
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1687 - 1698

May 22-27, 2022 c©2022 Association for Computational Linguistics

DYLE: Dynamic Latent Extraction for Abstractive
Long-Input Summarization

Ziming Mao∗ 1 Chen Henry Wu∗ 2 Ansong Ni1 Yusen Zhang3

Rui Zhang3 Tao Yu4 Budhaditya Deb5

Chenguang Zhu5 Ahmed H. Awadallah5 Dragomir Radev1

1 Yale University 2 Carnegie Mellon University 3 Penn State University
4 The University of Hong Kong 5 Microsoft Research

ziming.mao@yale.edu, henrychenwu@cmu.edu

Abstract

Transformer-based models have achieved
state-of-the-art performance on short-input
summarization. However, they still struggle
with summarizing longer text. In this pa-
per, we present DYLE, a novel dynamic latent
extraction approach for abstractive long-input
summarization. DYLE jointly trains an extrac-
tor and a generator and treats the extracted
text snippets as the latent variable, allowing
dynamic snippet-level attention weights dur-
ing decoding. To provide adequate supervi-
sion, we propose simple yet effective heuris-
tics for oracle extraction as well as a con-
sistency loss term, which encourages the ex-
tractor to approximate the averaged dynamic
weights predicted by the generator. We eval-
uate our method on different long-document
and long-dialogue summarization tasks: Gov-
Report, QMSum, and arXiv. Experiment re-
sults show that DYLE outperforms all exist-
ing methods on GovReport and QMSum, with
gains up to 6.1 ROUGE, while yielding strong
results on arXiv. Further analysis shows that
the proposed dynamic weights provide inter-
pretability of our generation process.1

1 Introduction

Transformer-based (Vaswani et al., 2017) pre-
trained language models (PLMs) such as BART
(Lewis et al., 2020a) and T5 (Raffel et al., 2020),
have achieved state-of-the-art performance on short
text summarization. However, due to the high mem-
ory complexity of the full self-attention (Tay et al.,
2020a), PLMs still struggle to handle long inputs
(Rohde et al., 2021). Model efficiency and sum-
mary quality present a pair of challenges (Huang
et al., 2021): models need to capture information
scattered across the long input while maintaining a
low computational cost.

∗Equal Contributions.
1Our code is available at: https://github.com/

Yale-LILY/DYLE

GeneratorExtractor

Oracle loss
Consistency loss Generation loss

Document
Query

Dynamic weights

Figure 1: Overview of our approach. The input is a
document X (each x ∈ X is a sentence) and an op-
tional query q, and the output is a summary y.

Prior models tackled long input summarization
mostly in four ways. First, sparse attention (Child
et al., 2019; Beltagy et al., 2020; Tay et al., 2020b)
is used to reduce the memory complexity of the
Transformers so that they can attend to more to-
kens. Second, extract-then-generate methods ex-
tract salient texts from the input and then sum-
marize the extracted texts. Extractors are either
independently trained with full supervision (Zhong
et al., 2021b) or optimized using reinforcement
learning (Williams, 1992; Chen and Bansal, 2018;
Bae et al., 2019; Bražinskas et al., 2021). Third,
models are proposed to divide source text into sec-
tions (Gidiotis and Tsoumakas, 2020; Wu et al.,
2021; Liu et al., 2021) which are individually sum-
marized and combined to form a full summary.
Fourth, hierarchical models (Rohde et al., 2021;
Zhu et al., 2020) improve summarization by captur-
ing sentence or discourse level dependencies. We
elaborate on these four directions and their limita-
tions in Section 2.

We believe that the extract-then-generate ap-
proach mimics how a person would handle long-
input summarization: first identify important pieces
of information in the text and then summarize them
(Kiyoumarsi, 2015; Sun et al., 2020). The extract-
then-generate framework is based on the assump-
tion that salient information useful for summariza-
tion only occupies a small portion of the input,

1687

https://github.com/Yale-LILY/DYLE
https://github.com/Yale-LILY/DYLE

which is a sensible assumption given the long in-
put length. This approach shortens the source in-
put to a pre-set length, which addresses the main
challenge of the model not being able to handle
longer input beyond a certain limit. However, pre-
vious separately-trained extract-then-generate ap-
proaches are limited as they suffer from cascaded
errors from the extractor to the generator. Though
various reinforcement learning techniques are intro-
duced to bridge the two steps, they have noticeable
drawbacks (discussed in Section 3.3), and we argue
that the long input makes this approach suboptimal.

In this paper, we propose a new approach
for long-input summarization: Dynamic Latent
Extraction for Abstractive Summarization (DYLE).
DYLE jointly trains the extractor and the generator
and keeps the extracted text snippets latent. For an
output token, DYLE compute its probability con-
ditioned on each input snippet separately, and its
generation probability is computed by marginal-
izing over all the input snippets under a learned
dynamic weights assigned by the generator condi-
tioned on the previously generated tokens.

We optimize the extractor with two surrogate
losses. First, we compute the extractive oracle
based on the reference summary with a greedy
search over the best ROUGE scores. These ora-
cle snippets are used as targets for the extractor
learning signal. Moreover, we propose consistency
loss to encourage the extractor to approximate its
own predicted weights on the snippet to the aver-
aged dynamic weights predicted by the generator.

We conducted experiments on three long-input
summarization datasets: GovReport (Huang et al.,
2021) and arXiv (Cohan et al., 2018) for long-
document summarization, and QMSum (Zhong
et al., 2021b) for long-dialogue summarization.
Our method DYLE largely outperforms existing
methods on GovReport and QMSum, while achiev-
ing strong results on arXiv. Notably, DYLE yields
gains of 4.2/6.1/4.0 of ROUGE-1/2/L points over
the previous best method on GovReport. These
experiments demonstrate the generalizability of
DYLE to multiple long-input summarization tasks.

We summarize our contributions as follows:

• We introduce DYLE, a dynamic latent extrac-
tion approach for abstractive long-input sum-
marization. DYLE better captures information
in the long input and reduces computational
cost;

• We propose multiple auxiliary optimizations

for the effective training of DYLE: 1) extrac-
tive oracle as a learning signal for the extrac-
tor; 2) consistency loss that bridges extraction
and generation; 3) hybrid training methods
that make the extraction more robust;

• Experimental results show that DYLE largely
outperforms the state-of-the-art on two long
input summarization datasets. We also con-
ducted a detailed analysis that shows dynamic
weights improve model interpretability.

2 Related Work

We introduce in detail the four main categories
of methods in recent work to address long-input
summarization tasks.

Sparse attention mechanism The full attention
mechanism has a quadratic memory cost. Prior
research works have proposed different sparse at-
tention mechanisms to reduce the memory cost.
Longformer (Beltagy et al., 2020) uses a dilated
sliding window of blocks and global attention pat-
terns. BigBird (Zaheer et al., 2020) employs slid-
ing windows and random blocks. Reformer (Kitaev
et al., 2020) uses the locality-sensitive hashing. In
addition to optimizing the encoder self-attention,
Huang et al. (2021) proposes head-wise positional
strides to reduce the cost of the encoder-decoder
attention. However, sparse attention diminishes the
benefits of pretraining and sacrifices parts of the
receptive field.

Extract-then-generate method This method ex-
tracts salient text snippets from the input, followed
by generating an overall summary. Most of these
approaches are trained separately (Zhang et al.,
2019; Lebanoff et al., 2019; Xu and Durrett, 2019;
Bajaj et al., 2021; Zhang et al., 2021b), which suf-
fer from information loss as we pass the extracted
snippets to the generator. Some approaches attempt
to reduce that loss by bridging the two stages. Chen
and Bansal (2018) adopts reinforcement learning
(RL) with a sentence-level policy gradient. Bae
et al. (2019) proposes summary-level policy gra-
dient. Using RL suffers from various drawbacks
on long input texts, which will be elaborated in
Section 3.3. DYLE is different as we jointly train
an extract-then-generate model for summarization
using latent variables.

Divide-and-conquer approach A common ap-
proach in long input summarization is divide-and-

1688

conquer (Gidiotis and Tsoumakas, 2020; Grail
et al., 2021; Zhang et al., 2021a). It breaks a long
input into multiple parts, which are summarized
separately and combined to produce a final sum-
mary. However, these models do not capture the
contextual dependencies across parts and assume
that the input has certain structure.

Hierarchical models Various hierarchical mod-
els have been proposed to handle the longer in-
puts. Cohan et al. (2018) models the document
discourse structure with a hierarchical encoder
and a discourse-aware decoder. HAT-Bart (Rohde
et al., 2021) proposes a new Hierarchical Atten-
tion Transformer-based architecture that attempts
to capture sentence and paragraph-level informa-
tion. HMNet (Zhu et al., 2020) builds a hierarchical
structure that includes discourse-level information
and speaker roles. However, these models focus
mainly on model performance and not on reducing
the memory and computational cost.

3 Our Approach

An overview of our approach is shown in Fig-
ure 1. In Section 3.1, we formulate our task and the
extractor-generator framework. In Section 3.2, we
introduce our parameterization of the extractor for
long inputs. In Section 3.3, we introduce generator
formulation and the novel consistency loss. The
extractor module is both optimized with the consis-
tency loss and the oracle loss, which we elaborate
on in Section 3.4. The overall training objective is
summarized in Section 3.5.

3.1 Extractor-Generator Framework

In the long-input summarization task, the input con-
sists of L text snippets, X = (x1, . . . , xL), and an
optional query q if a query is paired with a sum-
mary. In long-input summarization, the number of
text snippets, L, could be potentially large. The out-
put is a summary y of length T . For the dialogue
summarization task, dialogue utterances by each
speaker are used as snippets. For documents, we
tokenize the input into sentences and use each sen-
tence as a snippet. The goal is to learn a model that
generates a sequence of summary tokens y given
the input snippets X and the previously generated
tokens y<t:

Pθ(y|q,X) =

T∏
t=1

Pθ(yt|q,X, y<t)

RoBERTa RoBERTa

query query

Top-

Extracted snippets

Document

Figure 2: Long-input extractor. We divide the docu-
ment into chunks, each containing consecutive snippets.
A shared RoBERTa encodes each chunk independently.

The extractor takes the query and the source
text as input and outputs a score si = Eη(q, xi)
for each text snippet xi. Here η is the extractor
parameters. We extract K snippets XK from the
document X based on their scores:

XK = top-K(Eη(q, xi), xi ∈ X) (1)

After retrieving XK from X , the extractor-
generator framework models the output probability
by replacing X with XK , i.e.,

Pθ(y|q,X) = Pθ(y|q,XK)

=
T∏
t=1

Pθ(yt|q,XK , y<t)
(2)

Note that the top-K operation in Eq. (1) is non-
differentiable, and we do not propagate gradients
through top-K; instead, we propose methods to op-
timize the extractor in Section 3.3 and Section 3.4.

3.2 Extractor for Long Inputs
An interesting research question is how to design
the extractor for long inputs. Limited by GPU mem-
ory, it is impractical to concatenate all snippets
and encode them with a large pre-trained language
model. As shown in Figure 2, we group consecu-
tive snippets into chunks. We concatenate the query
q with each chunk and compute the encoded vector
for each snippet independently within the chunk
it belongs to. We project the encoded vectors to
scalar scores si = Eη(q, xi) using an MLP.

3.3 Generator with Dynamic Weights
Challenges An extract-then-generate model
faces two challenges in long-input summarization.

1689

query

Seq2Seq

LM head

Weight head dynamic weight

generation prob

Extracted snippets

Figure 3: At each decoding time step, our generator
predicts the dynamic weight and the generation proba-
bility for each extracted snippet.

The first challenge is that the extraction operation
(top-K in Eq. (1)) is non-differentiable. One
approach is to adopt RL-based optimizations
(Chen and Bansal, 2018; Bae et al., 2019), which
has two drawbacks. First, reinforcement learning
for large action spaces (i.e., extracting K out
of L snippets when L is very large) has high
variances. Second, current methods mostly use
sentence-level ROUGE (Chen and Bansal, 2018)
or summary-level ROUGE (Bae et al., 2019) as
training rewards. Using sentence-level ROUGE
could potentially select sentences with overlapping
contents (Narayan et al., 2018), resulting in
redundant final summaries. Using a summary-level
ROUGE leads to the sparsity of the training signal,
and longer input makes this approach harder to
train. The second challenge is interpretability:
one might want to know whether the generator
is leveraging the extracted information at each
decoding time step.

To address these challenges, we propose a gen-
erator that dynamically assigns weights to every
extracted snippet at each time step. Different from
the extractor scores, which are independent of the
decoding time step, the generator assigns different
dynamic scores at different time steps. Dynamic
weights make the decoding process interpretable
and help denoise the extraction by down-weighting
irrelevant snippets. It also provides training signals
for the extractor using consistency loss.

Generator formulation The overview of the
generator is shown in Figure 3. For each ex-
tracted snippet x, the generator predicts the gen-
eration probability Pθ(yt|q, x, y<t) on this snippet
and a dynamic weight Pθ(x|q,XK , y<t) for this
snippet. The independent encoding of each ex-
tracted snippet saves memory because the snip-
pets do not need to attend to each other. Without
loss of generality, we assume that Pθ(·|q, x, y<t)
is computed by first mapping the input (q, x, y<t)

to a contextualized representation vector hxt . For
Transformers (Vaswani et al., 2017) and encoder-
decoder with attention models (Bahdanau et al.,
2015), hxt is usually the model’s output before
the final language model head. The generation
probability Pθ(yt|q, x, y<t) is computed by feed-
ing hxt into the language model head. For the dy-
namic weight Pθ(x|q,XK , y<t), we adopt a sepa-
rate MLP to map each hxt to a scalar logit lx, and
Pθ(·|q,X, y<t) is defined as softmax({lx}x∈X).
We compute the generation probability by marginal-
izing over all extracted snippets:

Pθ(y|q,XK) =
T∏
t=1

∑
x∈XK

Pθ(yt|q, x, y<t)Pθ(x|q,XK , y<t)

(3)

The dynamic weight Pθ(x|q,XK , y<t) at each de-
coding time step t allows us to interpret how the
generator utilizes the extracted snippets. For exam-
ple, a larger weight to a particular snippet indicates
the larger importance of the snippet to the current
decoding time step. The generation loss is defined
as the NLL of the gold summary:

Lθgen = − logPθ(y|q,XK) (4)

where Pθ(y|q,XK) is defined in Eq. (2). Here we
do not propagate gradients of Lθgen to the extrac-
tor parameters since top-K is non-differentiable.
Instead, methods to optimize the extractor are de-
scribed in Section 3.3 and Section 3.4.

Consistency loss We also leverage the dynamic
weights to provide a training signal for the extrac-
tor. Since the dynamic weight of a snippet can be
interpreted as the importance of the snippet at a par-
ticular time step, we average the dynamic weights
over all the decoding steps and view the averaged
weight as the overall importance of the snippet.
Based on this intuition, we propose what we term
as consistency loss, which measures the distance
between the averaged dynamic weights distribution
and the extractor distribution. We want these two
distributions to be close on an arbitrary subset of
X . For simplicity, we take XK as the subset and
define the consistency loss as

Lηconsist = KL
[1
T

T∑
t=1

Pθ(·|q,XK , y<t) ||

softmax(Eη(q, xi), xi ∈ XK)
] (5)

1690

Note that the consistency loss is superscripted with
the extractor’s parameters η, which means that we
do not compute gradients for the generator’s param-
eters θ. Since we want the distributional distance
to be small on an arbitrary subset of X , we do not
propagate gradients through the top-K operator.

3.4 Leveraging Extractive Oracles

For long-input summarization, the extracted snip-
pets XK used during training are important for
stable optimization. Instead of using XK defined
in Eq. (1), we propose to leverage extractive ora-
cles during training. No extractive oracles are used
during test time.

Greedy search for extractive oracles Extrac-
tive oracles denote a set of selected text snippets
whose concatenation maximizes the evaluation met-
ric given the gold summary. We implement the
extractive oracle using greedy search. Specifically,
we start with an empty set, and we iteratively select
a snippet from the input such that the concatenation
of that snippet and the already selected snippets
maximizes the average of ROUGE-1, ROUGE-2,
and ROUGE-L scores given the gold summary. We
denote the extractive oracles as Xo.

Hybrid training We leverage the extractive or-
acles to define XK used during training. If the
number of oracles equals or exceeds K, we define
XK as the first K oracle snippets. If the number
of oracles is less than K, we define XK as the
union of Xo and the top snippets ranked by the
extractor that is not appearing in Xo. Such hybrid
training has two benefits. First, compared with XK

defined in Eq. (1), it provides higher-quality inputs
to the generator. Second, it reduces the reliance
on the oracle and improves the generalizability of
our model beyond the training set, as other text
snippets omitted in the greedy search might help
the generation.

Oracle loss The extractive oracles Xo are used
as a supervision signal for the extraction part of
our model. The oracle loss Lηoracle is computed
from the cross-entropy loss between all chunks in
the extractor selected set and the extractive oracle.
Formally, the oracle loss is computed as

Lηoracle = −
1

|Xo|
∑
x∈Xo

log
eEη(q,x)∑

xi∈X e
Eη(q,xi)

(6)

Dataset Query Format Src. leng. Tgt. leng.

GovReport 7 Doc. 9,409 553
arXiv 7 Doc. 6,030 273
QMSum 3 Dial. 9,070 69

Table 1: Comparison of evaluation benchmarks.

3.5 Training Objective

The overall training objective of our method is

Lθ,η = λgLθgen + λoLηoracle + λcLηconsist (7)

where λg, λo, and λc are hyperparameters to bal-
ance the loss components. Gradients are computed
for the superscripted parameters. Specifically, the
extractor is solely optimized with the consistency
loss and the oracle loss, and the generator is solely
optimized with the generation loss.

4 Experiment Setups

4.1 Datasets

We consider the following long-input abstractive
summarization datasets as evaluation benchmarks:2

QMSum (Zhong et al., 2021b) is a benchmark
for query-based multi-domain meeting summariza-
tion. It consists of meetings from three domains:
AMI (Carletta et al., 2005), ICSI (Janin et al.,
2003), and committee meetings of the Welsh Par-
liament and Parliament of Canada;

GovReport (Huang et al., 2021) is a large-scale
long document summarization dataset, consisting
of about 19.5k U.S. government reports with expert-
written abstractive summaries; GovReport is a
good benchmark as it contains significantly longer
documents (average 9.4k words) and summaries
(553 words) than other long document datasets,
such as ArXiv, PubMed (Cohan et al., 2018), Bill-
Sum (Kornilova and Eidelman, 2019), and Big-
Patent (Sharma et al., 2019);

arXiv (Cohan et al., 2018) is a dataset of scien-
tific articles from arXiv. Abstracts of the articles
are used as the target summary. ArXiv is chosen
over PubMed (Cohan et al., 2018) as arXiv contains
longer articles compared to PubMed.

A detailed comparison of the datasets used can
be found in Table 1.

2QMSum and arXiv can be accessed through SummerTime
(Ni et al., 2021a).

1691

R-1 R-2 R-L

BART(1024) 52.83 20.50 50.14
BART w/ sparse attn.

Stride (4096) 54.29 20.80 51.35
LIN. (3072) 44.84 13.87 41.94
LSH (4096) 54.75 21.36 51.27
Sinkhorn (5120) 55.45 21.45 52.48

BART w/ sparse attn. + HEPOS
LSH (7168) 55.00 21.13 51.67
Sinkhorn (10240) 56.86 22.62 53.82

DYLE (dynamic) 61.01 28.83 57.82

Table 2: Results on GovReport, where R stands for the
ROUGE metric and the number in the brackets denotes
maximum input sequence length of the model.

R-1 R-2 R-L

Locator as extractor
PGNet (2048) 28.74 5.98 25.13
Bart-large (3072) 32.16 8.01 27.72
HMNet (8192) 32.29 8.67 28.17
Longformer (8192) 31.60 7.80 20.50
UNILM-base (5120) 29.14 6.25 25.46
UNILM-CP (5120) 29.19 6.73 25.52

UniLM with DialogLM pretraining
DialogLM (5120) 34.02 9.19 29.77
DialogLM - Sparse (8192) 33.69 9.32 30.01

DYLE (dynamic) 34.42 9.71 30.10

Table 3: Results on QMSum. The baseline perfor-
mance numbers are from Zhong et al. (2021a).

4.2 Baselines and Implementation

Baselines for Comparisons We compare DYLE

with the previous state-of-the-art methods on the
aforementioned three datasets. More specifically:
1) For GovReport, we report the performance from
the original paper, which uses various encoder
self-attention and the proposed HEPOS encoder-
decoder attention; 2) For QMSum, we compare
with Zhong et al. (2021a), the current SoTA and
other baselines mentioned in that work; 3) For
arXiv, we include the results from the best perform-
ing models in previous works, including ExtSum-
LG (Xiao and Carenini, 2019), PEGASUS (Zhang
et al., 2020), DANCER (Gidiotis and Tsoumakas,
2020), BigBird (Zaheer et al., 2020), HEPOS +
LSH (Huang et al., 2021), HAT-BART (Rohde
et al., 2021), Longformer (Beltagy et al., 2020),
and SSN-DM (Cui and Hu, 2021). Note that those
baselines spans over different strategies to handle
long input, such as sparse-attention (HEPOS, Big-
Bird, Longformer), hierarchical attention (HAT-
BART), extract-then-generate (Locator + different
generators).

R-1 R-2 R-L

Prior Work
ExtSum-LG (dynamic) 44.01 17.79 39.09
PEGASUS (3072) 44.21 16.95 38.83
DANCER-PEGASUS (dynamic) 45.01 17.60 40.56
BigBird-PEGASUS (3072) 46.63 19.02 41.77
LSH (7168) 48.24 20.26 41.78
HAT-BART (3072) 46.68 19.07 42.17
LED-large (16384) 46.63 19.62 41.83
SSN-DM (dynamic) 45.03 19.03 32.58

DYLE (dynamic) 46.41 17.95 41.54

Table 4: Results on arXiv.

R-1 R-2 R-L

GovReport
Full 61.01 28.83 57.82
w/o hybrid 60.89 28.28 57.31
w/o consistency 60.59 28.48 57.49
w/o oracle 57.57 25.92 53.14

QMSum
Full 34.42 9.71 30.10
w/o hybrid 31.77 8.33 28.37
w/o consistency 32.51 8.77 28.94
w/o oracle 32.13 8.38 28.63

Table 5: Ablation study for auxiliary optimizations.

4.3 Implementation Details

Pretrained-LM The extractor is initialized with
RoBERTa-base (Liu et al., 2019) weights. The
generator is initialized with BART-large (Lewis
et al., 2020a) weights. We use the Adam optimizer
and set the extractor learning rate to 5e-5 and the
generator learning rate to 5e-6.

Hyperparameters λg, λo, and λc are the coeffi-
cients for the generation loss, oracle loss, and the
consistency loss respectively. For λg and λo, we
did a 2-step binary search between 0 and 2. For
λc, we did a 3-step binary search between 0 and
10. For the QMSum dataset, we used λg = 1,
λo = 1, λc = 1. For the GovReport dataset, we
used λg = 0.5, λo = 1, λc = 1. For the ArXiv
dataset, we used λg = 0.5, λo = 1, λc = 5.

Hardware We apply gradient checkpointing
(Chen et al., 2016) to save the GPU memory. Each
experiment is run on one NVIDIA Quadro RTX
8000 GPU. The effective batch size is set to 8.

5 Experiment Results

5.1 Main Results

The evaluation results are summarized in Table 2,
Table 3, and Table 4. For GovReport, DYLE yields

1692

ROUGE-1 ROUGE-2 ROUGE-L

P R F1 P R F1 P R F1

GovReport Extracted snippets 48.98 73.40 57.56 24.20 36.59 28.53 46.28 69.25 54.35
Generated summaries 63.16 61.61 61.01 29.85 29.10 28.83 59.88 58.35 57.82

QMSum Extracted snippets 4.25 76.90 7.74 1.36 28.41 2.49 3.99 72.83 7.26
Generated summaries 29.78 45.64 34.42 8.39 13.06 9.71 26.14 39.70 30.10

Table 6: Precision-recall decomposition of ROUGE scores of extracted snippets and generated summaries.

gains of 4.15/6.21/4.00 of ROUGE-1/2/L scores
compared to the previous best method. Experi-
ments on GovReport show that DYLE is performant
over prior sparse attention approaches.

On QMSum, DYLE yields the new state-of-
the-art ROUGE-1/2/L scores of 34.42/9.71/30.10,
outperforms UniLM with DialogLM pretraining.
Comparing DYLE with locator-based models on
the QMSum dataset shows that DYLE outperforms
prior extract-then-generate approaches where the
locator is independently trained with intermediate
annotated text spans. This shows the effectiveness
of DYLE’s joint training approach. These results
show that DYLE can be applied to both the long
document summarization and long dialogue sum-
marization tasks. DYLE’s better performance can
be attributed to lowered information loss between
the extraction and the generation steps and its abil-
ity to handle input of a much longer length.

We notice that while DYLE largely outperforms
the LSH baseline (Huang et al., 2021) on the Gov-
Report dataset, it underperforms the LSH base-
line on arXiv. We posit two reasons. First, the
input of the GovReport is much longer than that
of arXiv. Most, if not all, of the sentences in the
arXiv input article can be processed by the LSH
model. Second, the summaries of the arXiv dataset
are more abstractive than those of GovReport. It
is possible that individually extracted text snippet
is not the best linguistic unit for generating out-
put tokens. It is our future work to explore the
optimal input unit for an extract-then-generate ap-
proach. Nevertheless, DYLE outperforms other
extraction-based approaches (e.g., SSN-DM (Cui
and Hu, 2021)) and divide-and-conquer approaches
(e.g., DANCER (Gidiotis and Tsoumakas, 2020)).

5.2 Evaluation of Auxiliary Optimizations

We conduct ablation studies to investigate the ef-
fectiveness of the auxiliary optimizations we in-
troduced. Specifically, we report the full model’s
performance after removing 1) hybrid training, 2)

consistency loss, 3) extractive oracle loss. In our
default model, the consistency loss is computed
on the combination of the extracted snippets and
oracle snippets; in the “w/o hybrid” experiment,
the consistency loss is only computed on the set of
oracle snippets; in “w/o consistency” experiment,
the consistency loss is not computed. The results
are summarized in Table 5. Note that without the
hybrid training optimization, only the extractive
oracles will be used to train the generator. When
the consistency loss is not calculated, the extractor
and the generator can be viewed as being trained
independently with the extractive oracles.

We see that excluding either of the hybrid train-
ing, consistency loss, or oracle loss optimization
leads to a performance drop. Training the model
without the supervision of the oracle leads to the
greatest decrease in model performance, showing
the importance of good supervision for the extrac-
tor. Removing the consistency loss also decreases
the model performance. This shows that the con-
sistency loss allows the extractor to better learn
to select salient snippets from the input text and
enables DYLE to generalize better to the test set.

6 Analysis and Discussion

Analysis of extracted snippets We are inter-
ested in the amount of salient information passed
to the generator. To investigate this, we report the
decomposed precision and recall of ROUGE scores
in Table 6. We observe that the extracted snippets
have much higher recall than the generated sum-
maries, while the generated summaries have higher
precision. This suggests that to improve the overall
performance, we can increase the information cov-
erage (i.e., recall) of the extractor and improve the
accuracy of the generator in identifying the salient
snippets (i.e., precision).

Interpretability of dynamic weights Our ap-
proach is more interpretable than sparse attention
and two-step extraction-generation pipeline meth-

1693

Generated summary

To
p-

K

Random summary

To
p-

K

(a) QMSum sample 1

Generated summary

To
p-

K

Random summary

To
p-

K

(b) QMSum sample 2

Generated summary

To
p-

K

Random summary

To
p-

K

(c) QMSum sample 3

Generated summary

To
p-

K

Random summary

To
p-

K

(d) QMSum sample 4

Generated summary

To
p-

K

Random summary

To
p-

K

(e) GovReport sample 1

Generated summary

To
p-

K

Random summary

To
p-

K

(f) GovReport sample 2

Generated summary

To
p-

K

Random summary

To
p-

K

(g) GovReport sample 3

Generated summary

To
p-

K

Random summary

To
p-

K

(h) GovReport sample 4

Figure 4: Dynamic weight visualization. We visualized the dynamic weight matrices of the generated summary
and a random summary from other samples in the validation set. x-axis: decoding time step; y-axis: index of the
extracted top-K snippets. Darker squares stand for higher weights. More examples can be found in Appendix A.

ods. Specifically, dynamic weights in the generator
shows how the information is used throughout the
decoding process. In Figure 4, we visualize the dy-
namic weights for the extracted snippets assigned
by the generator during decoding. In each subfig-
ure, we visualize the dynamic weight matrices of
the generated summary and a random summary
from other samples in the validation set. The x-
axis and y-axis represent the index of the extracted
top-K snippets and the decoding time step, respec-
tively. Darker squares denote higher weights. For
each generated summary, we observe multiple con-
secutive high-weight areas, indicating alignments
between the extracted snippets and the generated
summary. By contrast, weights are uniformly dis-
tributed for random summaries. Interestingly, we
observe that, on QMSum, fewer sentences are con-

sidered when generating the summaries. Our ex-
planation for this observation is that QMSum is a
query-based dataset, where the queried information
is more concentrated in a few snippets. By contrast,
we find that a larger number of snippets are used
on the GovReport dataset as seen in Figure 4, as
GovReport is a general summarization dataset.

Effect of number of extracted snippets To eval-
uate the effect of number of extracted snippets on
model performance, we vary the value of K of
top-K in Eq. (1) and test it on both the GovReport
and QMSum datasets. We observe that the model
performance generally increases as the value of K
increases. This is expected as more extracted snip-
pets provide the generator with more information
to form a final summary. The results are summa-

1694

R-1 R-2 R-L

GovReport
K=25 61.01 28.83 57.82
K=20 59.25 27.46 55.74
K=15 58.55 26.95 54.89
K=10 54.98 24.10 51.25

QMSum
K=25 34.42 9.71 30.10
K=20 33.10 8.69 29.62
K=15 31.78 8.36 28.31
K=10 33.30 9.18 29.53

Table 7: Comparing model performance with different
values of K on the GovReport and QMSum dataset

R-1 R-2 R-L

GovReport
Extractor Output 61.01 28.83 57.82
Oracle 68.02 39.16 65.29

QMSum
Extractor Output 34.42 9.71 30.10
Oracle 39.80 14.74 36.06

Table 8: Feeding extractive oracles to generator. "Or-
acle" is computed based on the gold summary; thus, it
is a soft upper-bound of the extractor’s performance.

rized in Table 7. Due to the limit of GPU memory,
the largest K value we tried is 25.

Effect of consistency loss We evaluate the ef-
fect of consistency loss on extractor performance.
Note that removing the consistency loss means that
the extractor and the generator are independently
trained. The results are presented in Table 5 as
part of the ablation study. Removing the consis-
tency loss leads to worse model performance. We
observe that the consistency loss helps the model
better learn the importance of the selected text snip-
pets useful for the generation.

Extractor performance compared with extrac-
tive oracles We feed the extractive oracles to the
generator. The results are summarized in Table 8.
We observe that extractive oracles contain more
salient information than the text snippets extracted
by the extractor. Feeding the extractive oracle to the
generator indicates the upper bound of the extractor
performance. However, we observe that the gap
between the performance of using the extractive
oracle and using the extractor output is relatively
small.

Comparison with RAG The generator of our
method is related to but differs significantly from
Retrieval-Augmented Generation (RAG) (Lewis

et al., 2020b). The similarity only lies in the idea of
marginalization over a set of text snippets, which
is shown to be useful in question answering as well
(Ni et al., 2021b). However, unlike our dynamic
weights, the weights in RAG remains static dur-
ing decoding. In our notations, RAG’s generation
probability can be formulated as:

Pθ(y|q,XK) =
T∏
t=1

Pθ(yt|q,XK , y<t)

=
T∏
t=1

∑
x∈XK

Pθ(yt|q, x, y<t)Pθ(x|q,XK)

(8)

The static weight Pθ(x|q,XK) in Eq. 8 is com-
puted based on q and XK , while our dynamic
weight Pθ(x|q,XK , y<t) is additionally condi-
tioned on the already generated tokens.

Limitations and future directions We acknowl-
edge that joint training of the extractor and the
generator cannot eliminate information loss, which
might be addressed by combining DYLE and sparse
attention to encode longer snippets. Though for-
mulated for long-input summarization, DYLE can
be applied to general long-input generation tasks
where information is scattered across the input, e.g.,
open-domain question answering and multi-turn di-
alogue systems with long dialogue history.

7 Conclusions

In this paper, we propose the first framework that
jointly trains an extract-then-generate model with
latent extraction. The first-step extraction picks out
salient information from the long input, thereby
extending the input length that the model can han-
dle. Our novel joint training method addresses the
challenge of information loss associated with the
prior extract-then-generate approaches. Our model
largely outperforms the current state-of-the-art on
GovReport and QMSum, while achieving strong
results on arXiv. Lastly, DYLE has the advantages
of being able to process arbitrarily long input with
a lower memory cost and interpretable generator
weights.

Acknowledgment

The authors would like to thank Yixin Liu and
Ming Zhong for the discussions. We also would
like to thank the anonymous reviewers for their
helpful comments. This work is supported in part
by a grant from Microsoft Research.

1695

References
Sanghwan Bae, Taeuk Kim, Jihoon Kim, and Sang-

goo Lee. 2019. Summary level training of sentence
rewriting for abstractive summarization. In Proceed-
ings of the 2nd Workshop on New Frontiers in Sum-
marization, pages 10–20.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings.

Ahsaas Bajaj, Pavitra Dangati, Kalpesh Krishna, Prad-
hiksha Ashok Kumar, Rheeya Uppaal, Bradford
Windsor, Eliot Brenner, Dominic Dotterrer, Rajarshi
Das, and Andrew McCallum. 2021. Long docu-
ment summarization in a low resource setting us-
ing pretrained language models. In Proceedings of
the ACL-IJCNLP 2021 Student Research Workshop,
ACL 2021, Online, JUli 5-10, 2021, pages 71–80.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
CoRR, abs/2004.05150.

Arthur Bražinskas, Mirella Lapata, and Ivan Titov.
2021. Learning opinion summarizers by selecting
informative reviews. arXiv e-prints, pages arXiv–
2109.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike
Flynn, Mael Guillemot, Thomas Hain, Jaroslav
Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa
Kronenthal, et al. 2005. The ami meeting corpus:
A pre-announcement. In International workshop on
machine learning for multimodal interaction, pages
28–39. Springer.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. CoRR, abs/1604.06174.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of ACL 2018, Long Pa-
pers, pages 675–686.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. CoRR, abs/1904.10509.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A discourse-aware attention
model for abstractive summarization of long docu-
ments. In Proceedings of NAACL-HLT 2018, Short
Papers, pages 615–621, New Orleans, Louisiana.

Peng Cui and Le Hu. 2021. Sliding selector network
with dynamic memory for extractive summarization
of long documents. In Proceedings of NAACL-HLT
2021, pages 5881–5891.

Alexios Gidiotis and Grigorios Tsoumakas. 2020. A
divide-and-conquer approach to the summarization
of long documents. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 28.

Quentin Grail, Julien Perez, and Eric Gaussier. 2021.
Globalizing BERT-based transformer architectures
for long document summarization. In Proceedings
of EACL 2021, pages 1792–1810, Online.

Luyang Huang, Shuyang Cao, Nikolaus Nova Parulian,
Heng Ji, and Lu Wang. 2021. Efficient attentions for
long document summarization. In Proceedings of
NAACL-HLT 2021, Online, June 6-11, 2021, pages
1419–1436.

Adam Janin, Don Baron, Jane Edwards, Dan Ellis,
David Gelbart, Nelson Morgan, Barbara Peskin,
Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke,
et al. 2003. The icsi meeting corpus. In ICASSP
2003., volume 1, pages I–I. IEEE.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In
ICLR.

Farshad Kiyoumarsi. 2015. Evaluation of automatic
text summarizations based on human summaries.
Procedia-Social and Behavioral Sciences, 192:83–
91.

Anastassia Kornilova and Vladimir Eidelman. 2019.
Billsum: A corpus for automatic summarization of
us legislation. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization, pages 48–56.

Logan Lebanoff, Kaiqiang Song, Franck Dernoncourt,
Doo Soon Kim, Seokhwan Kim, Walter Chang, and
Fei Liu. 2019. Scoring sentence singletons and pairs
for abstractive summarization. In Proceedings of
ACL 2019, pages 2175–2189, Florence, Italy.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020a. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of ACL 2020,
Online, July 5-10, 2020, pages 7871–7880.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020b. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In NeurIPS.

Yang Liu, Chenguang Zhu, and Michael Zeng. 2021.
End-to-end segmentation-based news summariza-
tion. arXiv preprint arXiv:2110.07850.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

1696

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In NAACL-HLT.

Ansong Ni, Zhangir Azerbayev, Mutethia Mutuma,
Troy Feng, Yusen Zhang, Tao Yu, Ahmed Hassan
Awadallah, and Dragomir Radev. 2021a. Summer-
Time: Text summarization toolkit for non-experts.
In Proceedings of EMNLP 2021: System Demonstra-
tions, pages 329–338.

Ansong Ni, Matt Gardner, and Pradeep Dasigi.
2021b. Mitigating false-negative contexts in
multi-document question answering with retrieval
marginalization. In Proceedings of EMNLP 2021,
pages 6149–6161.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Tobias Rohde, Xiaoxia Wu, and Yinhan Liu. 2021. Hi-
erarchical learning for generation with long source
sequences. arXiv preprint arXiv:2104.07545.

Eva Sharma, Chen Li, and Lu Wang. 2019. Bigpatent:
A large-scale dataset for abstractive and coherent
summarization. In Proceedings of ACL 2019, pages
2204–2213.

Xiaofei Sun, Chun Fan, Zijun Sun, Yuxian Meng, Fei
Wu, and Jiwei Li. 2020. Summarize, outline, and
elaborate: Long-text generation via hierarchical su-
pervision from extractive summaries. arXiv preprint
arXiv:2010.07074.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang
Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. 2020a.
Long range arena: A benchmark for efficient trans-
formers. arXiv preprint arXiv:2011.04006.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020b. Efficient transformers: A survey.
CoRR, abs/2009.06732.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 5998–6008.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8:229–256.

Jeff Wu, Long Ouyang, Daniel M Ziegler, Nissan Sti-
ennon, Ryan Lowe, Jan Leike, and Paul Christiano.
2021. Recursively summarizing books with human
feedback. arXiv preprint arXiv:2109.10862.

Wen Xiao and Giuseppe Carenini. 2019. Extractive
summarization of long documents by combining
global and local context. In Proceedings of EMNLP-
IJCNLP 2019, pages 3011–3021.

Jiacheng Xu and Greg Durrett. 2019. Neural extractive
text summarization with syntactic compression. In
Proceedings of EMNLP-IJCNLP 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. In NeurIPS.

Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang.
2019. Pretraining-based natural language genera-
tion for text summarization. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning (CoNLL).

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Yusen Zhang, Ansong Ni, Ziming Mao, Chen Henry
Wu, Chenguang Zhu, Budhaditya Deb, Ahmed Has-
san Awadallah, Dragomir R. Radev, and Rui Zhang.
2021a. Summˆn: A multi-stage summarization
framework for long input dialogues and documents.
CoRR, abs/2110.10150.

Yusen Zhang, Ansong Ni, Tao Yu, Rui Zhang, Chen-
guang Zhu, Budhaditya Deb, Asli Celikyilmaz,
Ahmed Hassan Awadallah, and Dragomir Radev.
2021b. An exploratory study on long dialogue
summarization: What works and what’s next. In
EMNLP 2021: Findings.

Ming Zhong, Yang Liu, Yichong Xu, Chenguang Zhu,
and Michael Zeng. 2021a. Dialoglm: Pre-trained
model for long dialogue understanding and summa-
rization. arXiv preprint arXiv:2109.02492.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah,
Asli Celikyilmaz, Yang Liu, Xipeng Qiu, and
Dragomir R. Radev. 2021b. Qmsum: A new bench-
mark for query-based multi-domain meeting summa-
rization. In Proceedings of NAACL-HLT 2021, On-
line, June 6-11, 2021.

Chenguang Zhu, Ruochen Xu, Michael Zeng, and Xue-
dong Huang. 2020. A hierarchical network for ab-
stractive meeting summarization with cross-domain
pretraining. In Proceedings of EMNLP 2020: Find-
ings.

A Additional Dynamic Weight
Visualization

1697

Generated summary
To

p-
K

Random summary

To
p-

K

(a) QMSum sample 1

Generated summary

To
p-

K

Random summary

To
p-

K

(b) QMSum sample 2

Generated summary

To
p-

K

Random summary

To
p-

K

(c) QMSum sample 3

Generated summary

To
p-

K

Random summary

To
p-

K

(d) QMSum sample 4

Generated summary

To
p-

K

Random summary

To
p-

K

(e) QMSum sample 5

Figure 5: Dynamic weights visualization on QMSum.

Generated summary

To
p-

K

Random summary

To
p-

K

(a) GovReport sample 1

Generated summary

To
p-

K

Random summary

To
p-

K

(b) GovReport sample 2

Generated summary

To
p-

K

Random summary

To
p-

K

(c) GovReport sample 3

Generated summary

To
p-

K

Random summary

To
p-

K

(d) GovReport sample 4

Generated summary

To
p-

K

Random summary

To
p-

K

(e) GovReport sample 5

Figure 6: Dynamic weights visualization on GovReport.

1698

