
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
System Demonstrations, pages 105 - 113

May 22-27, 2022 ©2022 Association for Computational Linguistics

OpenPrompt: An Open-source Framework for Prompt-learning

Ning Ding1∗ , Shengding Hu1∗, Weilin Zhao1∗, Yulin Chen5,
Zhiyuan Liu1,2,3,4†, Hai-Tao Zheng5†, Maosong Sun1,2,3

1Dept. of Comp. Sci. & Tech., Institute for AI, Tsinghua University, Beijing, China
Beijing National Research Center for Information Science and Technology

2Institute Guo Qiang, Tsinghua University, Beijing, China
3International Innovation Center of Tsinghua University, Shanghai, China,4 BAAI, China

5 Shenzhen International Graduate School, Tsinghua University, China, Peng Cheng Laboratory
{dingn18, hsd20, zwl19, yl-chen21}@mails.tsinghua.edu.cn

Abstract

Prompt-learning has become a new paradigm
in modern natural language processing, which
directly adapts pre-trained language models
(PLMs) to cloze-style prediction, autoregres-
sive modeling, or sequence to sequence gen-
eration, resulting in promising performances
on various tasks. However, no standard im-
plementation framework of prompt-learning
is proposed yet, and most existing prompt-
learning codebases, often unregulated, only
provide limited implementations for specific
scenarios. Since there are many details such
as templating strategy, initializing strategy,
and verbalizing strategy, etc., need to be
considered in prompt-learning, practitioners
face impediments to quickly adapting the de-
sired prompt learning methods to their ap-
plications. In this paper, we present Open-
Prompt, a unified easy-to-use toolkit to con-
duct prompt-learning over PLMs. Open-
Prompt is a research-friendly framework that
is equipped with efficiency, modularity, and
extendibility, and its combinability allows the
freedom to combine different PLMs, task for-
mats, and prompting modules in a unified
paradigm. Users could expediently deploy
prompt-learning frameworks and evaluate the
generalization of them on different NLP tasks
without constraints.1

1 Introduction

Pre-trained language models (PLMs) (Han et al.,
2021a; Qiu et al., 2020) have been widely proven
to be effective in natural language understanding
and generation, ushering in a new era of modern
natural language processing (NLP). In the early
stage of this revolution, a standard approach to
adapt PLMs to various specific NLP tasks is the
∗ equal contribution
† corresponding authors
1OpenPrompt is released at https://github.com/
thunlp/OpenPrompt.

pretraining-finetuning paradigm, where additional
parameters and task-specific objectives are intro-
duced in the tuning procedure. However recently,
the paradigm of the adaptation of PLMs is shifting.
Originated in T5 (Raffel et al., 2019) and GPT-
3 (Brown et al., 2020), researchers find that PLMs
can be effectively stimulated by textual prompts or
demonstrations, especially in low-data scenarios.

Take a simple prompt-based sentiment classifi-
cation for example, the pipeline consists of a tem-
plate and a verbalizer, where a template is used to
process the original text with some extra tokens,
and a verbalizer projects original labels to words
in the vocabulary for final prediction. Assume
the template is “<text> It is <mask>”, where
the token <text> stands for the original text,
and the verbalizer is {“positive”:“great”, “neg-
ative”:“terrible”}. The sentence “Albert Einstein
was one of the greatest intellects of his time.” will
first be wrapped by the pre-defined template as “Al-
bert Einstein was one of the greatest intellects of
his time. It is <mask>”. The wrapped sentence is
then tokenized and fed into a PLM to predict the
distribution over vocabulary on the <mask> token
position. It is expected that the word great should
have a larger probability than terrible.

As illustrated above, prompt-learning projects
the downstream tasks to pre-training objectives
for PLMs with the help of textual or soft-
encoding prompts. A series of studies of prompt-
learning (Liu et al., 2021a) have been proposed
to investigate the strategies of constructing tem-
plates (Schick and Schütze, 2021; Gao et al., 2021;
Liu et al., 2021b), verbalizers (Hu et al., 2021), op-
timization (Lester et al., 2021), and application (Li
and Liang, 2021; Han et al., 2021b; Ding et al.,
2021a) for this paradigm.

A prompt-learning problem could be regarded
as a synthesis of PLMs, human prior knowledge,
and specific NLP tasks that need to be handled.

105

 https://github.com/thunlp/OpenPrompt
 https://github.com/thunlp/OpenPrompt

Example PLM Template Verbalizer Task Reference

Naive TC MLM & Seq2Seq M. text M. One-Many Text Classification -
Naive KP LM & Seq2Seq M. text - Knowledge Probing -
Naive FET MLM M. text (meta info) M. One-Many Entity Typing (Ding et al., 2021a)
PTR MLM M. text (complex) M. One-One Relation Extratcion (Han et al., 2021b)
P-tuning LM Soft tokens M. One-One Text Classification (Liu et al., 2021b)
Prefix-tuning LM, Seq2Seq Soft tokens - Text Generation (Li and Liang, 2021)
LM-BFF MLM A. text M. One-Many Text Classification (Gao et al., 2021)

Table 1: Some examples implemented by OpenPrompt, where M. is the abbreviation of manually defined and A.
is the abbreviation of automatically generated. Note that different approaches focus on different parts in prompt-
learning. Additional to the whole pipeline, our specific implementations of these methods are integrated into the
specific classes of OpenPrompt.

Hence, it is hard to support the particular implemen-
tations of prompt-learning elegantly with the cur-
rent deep learning or NLP libraries while there is
also a lack of a standard paradigm. Previous works
pursue the most efficient way to implement prompt-
learning with the least modification to the existing
framework for traditional fine-tuning, resulting in
poor readability and even unstable reproducibility.
Moreover, the performance of a prompt-learning
pipeline varies greatly with the choice of templates
and verbalizers (Zhao et al., 2021), creating more
barriers for implementations. Lastly, there is no
comprehensive open-source framework particularly
designed for prompt-learning at present, which
makes it difficult to try out new methods and make
rigorous comparisons for previous approaches.

We present OpenPrompt, an open-source, easy-
to-use, and extensible toolkit for prompt-learning.
OpenPrompt modularizes the whole framework of
prompt-learning and considers the interactions be-
tween each module. We highlight the feature of
combinability of OpenPrompt, which supports flex-
ible combinations of diverse task formats, PLMs,
and prompting modules. For example, we can eas-
ily adapt prefix-tuning (Li and Liang, 2021) to a
text classification task in OpenPrompt. This feature
enables users to assess the generalization of their
prompt-learning models on various tasks, but not
only the performance on specific tasks.

Specifically, a Template class is used to define
or generate textual or soft-encoding templates to
wrap the original input. To flexibly support various
templates under a unified paradigm, we design a
new template language that could easily conduct
token-level customization for the corresponding
attributes. A Verbalizer projects the classi-
fication labels to words in the vocabulary, and a
PromptModel is responsible for the training and
inference process. Each module in OpenPrompt

is clearly defined while retaining its independence
and coupling so that researchers can easily deploy
a model and make targeted improvements. We also
implement baselines with OpenPrompt and evalu-
ate them on a broad scope of NLP tasks, demon-
strating the effectiveness of OpenPrompt.

The area of prompt-learning is in the exploratory
stage with rapid development. Hopefully, Open-
Prompt could help beginners quickly understand
prompt-learning, enable researchers to efficiently
deploy prompt-learning research pipeline, and em-
power engineers to readily apply prompt-learning
to practical NLP systems to solve real-world prob-
lems. OpenPrompt will not only keep all the code
open source, but will also continue to update the
documentation to provide detailed tutorials.

2 Design and Implementation

As stated in § 1, prompt-learning is a comprehen-
sive process that combines PLMs, human knowl-
edge, and specific NLP tasks. Keeping that in mind,
the design philosophy is to simultaneously consider
the independence and mutual coupling of each mod-
ule. As illustrated in Figure 1, OpenPrompt pro-
vides the full life-cycle of prompt-learning based
on PyTorch (Paszke et al., 2019). In this section, we
first introduce the combinability of OpenPrompt,
and then the detailed design and implementation of
each component in OpenPrompt.

2.1 Combinability
In the NLP world, we usually adopt different PLMs
with corresponding objective functions to different
underlying tasks (roughly, classification and gener-
ation). But in prompt learning, given that the core
idea of the framework is to mimic pre-training tasks
in the downstream task, which are essentially ”pre-
dicting words based on context”, we can further
unify the execution of downstream tasks. Open-

106

⼯具包设计图

Template

Dataset

Tokenizer

PLMs

PromptTokenizer

PromptDataset

TemplateEmbeddings

Verbalizer

PromptModel

Prompt
Trainer

example

wrapped
example

input for PLMs

logits for words

Wrapper Class: These classes aim to
make prompt-learning align with
PyTorch pipeline, and users do not need
to modify them.

PLM-related Class: These classes
support the calling and management of
various PLMs.

Prompt-related Class: These classes are
unique modules for prompt-learning,
and they can be implemented by users.

Dataset-related Class: These classes
support the uAliAes for datasets across
different NLP tasks.

wrapped
example

Figure 1: The overall architecture of OpenPrompt. Note that according to the prompt-learning strategies, not
all the modules are necessarily used. For example, in generation tasks, there are no verbalizers in the learning
procedure. The PromptTrainer is a controller that controls the data flow and the training process with some
unique attributes, users can also implement the training process in a conventional fashion.

Prompt supports a combination of tasks, PLMs,
and prompt modules in a flexible way. For example,
from a model perspective, T5 (Raffel et al., 2019) is
not only used for span prediction and GPT (Brown
et al., 2020) is not only used for generative tasks.
From the perspective of prompting, prefix-tuning
can also be used for classification, and soft prompt
can be used for generation. All these combina-
tions can easily be implemented and validated on
NLP tasks in our framework so that we can better
understand the mechanisms involved.

2.2 Pre-trained Language Models

One core idea of prompt-learning is to use addi-
tional context with masked tokens to imitate the
pre-training objectives of PLMs and better stimu-
late these models. Hence, the choice of PLMs is
crucial to the whole pipeline of prompt-learning.
PLMs could be roughly divided into three groups
according to their pre-training objectives.

The first group of PLMs use masked language
modeling (MLM) to reconstruct a sequence cor-
rupted by random masked tokens, where only the
losses of the masked tokens are computed. Typical
PLMs with MLM objective include BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), etc, and
such an objective is regarded suitable for natural
language understanding (NLU). The second group
exploits the autoregressive-style language model-

ing (LM) to predict the current token according to
its leading tokens. GPT-3 (Brown et al., 2020) is
one of the representative works adopting this objec-
tive. The third part is the sequence-to-sequence
(Seq2Seq) models, which aim to generate a se-
quence with a decoder conditioned on a separate en-
coder for an input sequence. Typical seq2seq PLMs
include T5 (Raffel et al., 2020), MASS (Song et al.,
2019) and BART (Lewis et al., 2020), etc.

Different PLMs have different attributes, result-
ing in various adaptation capabilities for different
NLP tasks in prompt-learning. Practically in Open-
Prompt, we support directly loading PLMs from
huggingface transformers (Wolf et al., 2020), and
PLMs implemented by other libraries will be sup-
ported in the future. Once the PLM is determined,
researchers could deploy a known valid prompt-
learning pipeline (e.g., RoBERTa for few-shot sen-
timent classification) or explore other uses of PLM
that could exploit its potential. Users of Open-
Prompt do not need to implement objective heads
for different PLMs to calculate the corresponding
loss, a unified interface can perform these opera-
tions automatically (§ 2.6).

2.3 Tokenization

Tokenization is a crucial step in processing data
for NLP, and it faces new challenges in prompt-
learning. After designing the template, the spe-

107

cific implementation of the tokenization for orig-
inal input and the designed template could be
time-consuming and error-prone. First, in prompt-
learning, some specific information such as the
indices of entities and masked tokens should be
carefully tackled in tokenization. Some small er-
rors, such as the mismatch of masked token indices,
may lead to serious consequences. Moreover, con-
catenation and truncation issues after tokenization
(templates are not supposed to be truncated) should
also be handled. Since different PLMs may have
different tokenization strategies, we should also
consider the inconsistency in the details of addi-
tional context processing. We specifically design
the tokenization module for prompt-learning and
significantly simplify the process. By using our
encapsulated data processing APIs, users could
use the human-readable style to design templates
and conveniently operate on the input and the tem-
plate at the same time. Our component integrates
complex information from input and template and
then conducts tokenization. Based on the choice
of PLMs, OpenPrompt automatically chooses the
appropriate tokenizer in prompt-learning, which
could save considerable time for users to process
prompt-related data.

2.4 Templates

As one of the central parts of prompt-learning, a
template module wraps the original text with the
textual or soft-encoding template. A template nor-
mally contains contextual tokens (textual or soft)
and masked tokens. In OpenPrompt, all the tem-
plates are inherited from a common base class with
universal attributes and abstract methods.

Previous works design a wide variety of tem-
plates, including manually written template (Schick
and Schütze, 2021) and pure soft template (Lester
et al., 2021). Gu et al. (2021) report a mix of
manual template tokens and soft (trainable) to-
kens sometimes yields better results than separate
manual template and soft template. In Liu et al.
(2021b), a promising performance is achieved by
fixing the majority of manual tokens while tuning a
small number of the others. In Han et al. (2021b),
the template is contextualized, which needs to be
filled with the head entity and the tail entity to form
a complete one, moreover, the output of multiple
positions is used in the loss calculation in their
template. Logan IV et al. (2021) design null tem-
plate with simple concatenation of the inputs and

an appended <mask> token.
It’s not reasonable to design a template format

for each prompt since it will require high learning
cost for practical use. To this end, in OpenPrompt,
we design a template language to ease the prob-
lem, with which we can construct various types of
templates under a unified paradigm. Our template
language takes insight from the dict grammer of
Python. And such a design ensures flexibility and
clarity at the same time, allowing users to build
different prompts with relative ease. More specifi-
cally, a template node is a text (or empty text) with
an attributes’ description. In our template language,
one is free to edit the attributes of each token in
the template, such as which characters are shared
embedding, how the characters are post-processed
(e.g. by MLP), etc. We show some template ex-
amples in Figure 2, and the detailed tutorial for
writing templates is in the documentation 2.

2.5 Verbalizers

When it comes to prompt-based classification, a
verbalizer class should be constructed to map origi-
nal labels to label words in the vocabulary. When
a PLM predicts a probability distribution over the
vocabulary for one masked position, a verbalizer
will extract the logits of label words and integrate
the logits of label words to the corresponding class,
thereby responsible for the loss calculation. Fig-
ure 3 shows a simple way to define a binary senti-
ment classification verbalizer.

Similar to templates, all the verbalizer classes are
also inherited from a common base class with nec-
essary attributes and abstract methods. Additional
to manually-defined verbalizers, we implement au-
tomatic verbalizers like AutomaticVerbalizer and
KnowledgeableVerbalizer (Hu et al., 2021). More-
over, important operations like calibrations (Zhao
et al., 2021) are also realized in OpenPrompt.

Prompt-learning could also facilitate the unifi-
cation of NLP tasks. In such kind of paradigm,
a span of text (i.e., the target text) is expected to
be generated in the masked position. Then the fi-
nal prediction will be based on a mapping from
the target texts to the labels (Ye et al., 2021; Du
et al., 2021). To fully support such a paradigm, we
implement a novel GenerationVerbalizer,
which supports designating any kind of text, in-
cluding a piece of text from the input, as the
target text. To compose a target text for a

2https://thunlp.github.io/OpenPrompt

108

https://thunlp.github.io/OpenPrompt

1 # Example A. Hard prompt for topic classification
2 a {"mask"} news: {"meta": "title"} {"meta": "description"}
3

4 # Example B. Hard prompt for entity typing
5 {"meta": "sentence"}. In this sentence, {"meta": "entity"} is a {"mask"},
6

7 # Example C. Soft prompt (initialized by textual tokens)
8 {"meta": "premise"} {"meta": "hypothesis"} {"soft": "Does the first sentence

entails the second ?"} {"mask"} {"soft"}.
9

10 # Example D. Pure soft template in Lester et al., 2021.
11 {"soft": None, "duplicate": 100} {"meta": "text"} {"mask"}
12

13 # Example E. Post processing script support
14 # e.g. write an lambda expression to strip the final punctuation in data
15 {"meta": "context", "post_processing": lambda s: s.rstrip(string.punctuation)}. {"

soft": "It was"} {"mask"}
16

17 # Example F. Mixed prompt with two shared soft tokens
18 {"meta": "premise"} {"meta": "hypothesis"} {"soft": "Does"} {"soft": "the", "

soft_id": 1} first sentence entails {"soft_id": 1} second?
19

20 # Example G. Specify the title should not be truncated
21 a {"mask"} news: {"meta": "title", "shortenable": False} {"meta": "description"}

Figure 2: Some examples of our template language. In our template language, we can use the key “meta” to refer
the original input text (Example B), parts of the original input (Example A, C, G), or other key information. We
can also freely specify which tokens are hard and which are soft (and their initialization strategy). We could assign
an id for a soft token to specify which tokens are sharing embeddings (Example F). OpenPrompt also supports the
post processing (Example E) for each token, e.g., lambda expression or MLP.

1 from openprompt import
ManualVerbalizer

2

3 promptVerbalizer = ManualVerbalizer(
4 classes = classes,
5 label_words = {
6 "negative": ["bad"],
7 "positive": ["good", "

wonderful", "great"],
8 },
9 tokenizer = bertTokenizer,

10)

Figure 3: An example to define a Verbalizer, the num-
ber of the label words for each class is flexible.

1 from openprompt import
GenerationVerbalizer

2

3 promptVerbalizer =
GenerationVerbalizer(

4 classes = classes,
5 label_words = {
6 0: ["other words."],
7 1: ["word {’meta’: ’word0’}"],
8 },
9 is_rule = True,

10 tokenizer = T5Tokenizer,
11)

Figure 4: An example to use GenerationVerbalizer
to conduct a co-reference resolution task. This task
requires the model to distinguish whether a pronoun
refers to the ’word0’ in the sentence.

GenerationVerbalizer, the syntax is the
same as the template language (See Figure 4). Dif-
ferent evaluation metrics are then used for different
types of task, For example, exact match for clas-
sification tasks and BLEU score (Papineni et al.,
2002) for generation tasks.

2.6 PromptModel

In OpenPrompt, we use a PromptModel ob-
ject to be responsible for training and inference,
which contains a PLM, a Template object, and a
Verbalizer object (optional). Users could flex-
ibly combine these modules and define advanced
interactions among them. A model-agnostic for-
ward method is implemented in the base class to
predict words for the masked positions. One goal
of this module is that users do not need to specifi-
cally implement heads for different PLMs, but use
a unified API to “predict words for positions that
need to be predicted” regardless of the pre-training
objective. An example to define a PromptModel
is shown in Figure 6.

2.7 Training

From the perspective of trainable parameters, the
training of prompt-learning could be divided into
two types of strategies. The first strategy simulta-

109

MLM

LM

Prefix

NLU

Seq2Seq

Manual

Soft

Mix

Manual

Generation

Know
NLG

Auto Fix PLM

Training
PLM

Template Verbalizer

Task

Unfix

P-tuning

Prompt-tuning

Prefix-tuning

PTR

P-tuning

Soft

Figure 5: The illustration of the validation space of OpenPrompt. By driving different modules of the framework,
we could implement and evaluate different methods on a broad set of NLP tasks. We show four examples in this
illustration, the colored lines denote the implementation flow of the corresponding method.

1 from openprompt import
PromptForClassification

2

3 promptModel = PromptForClassification(
4 template = promptTemplate,
5 model = bertModel,
6 verbalizer = promptVerbalizer,
7)
8

9 promptModel.eval()
10 with torch.no_grad():
11 for batch in data_loader:
12 logits = promptModel(batch)
13 preds = torch.argmax(logits,

dim = -1)
14 print(classes[preds])

Figure 6: An example to define a PromptModel and
conduct evaluation.

neously tunes the prompts and the PLM, which
is verified to be effective in a low-data regime
(OpenPrompt also provides a FewshotSampler
to support the few-shot learning scenario). The
second strategy is to only train the parameters of
prompts and keep the PLM frozen, this is regarded
as a parameter-efficient tuning method and is con-
sidered as a promising way to stimulate super-large
PLMs. Both of these strategies can be called with
one click in the trainer (or runner) module of Open-
Prompt. Trainer modules in OpenPrompt imple-
ment training process accompanied with prompt-
oriented training tricks, e.g. the ensemble of tem-
plates. Meanwhile, OpenPrompt supports exper-
imentation through configuration to easily drive
large-scale empirical study. We provide several
complete tutorials3 to use the basic and advanced
attributes of OpenPrompt.
3https://github.com/thunlp/OpenPrompt/
tree/main/tutorial

3 Evaluation

OpenPrompt aims to support a broad set of NLP
tasks under the paradigm of prompt-learning. In
terms of evaluation, we use OpenPrompt to im-
plement various baselines and assess them on the
corresponding NLP tasks. We show the validation
space in Figure 5. And the evaluation tasks include
WebNLG (Gardent et al., 2017) for conditional
generation, GLUE (Wang et al., 2018) and Super-
GLUE (Wang et al., 2019) for natural language
understanding; SemEval (Hendrickx et al., 2010),
Few-NERD (Ding et al., 2021b) for information
extraction; MNLI (Williams et al., 2017), AG’s
News (Zhang et al., 2015), DBPedia (Lehmann
et al., 2015) and IMDB (Maas et al., 2011) for
text classification; LAMA (Petroni et al., 2019)
for knowledge probing. The processors of these
datasets have already been implemented in Open-
Prompt, and they are all inherited from a common
base DataProcessor class. To keep the results
up to date, we are constantly updating and reporting
the latest results on our GitHub repository4.

4 Discussion

Although PLMs have achieved tremendous success
on almost all the subtasks in NLP, one problem
still hangs in the air, have we really fully exploited
the potential of PLMs, especially the big ones?
Conventional fine-tuning uses extra task-specific
heads and objectives for adaptation, but this strat-
egy may face two issues. On the one hand, such
an approach creates a natural gap between model
tuning and pre-training. On the other hand, as the
4https://github.com/thunlp/OpenPrompt/
tree/main/results/

110

https://github.com/thunlp/OpenPrompt/tree/main/tutorial
https://github.com/thunlp/OpenPrompt/tree/main/tutorial
https://github.com/thunlp/OpenPrompt/tree/main/results/
https://github.com/thunlp/OpenPrompt/tree/main/results/

number of model parameters increases, this fine-
tuning approach becomes increasingly difficult to
operate due to the massive computational volume
(e.g., GPT-3 (Brown et al., 2020)).

By mimicking the process of pre-training,
prompt-learning intuitively bridges the gap be-
tween pre-training and model tuning. Practically,
this paradigm is surprisingly effective in low-data
regime (Le Scao and Rush, 2021; Gao et al., 2021).
For example, with appropriate template, zero-shot
prompt-learning could even outperform 32-shot
fine-tuning (Ding et al., 2021a). Another promising
empirical attribute of prompt-learning is the poten-
tial to stimulate large-scale PLMs. When it comes
to a 10B model, solely optimizing prompts (the
parameters of the model are fixed) could achieve
comparable performance to full parameter fine-
tuning (Lester et al., 2021). These practical studies
imply that we may use prompts to more effectively
and efficiently dig the knowledge kept in PLMs,
leading to a deeper understanding of the under-
lying principles of their mechanisms (Wei et al.,
2021; Qin et al., 2021; Vu et al., 2021). In addi-
tion to prompt-based methods, there are also other
techniques exploring the parameter-efficient stimu-
lation of large-scale PLMs (Houlsby et al., 2019;
Hu et al., 2022; He et al., 2022; Ding et al., 2022).
Although it is possible to achieve non-trivial re-
sults on the large-scale PLMs by just adjusting the
prompt. However, in small and medium-sized mod-
els, prompt still faces optimization problems that
need to be addressed.

From a practical implementation point of view,
prompt-learning is actually complex and requires a
lot of detailed consideration. With general-purpose
NLP under the prompt-learning paradigm as our
target, we present OpenPrompt, a unified toolkit
to effectively and efficiently implement prompt-
learning approaches. OpenPrompt demonstrates
a comprehensive view of the programming de-
tails of prompt-learning, and enables practition-
ers to quickly understand the mechanisms and
practical attributes of this technique. And one
can quickly deploy existing representative prompt-
learning algorithms that are already implemented
in the package under a unified programming frame-
work. Moreover, OpenPrompt allows researchers
or developers to quickly try out new ideas of
prompt-learning, which not only includes newly
designed templates or verbalizers, but also the ex-
ploration of the attributes of prompt-learning, e.g.,

prompt-based adversarial attacking.

5 Conclusion and Future Work

We propose OpenPrompt, a unified, easy-to-use,
and extensible toolkit for prompt-learning. Open-
Prompt establishes a unified framework with
clearly defined blocks and flexible interactions to
support solid research on prompt-learning. At the
application level, OpenPrompt could facilitate re-
searchers and developers to effectively and effi-
ciently deploy prompt-learning pipelines. In the fu-
ture, we will continue to integrate new techniques
and features to OpenPrompt to facilitate the re-
search progress of prompt-learning. Focusing on
organizing input and output and training processes,
Openprompt will be easily combined with tools
that focus on specific optimization execution pro-
cesses in the future.

Acknowledgements

This research is supported by National Key R&D
Program of China (No. 2020AAA0106502),
National Natural Science Foundation of
China (Grant No. 6201101015), Beijing
Academy of Artificial Intelligence (BAAI),
Natural Science Foundation of Guangdong
Province (Grant No. 2021A1515012640),
the Basic Research Fund of Shenzhen City
(Grant No. JCYJ20210324120012033 and
JCYJ20190813165003837), and Overseas
Cooperation Research Fund of Tsinghua Shen-
zhen International Graduate School (Grant No.
HW2021008), Institute Guo Qiang at Tsinghua
University, International Innovation Center of
Tsinghua University, Shanghai, China. Ning Ding
is supported by Baidu Scholarship. The authors
would like to thank Guoyang Zeng, Jie Zhou,
Jun Zhang and Huadong Wang for their valuable
suggestions of the project.

Contributions

Zhiyuan Liu, Ning Ding and Hai-Tao Zheng initi-
ated and led the project. Ning Ding and Shengding
Hu designed the original working flow and APIs.
Shengding Hu, Weilin Zhao, Yulin Chen, Ning
Ding developed basic classes and advanced at-
tributes of OpenPrompt, as well as the tutorials.
Ning Ding and Shengding Hu drafted the documen-
tation and the paper. Zhiyuan Liu, Hai-Tao Zheng
and Maosong Sun gave suggestions and feedback
about the organization of the project.

111

References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of ACL, pages 4171–4186,
Minneapolis, Minnesota.

Ning Ding, Yulin Chen, Xu Han, Guangwei Xu,
Pengjun Xie, Hai-Tao Zheng, Zhiyuan Liu, Juanzi
Li, and Hong-Gee Kim. 2021a. Prompt-learning
for fine-grained entity typing. Arxiv preprint,
2108.10604.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. 2022. Delta tun-
ing: A comprehensive study of parameter efficient
methods for pre-trained language models. arXiv
preprint arXiv:2203.06904.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Hai-Tao Zheng, and Zhiyuan
Liu. 2021b. Few-nerd: A few-shot named entity
recognition dataset. In Proceedings of ACL.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2021. All
nlp tasks are generation tasks: A general pretraining
framework. arXiv preprint arXiv:2103.10360.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of ACL, pages 3816–3830,
Online.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The webnlg
challenge: Generating text from rdf data. In Pro-
ceedings of INLG, pages 124–133.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2021. Ppt: Pre-trained prompt tuning for few-shot
learning. arXiv preprint arXiv:2109.04332.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu,
Xiao Liu, Yuqi Huo, Jiezhong Qiu, Liang Zhang,
Wentao Han, Minlie Huang, Qin Jin, Yanyan Lan,
Yang Liu, Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu,
Ruihua Song, Jie Tang, Ji-Rong Wen, Jinhui Yuan,
Wayne Xin Zhao, and Jun Zhu. 2021a. Pre-trained
models: Past, present and future. ArXiv preprint,
abs/2106.07139.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2021b. Ptr: Prompt tuning with rules
for text classification. ArXiv preprint, 2105.11259.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a

unified view of parameter-efficient transfer learning.
In Proceedings of ICLR.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. SemEval-2010 task 8:
Multi-way classification of semantic relations be-
tween pairs of nominals. In Proceedings of SemEval,
pages 33–38.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of ICML, pages 2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In Proceedings of ICLR.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan
Liu, Juanzi Li, and Maosong Sun. 2021. Knowl-
edgeable prompt-tuning: Incorporating knowledge
into prompt verbalizer for text classification. ArXiv
preprint, 2108.02035.

Teven Le Scao and Alexander M Rush. 2021. How
many data points is a prompt worth? In Proceedings
of NAACL, pages 2627–2636.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. 2015. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167–195.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. ArXiv preprint, abs/2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of ACL, pages
7871–7880, Online.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings ACL, pages 4582–4597, Online. Asso-
ciation for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ArXiv preprint, abs/2107.13586.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

112

https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2108.10604
https://arxiv.org/abs/2108.10604
https://arxiv.org/abs/2203.06904
https://arxiv.org/abs/2203.06904
https://arxiv.org/abs/2203.06904
https://aclanthology.org/2021.acl-long.248/
https://aclanthology.org/2021.acl-long.248/
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://aclanthology.org/W17-3518
https://aclanthology.org/W17-3518
https://arxiv.org/abs/2109.04332
https://arxiv.org/abs/2109.04332
https://arxiv.org/abs/2106.07139
https://arxiv.org/abs/2106.07139
https://arxiv.org/abs/2105.11259
https://arxiv.org/abs/2105.11259
https://openreview.net/pdf?id=0RDcd5Axok
https://openreview.net/pdf?id=0RDcd5Axok
https://www.aclweb.org/anthology/S10-1006/
https://www.aclweb.org/anthology/S10-1006/
https://www.aclweb.org/anthology/S10-1006/
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2108.02035
https://arxiv.org/abs/2108.02035
https://arxiv.org/abs/2108.02035
https://aclanthology.org/2021.naacl-main.208.pdf
https://aclanthology.org/2021.naacl-main.208.pdf
https://content.iospress.com/articles/semantic-web/sw134
https://content.iospress.com/articles/semantic-web/sw134
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv preprint, abs/1907.11692.

Robert L Logan IV, Ivana Balažević, Eric Wallace,
Fabio Petroni, Sameer Singh, and Sebastian Riedel.
2021. Cutting down on prompts and parameters:
Simple few-shot learning with language models.
arXiv preprint arXiv:2106.13353.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of ACL,
pages 311–318.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Proceed-
ings of NeurIPS, 32:8026–8037.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, Alexander H Miller, and Se-
bastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin,
Ning Ding, Zhiyuan Liu, Juanzi Li, Lei Hou, Peng
Li, Maosong Sun, et al. 2021. Exploring low-
dimensional intrinsic task subspace via prompt tun-
ing. arXiv preprint arXiv:2110.07867.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences, pages 1–26.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. ArXiv preprint, abs/1910.10683.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of EACL,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation. arXiv preprint
arXiv:1905.02450.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou,
and Daniel Cer. 2021. Spot: Better frozen model
adaptation through soft prompt transfer. arXiv
preprint arXiv:2110.07904.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019. Super-
glue: A stickier benchmark for general-purpose
language understanding systems. arXiv preprint
arXiv:1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Colin Wei, Sang Michael Xie, and Tengyu Ma. 2021.
Why do pretrained language models help in down-
stream tasks? an analysis of head and prompt tuning.
In Proceedings of NeurIPS.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of EMNLP, pages 38–45,
Online.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021.
CrossFit: A few-shot learning challenge for cross-
task generalization in NLP. In Proceedings of
EMNLP, pages 7163–7189. Association for Compu-
tational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of NIPS.

Tony Z Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Im-
proving few-shot performance of language models.
arXiv preprint arXiv:2102.09690.

113

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2106.13353
https://arxiv.org/abs/2106.13353
https://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://aclanthology.org/D19-1250.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/abs/2110.07867
https://arxiv.org/abs/2110.07867
https://arxiv.org/abs/2110.07867
https://link.springer.com/article/10.1007/s11431-020-1647-3
https://link.springer.com/article/10.1007/s11431-020-1647-3
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
http://proceedings.mlr.press/v97/song19d/song19d.pdf
http://proceedings.mlr.press/v97/song19d/song19d.pdf
https://people.cs.umass.edu/~tuvu/docs/soft_prompt_transfer.pdf
https://people.cs.umass.edu/~tuvu/docs/soft_prompt_transfer.pdf
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://aclanthology.org/W18-5446/
https://aclanthology.org/W18-5446/
https://aclanthology.org/N18-1101/
https://aclanthology.org/N18-1101/
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/2021.emnlp-main.572
https://aclanthology.org/2021.emnlp-main.572
https://papers.nips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://papers.nips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf

