high-quality models using only a small
amount of rich natural language supervision.

1721

Acknowledgements

We would like to thank Valts Blukis and Shikhar
Murty for helpful discussions. Also thanks to Joe
O’ Connor, Gabe Grand and the anonymous re-
viewers for their feedback on an early draft of the
paper.

References
Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,

Mark Johnson, Niko Sünderhauf, I. Reid, Stephen
Gould, and A. V. Hengel. 2018. Vision-and-
language navigation: Interpreting visually-grounded
navigation instructions in real environments. 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 3674–3683.

Jacob Andreas, D. Klein, and Sergey Levine. 2017.
Modular multitask reinforcement learning with pol-
icy sketches. International Conference of Machine
Learning.

Jacob Andreas, Dan Klein, and Sergey Levine. 2018.
Learning with latent language. New Orleans,
Louisiana. Association for Computational Linguis-
tics.

P. Bacon, Jean Harb, and Doina Precup. 2017. The
option-critic architecture. In AAAI.

L. Baum, T. Petrie, George W. Soules, and Norman
Weiss. 1970. A maximization technique occurring
in the statistical analysis of probabilistic functions
of markov chains. Annals of Mathematical Statis-
tics, 41:164–171.

Valts Blukis, Chris Paxton, D. Fox, Animesh Garg, and
Yoav Artzi. 2021. A persistent spatial semantic rep-
resentation for high-level natural language instruc-
tion execution. ArXiv, abs/2107.05612.

S. Branavan, Harr Chen, Luke Zettlemoyer, and
R. Barzilay. 2009. Reinforcement learning for map-
ping instructions to actions. In ACL.

R. Brockett. 1993. Hybrid models for motion control
systems.

David L. Chen and R. Mooney. 2011. Learning to in-
terpret natural language navigation instructions from
observations. In AAAI 2011.

Rodolfo Corona, Daniel Fried, Coline Devin, D. Klein,
and Trevor Darrell. 2021. Modular networks for
compositional instruction following. In NAACL.

Christian Daniel, G. Neumann, and Jan Peters. 2012.
Hierarchical relative entropy policy search. J. Mach.
Learn. Res., 17:93:1–93:50.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Ste-
fan Lee, Devi Parikh, and Dhruv Batra. 2018. Em-
bodied question answering. 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 2135–213509.

P. Dayan and Geoffrey E. Hinton. 1992. Feudal rein-
forcement learning. In NIPS.

Thomas G Dietterich. 1999. Hierarchical reinforce-
ment learning with the MAXQ value function de-
composition.

R. Fikes, P. Hart, and N. Nilsson. 1972. Learning
and executing generalized robot plans. Artif. Intell.,
3:251–288.

Roy Fox, S. Krishnan, I. Stoica, and Ken Goldberg.
2017. Multi-level discovery of deep options. ArXiv,
abs/1703.08294.

Andrea Frome, G. Corrado, Jonathon Shlens, Samy
Bengio, J. Dean, Marc’Aurelio Ranzato, and Tomas
Mikolov. 2013. Devise: A deep visual-semantic em-
bedding model. In NIPS.

Daniel Gordon, Aniruddha Kembhavi, Mohammad
Rastegari, Joseph Redmon, D. Fox, and Ali Farhadi.
2018. Iqa: Visual question answering in interactive
environments. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4089–
4098.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
2016. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778.

M. Hoffman, David M. Blei, Chong Wang, and J. Pais-
ley. 2013. Stochastic variational inference. ArXiv,
abs/1206.7051.

Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuan-
dong Tian, and M. Lewis. 2019. Hierarchical de-
cision making by generating and following natural
language instructions. In NeurIPS.

Athul Paul Jacob, M. Lewis, and Jacob Andreas.
2021. Multitasking inhibits semantic drift. ArXiv,
abs/2104.07219.

Yiding Jiang, S. Gu, K. Murphy, and Chelsea Finn.
2019. Language as an abstraction for hierarchical
deep reinforcement learning. In NeurIPS.

L P Kaelbling and T Lozano-Pérez. 2011. Hierarchical
task and motion planning in the now. 2011 IEEE
International.

Byeonghwi Kim, Suvaansh Bhambri, Kunal Pratap
Singh, Roozbeh Mottaghi, and Jonghyun Choi.
2021. Agent with the big picture: Perceiving sur-
roundings for interactive instruction following. In
Embodied AI Workshop CVPR.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. CoRR, abs/1312.6114.

G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto.
2012. Robot learning from demonstration by con-
structing skill trees. The International Journal of
Robotics Research, 31:360 – 375.

1722

http://arxiv.org/abs/cs/9905014
http://arxiv.org/abs/cs/9905014
http://arxiv.org/abs/cs/9905014

Tejas D. Kulkarni, Karthik Narasimhan, A. Saeedi, and
J. Tenenbaum. 2016. Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and
intrinsic motivation. In NIPS.

I. Loshchilov and F. Hutter. 2019. Decoupled weight
decay regularization. In ICLR.

Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, G. Al-Regib,
Z. Kira, R. Socher, and Caiming Xiong. 2019. Self-
monitoring navigation agent via auxiliary progress
estimation. ArXiv, abs/1901.03035.

A. McGovern and A. Barto. 2001. Automatic discov-
ery of subgoals in reinforcement learning using di-
verse density. In ICML.

So Yeon Min, Devendra Singh Chaplot, Pradeep
Ravikumar, Yonatan Bisk, and Ruslan Salakhut-
dinov. 2021. FILM: following instructions
in language with modular methods. CoRR,
abs/2110.07342.

Dipendra Kumar Misra, J. Langford, and Yoav Artzi.
2017. Mapping instructions and visual observations
to actions with reinforcement learning. In EMNLP.

A. Newell. 1973. Human problem solving.

Alexander Pashevich, Cordelia Schmid, and Chen Sun.
2021. Episodic transformer for vision-and-language
navigation. CoRR, abs/2105.06453.

Lawrence R. Rabiner. 1989. A tutorial on hidden
markov models and selected applications. Proceed-
ings of the IEEE.

Colin Raffel, Noam M. Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, W. Li, and Peter J. Liu. 2020. Explor-
ing the limits of transfer learning with a unified text-
to-text transformer. ArXiv, abs/1910.10683.

E. Sacerdoti. 1973. Planning in a hierarchy of abstrac-
tion spaces. Artif. Intell., 5:115–135.

K. Shiarlis, Markus Wulfmeier, S. Salter, S. Whiteson,
and I. Posner. 2018. Taco: Learning task decompo-
sition via temporal alignment for control. In ICML.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2020. ALFRED:
A Benchmark for Interpreting Grounded Instruc-
tions for Everyday Tasks. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and M. Hausknecht.
2021. Alfworld: Aligning text and embod-
ied environments for interactive learning. ArXiv,
abs/2010.03768.

Tianmin Shu, Caiming Xiong, and R. Socher.
2018. Hierarchical and interpretable skill acquisi-
tion in multi-task reinforcement learning. ArXiv,
abs/1712.07294.

Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi
Kim, Roozbeh Mottaghi, and Jonghyun Choi. 2020.
Moca: A modular object-centric approach for in-
teractive instruction following. arXiv preprint
arXiv:2012.03208.

Alessandro Suglia, Qiaozi Gao, Jesse Thomason,
Govind Thattai, and Gaurav Sukhatme. 2021. Em-
bodied BERT: A transformer model for embodied,
language-guided visual task completion. arXiv.

R S Sutton, D Precup, and S Singh. 1999. Between
MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artif. Intell.

Stefanie Tellex, N. Gopalan, H. Kress-Gazit, and Cyn-
thia Matuszek. 2020. Robots that use language.

Stefanie Tellex, T. Kollar, Steven Dickerson,
Matthew R. Walter, A. Banerjee, S. Teller, and
N. Roy. 2011. Understanding natural language
commands for robotic navigation and mobile
manipulation. In AAAI.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Martin J. Wainwright and M.I. Jordan. 2008. Graphi-
cal models, exponential families, and variational in-
ference. Found. Trends Mach. Learn., 1:1–305.

Sam Wiseman, S. Shieber, and Alexander M. Rush.
2018. Learning neural templates for text generation.
ArXiv, abs/1808.10122.

Catherine Wong, Kevin Ellis, J. Tenenbaum, and Jacob
Andreas. 2021. Leveraging language to learn pro-
gram abstractions and search heuristics. In ICML.

Rowan Zellers, Ari Holtzman, Matthew E. Peters,
R. Mottaghi, Aniruddha Kembhavi, Ali Farhadi, and
Yejin Choi. 2021. Piglet: Language grounding
through neuro-symbolic interaction in a 3d world. In
ACL/IJCNLP.

Yichi Zhang and Joyce Chai. 2021. Hierarchi-
cal task learning from language instructions with
unified transformers and self-monitoring. CoRR,
abs/2106.03427.

Brian D Ziebart, J Andrew Bagnell, and Anind K Dey.
2013. The principle of maximum causal entropy for
estimating interacting processes. IEEE Transactions
on Information Theory, 59(4):1966–1980.

1723

http://arxiv.org/abs/2110.07342
http://arxiv.org/abs/2110.07342
http://arxiv.org/abs/2105.06453
http://arxiv.org/abs/2105.06453
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/2108.04927
https://arxiv.org/abs/2108.04927
https://arxiv.org/abs/2108.04927
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2106.03427
http://arxiv.org/abs/2106.03427
http://arxiv.org/abs/2106.03427

A Out-of-distribution Generalization

One of the advantages of language-based skill
representations over categorical representations
is open-endedness: (SL)3 does not require pre-
specification of a fixed inventory of goals or ac-
tions. As a simple demonstration of this potential
for extensibility, we design goal prompts consisting
of novel object names, verbs and skill combina-
tions not seen at training time, and test the model’s
ability to generalize to out-of-distribution samples
across the three categories. Some roll-outs can be
seen in Fig. 5. We observe the following:

Novel sub-task combinations We qualitatively
evaluate the ability of the model to generalize sys-
tematically to novel subtask combinations and sub-
task ordering not encountered at training time. Ex-
amples are shown in Fig. 5. For example, we
present the model with the goal slice a heated ap-
ple; in the training corpus, objects are only heated
after being sliced. It can be seen in Fig. 5 that
the model able correctly orders the two subtasks.
The model additionally generalizes to new combi-
nations of tasks such as clean and cool an apple.

Novel objects and verbs The trained model also
exhibits some success at generalizing novel object
categories such as carrot and mask. In the carrot
example, an incorrect Find the lettuce example is
generated at the first step, but subsequent subtasks
refer to a carrot (and apply the correct actions to
it). The model also generalizes to new but related
verbs such as scrub but fails at ones like squash
that are unrelated to training goals.

Limitations One shortcoming of this approach
is that affordances and constraints are incompletely
modeled. Given a (physically unrealizable) goal
clean the bowl and then slice it, the model cannot
detect the impossible goal and instead generates
a plan involving slicing the bowl. Another short-
coming of the model is the ability to generalize to
goals that may involve considerably larger number
of subgoals than goals seen at training time. For
plans that involve very long sequences of skills
(slice then clean then heat. . .) the generated plan
skips some subtasks Fig. 5.

B Initialization: Segmentation Step

The training data contains no STOP actions, so πE

cannot be initialized by training on Dann. Using
a randomly initialized πE during the segmentation

step results in extremely low-quality segmentations.
Instead, we obtain an initial set of segmentations
via unsupervised learning on low-level action se-
quences.

In particular, we obtain initial segmentations us-
ing the Baum–Welch algorithm for unsupervised
estimation of hidden Markov models (Baum et al.,
1970). We replace string-valued latent variables
produced by πC with a discrete set of hidden states
(in our experiments, we found that three hidden
states sufficed). Transition and emission distribu-
tions, along with maximum a posteriori sequence
labels, are obtained by running the expectation–
maximization algorithm on state sequences. We
then insert segment boundaries (and an implicit
STOP action) at every transition between two dis-
tinct hidden states. Evaluated against ground-truth
segmentations from the ALFRED training set, this
produces an action-level accuracy of 87.9%. The
detailed algorithm can be found in Baum et al.
(1970).

C Model Architecture: Details

The controller policy πC is a fine-tuned T5-small
model. The executor policy πE decodes the low-
level sequence of actions conditioned on the first-
person visual observations of the agent. We use
the same architecture across the remaining base-
lines too. Fig. 6 depicts the architecture of the
image-conditioned T5 model. In addition to task
specifications, we convert low-level actions to tem-
plated commands: for example, put(cup,table)
becomes put the cup on the table. These are parsed
to select actions to send to the ALFRED simula-
tor. During training, both models are optimized
using the AdamW algorithm (Loshchilov and Hut-
ter, 2019) with a learning rate of 1e-4, weight decay
of 0.01, and ε = 1e-8. We use a MaskRCNN model
to generate action masks, selecting the predicted
mask labeled with the class of the object name
generated by the action decoder. The same model
architecture is used across all baselines.

D Role of trajectory length

We conduct an additional set of ablation exper-
iments aimed at clarifying what aspects of the
demonstrated trajectories (SL)3 is better able to
model than baselines. We begin by observing
that most actions in our data are associated with
navigation, with sequences of object manipulation
actions (like those depicted in Fig. 3) constitut-

1724

T5
Encoder

T5
Decoder

T5
Decoder

T5
Decoder

T5
Decoder

T5
Decoder

Heat the potato.
concat

ResNet18

<s>

Open

embed

the microwave . Put

… … …

MaskRCNN

Pot

Microwave

PotatoSliced

Output actions Output mask

concat

ResNet18

.

embed

State change

…

Figure 6: Model architecture for πE, seq2seq and seq2seq2seq: Language parametrized sub-task/goal is input
to the encoder and actions templated in natural language are generated sequentially token-wise. The predictions
made are conditioned on the visual field of view of the agent at every time step along with the token generated
the previous time step. At the end of every low-level action (when ’.’ is generated) the action the executed. For
manipulation actions, the mask corresponding to the the object predicted is selected from the predictions of a
MaskRCNN model on the visual state. Navigation actions do not operate over objects. Once the action is taken,
the environment returns the updated visual state and the policy continues to be unrolled until termination (STOP).

ing only about 20% of each trajectory. We con-
struct an alternative version of the dataset in which
all navigation subtasks are replaced with a single
TeleportTo action. This modification reduces av-
erage trajectory length from 50 actions to 9. In
this case (SL)3 and seq2seq2seq perform com-
parably well (55.6% success rate and 56.7% suc-
cess rate respectively), and only slightly better than
seq2seq (53.6% success rate). Thus, while (SL)3

(and all baselines) perform quite poorly at naviga-
tion skills, identifying these skills and modeling
their conditional independence from other trajec-
tory components seems to be crucial for effective
learning of other skills in the long-horizon setting.
Hierarchical policies are still useful for modeling
these shorter plans, but by a smaller margin than
for long demonstrations.

E Navigation Instructions

The original ALFRED dataset contains detailed
instructions for navigation collected post-hoc after
the demonstrations are generated. For example, the
sub-task specification associated with finding an
apple might be given as Go straight and turn to the
right of the fridge and take a few steps ahead and
look down. Such instructions cannot be used for
high-level planning, as they can only be generated
with advance knowledge of the environment layout;
successful behavior in novel environments requires
exploration or explicit access to the environment’s

Modified nav
'turn to the right twice and to to the end
of the counter top and turn to the left
and go to the end of the counter top'

'turn to the left and go to the front of
the refrigerator and turn to the left and
go to the refrigerator’

'turn to the right twice and take a few
steps and turn to the left and go to the
microwave’

'Go to the counter across the room
from the stove.' 'Pick up the butter
knife on the counter.’

'Turn right, turn right, walk straight to
the oven'

“Go to the microwave"

"Find the knife.”

"Go to the refrigerator”

"Go to the microwave"

"Find the butterknife"

Figure 7: Modified navigation annotations. Navigation
instructions are converted to simpler object/location-
oriented navigation goals using by creating templated
plans from ALFRED dataset metadata.

map.
To address the mismatch between the agent’s

knowledge and the information needed to generate
detailed navigation instructions, we navigation in-
structions in the ALFRED dataset with templated
instructions of the form Go to the [object] (for ap-
pliances and containers) and Find the [object] (for
movable objects). Because the ALFRED dataset
provides PDDL plans for each demonstration, we
can obtain the name of the target [object] directly
from these plans. Examples are shown in Fig. 7.

1725

Method Training time Inference time
Goal Instructions Program Alignments Depth Goal Instructions

(SL)3 3 10% 7 7 7 3 7
seq2seq 3 7 7 7 7 3 7
seq2seq2seq 3 3 7 7 7 3 7
S+(Shridhar et al., 2020) 3 3 7 3 7 3 3
MOCA(Singh et al., 2020) 3 3 7 3 7 3 3
Modular (Corona et al., 2021) 3 3 3 3 7 3 3
ABP (Kim et al., 2021) 3 3 7 3 7 3 3
EmBERT (Suglia et al., 2021) 3 3 7 3 7 3 3
ET (Pashevich et al., 2021) 3 3 7 3 7 3 3
HLSM(Blukis et al., 2021) 3 7 * * 3 3 7
HiTUT (Zhang and Chai, 2021) 3 7 3 3 3 3 7
FILM (Min et al., 2021) 3 7 3 3 3 3 7

Table 3: Detailed comparison of information available to models and baselines at training time and inference.
*Re-derived using a rule-based segmentation procedure

1726

