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Abstract
Methods addressing spurious correlations such
as Just Train Twice (JTT, Liu et al. 2021) in-
volve reweighting a subset of the training set to
maximize the worst-group accuracy. However,
the reweighted set of examples may potentially
contain unlearnable examples that hamper the
model’s learning. We propose mitigating this
by detecting outliers to the training set and re-
moving them before reweighting. Our experi-
ments show that our method achieves competi-
tive or better accuracy compared with JTT and
can detect and remove annotation errors in the
subset being reweighted in JTT.1

1 Introduction

Machine learning models trained with empirical
risk minimization (ERM, Vapnik 1992) can achieve
a high average accuracy by minimizing the over-
all loss during training. Despite this, ERM mod-
els are also known to perform poorly on certain
minority groups of examples. When specific at-
tributes in a dataset frequently co-occur with a
class label, ERM models often learn to correlate
the co-occurring attributes and the label, using the
attributes as “shortcuts” for classifying examples.
These “shortcuts” are also called spurious correla-
tions, because model performance can significantly
decrease when the model encounters examples that
belong to a minority group where the correlations
between the attributes and class label do not hold.

More specifically, each class in a dataset can be
divided by whether their examples contain such
spurious attributes. Each set of examples with a
class-attribute combination is called a “group”. The
worst group is characterized by having the poor-
est ERM model performance among other groups.
As an example, Figure 1 shows accuracy dispar-
ities among groups in the FEVER dataset. The

∗ This work was conducted during the author’s internship
under National Institute of Informatics, Japan.

1Our code is available at https://github.com/
nii-yamagishilab/jtt-m.
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Figure 1: Results for the FEVER test set (Thorne et al.,
2018; Schuster et al., 2021). The data are divided into
six groups in accordance with class-attribute combi-
nations, where class = {REFUTES (REF), SUPPORTS
(SUP), NOT ENOUGH INFO (NEI)} and attribute = {no
neg, neg}, indicating the presence of a negation word
in the claim. Both methods perform well on groups
with strong spurious correlations (e.g., [REF, neg]). Our
proposed method (JTT-m) helps improve accuracies for
groups where such spurious correlations do not appear
(e.g., [SUP, neg] and [NEI, neg]).

ERM-trained model can achieve close to perfect
accuracy on the group with a spurious correlation
(the REFUTES class with negation), but only half
the accuracy on the worst group (the SUPPORTS

class with negation).
Improving the worst-group performance of ERM

models while maintaining the overall accuracy is
an active topic of research that has applications
in fair machine learning classifiers or robustness
against adversarial examples (Słowik and Bottou,
2022). Methods aiming to maximize worst-group
accuracy can be roughly categorized into two cat-
egories: those that utilize group information and
those that do not. Group Distributionally Robust
Optimization (Group DRO, Sagawa et al. 2020)
uses attribute (and thus group) information during
training to dynamically minimize the loss of each
group. While Group DRO achieves a high worst-
group and overall accuracy, it requires annotation

https://github.com/nii-yamagishilab/jtt-m
https://github.com/nii-yamagishilab/jtt-m
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on group information during training, which can
be expensive to obtain and unavailable for less pop-
ular datasets. On the other hand, methods such
as DRO with Conditional Value-at-Risk (CVaR
DRO, Duchi et al. 2019; Levy et al. 2020), Learn-
ing from Failure (LfF, Nam et al. 2020), Predict
then Interpolate (PI, Bao et al. 2021), Spectral De-
coupling (SD, Pezeshki et al. 2021), Just Train
Twice (JTT, Liu et al. 2021), and RWY and SUBY
from (Idrissi et al., 2022) all aim to minimize worst-
group loss without group information.

CVaR DRO minimizes worst-case loss over all
subpopulations of a specific size and requires com-
puting the worst-case loss at each step. LfF trains
an intentionally biased model and upweights the
minority examples. PI interpolates distributions
of correct and incorrect predictions and can min-
imize worst-case loss over all interpolations. SD
replaces the L2 weight decay in the cross entropy
loss function with logits. RWY reweights sam-
pling probabilities so that mini-batches are class-
balanced. SUBY subsamples large classes so that
every class is the same size as the smallest class.
JTT simply obtains misclassified examples (the er-
ror set) from the training set once and upweights
the fixed set of erroneous examples. We focus on
JTT due to its simplicity and relative effectiveness
and because it does not require group information
for improving worst-group accuracy. While Idrissi
et al. (2022)’s SUBY and RWY also follow JTT in
improving worst-group accuracies, their methods
target only datasets with imbalanced classes, and
are not applicable to class-balanced datasets such
as MultiNLI (Williams et al., 2018).

We propose further enhancing JTT by removing
outliers from the error set before upweighting it.
The outliers might be examples that are difficult
to learn, such as annotation errors. Keeping them
from being upweighted allows the model to train on
a cleaner error set and thus better show the intended
effect of the original JTT. We focus on worst-group
performance caused by the spurious correlations
of negation words and evaluate on datasets sus-
ceptible to spurious correlations of this type. Our
experiments on the FEVER and MultiNLI datasets
show that our method can outperform JTT in terms
of either the average or the worst-group accuracy
while maintaining the same level of performance
for the other groups.

Our contributions are as follows. We devise a
method for improving worst-group accuracy with-

out group information during training based on
JTT (Section 3). We show that by removing out-
liers from the error set being upweighted, we can
achieve similar or better overall and worst-group
performance (Section 4.2). Our examination of the
outliers being removed also suggests that the im-
provement may come from removing annotation
errors in the upweighted error set (Section 4.3).

2 Background

Spurious correlations and minority groups

We investigate the spurious correlations occurring
in two natural-language datasets: FEVER (Thorne
et al., 2018) and MultiNLI (Williams et al., 2018).
The task for FEVER involves retrieving docu-
ments related to a given claim, finding sentences
to form evidence against the claim, and then clas-
sifying the claim on the basis of the evidence into
three classes: SUPPORTS (SUP), REFUTES (REF),
or NOT ENOUGH INFORMATION (NEI). We fo-
cus on improving the worst-group classification
performance for the final part of the task. The
task for MultiNLI is to classify whether the hy-
pothesis is entailed by, neutral with, or contra-
dicted by the premise. We use Schuster et al.
(2021)’s preprocessing of both datasets, contain-
ing 178,059/11,620/11,710 training/dev/test exam-
ples for FEVER and 392,702/9,832 training/test
examples for MultiNLI.

Attributes known to cause spurious correlations
for these datasets are negation words (Gururangan
et al., 2018) and verbs that suggest negating actions
(Schuster et al., 2019). We merge these two sources
of negation words into a single set: {no, never,
nothing, nobody, not, yet, refuse, refuses, refused,
fail, fails, failed, only, incapable, unable, neither,
none}. Each class can be split into two groups
based on whether each claim/hypothesis contains
a spurious attribute (i.e., the negation words listed
above). Models tend to perform well on groups
where the attributes are highly correlated with the
label. Groups where the correlation between the
label and the attribute does not hold are called mi-
nority groups or worst groups, since models often
fail to classify their examples correctly. For exam-
ple, the claim “Luis Fonsi does not go by his given
name on stage.”, labeled SUPPORTS, belongs to the
worst group [SUP, neg].

Table 1(a) shows that most claims containing
negation are from the class REFUTES. The rela-
tively small amount of examples from the groups
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No negation Negation

REF 27,575 (17.1%) 14,275 (86.3%) 41,850 (23.5%)
SUP 99,303 (61.5%) 1,267 (7.7%) 100,570 (56.5%)
NEI 34,633 (21.4%) 1,006 (6.0%) 35,639 (20.0%)

(a) FEVER

No negation Negation

Contr 88,180 (27.3%) 42,723 (61.2%) 130,903 (33.3%)
Ent 118,554 (36.7%) 12,345 (17.7%) 130,899 (33.3%)
Neut 116,185 (36.0%) 14,715 (21.1%) 130,900 (33.3%)

(b) MultiNLI

Table 1: Class and group distributions for (a) FEVER
and (b) MultiNLI training sets. Both datasets show
a high spurious correlation between the REF (Contr)
class and the attribute neg. Minority groups where the
spurious correlation does not hold are [SUP (Ent), neg]
and [NEI (Neut), neg].

(SUP, negation) and (NEI, negation) form the mi-
nority groups, where the ERM model performance
fails. A similar trend can be seen in Table 1(b).

Empirical Risk Minimization (ERM)
Let x ∈ X be a training example and y ∈ Y
be its label. Given a dataset D = {(xi, yi)}Ni=1,
ERM aims to minimize the average loss (“empiri-
cal risk”), defined as:

JERM(θ) =
1

N

∑
(x,y)∈D

ℓ(gθ(x), y), (1)

where N is the number of training examples, gθ(·)
is the model, and θ represents model parameters.
We use cross-entropy loss as the loss function:

ℓ(gθ(x), y) = −
∑
y∈Y

1{y = ŷ}log(pθ(ŷ|x)), (2)

where 1{·} is the indicator function, x represents
the input sentence pair (s1, s2), and y ∈ Y ={SUP,
REF, NEI} ({Ent, Contr, Neut} for MultiNLI).
We first encode the input sentence pairs with
BERT (Devlin et al., 2019) and feed the resulting
embedding e into a multi-layer perceptron (MLP)
followed by a softmax function for classification:

pθ(ŷ|x) = softmax(MLP(e)),
e = BERT(s1, s2).

(3)

Just Train Twice (JTT)
Liu et al. (2021) propose improving worst-group
performance by simply training with an up-

weighted error set. During the first round of train-
ing, the set of incorrectly classified training exam-
ples is identified via an ERM model. The training
error set E is then upweighted with a real and posi-
tive upweight factor λup ∈ R+, and a final model
is trained on the reweighted objective:

Jup(θ,E)

=
1

Nup

(
λup

∑
(x,y)
∈E

ℓ(gθ(x), y)+
∑
(x,y)
/∈E

ℓ(gθ(x), y)

)
,

(4)

where λup is a hyperparameter, and Nup is the size
of the training set after upweighting.

3 Proposed method

Even though the upweighted ERM error set can im-
prove worst-group accuracy, it is possible that the
error set contains unlearnable or out-of-distribution
(OOD) examples, e.g., annotation errors. When up-
weighting the entire error set, these examples will
get amplified along with the rest of the error set,
lessening the overall benefits of upweighting and
retraining.

We propose modifying the JTT algorithm by re-
moving outliers in the ERM error set before train-
ing the second time. We adopt a similar approach
from Lee et al. (2018) for detecting outliers. Let x
be the output of the penultimate layer (i.e., the last
layer before the logits) and belong to class y. First,
we calculate the Mahalanobis distance for each x
from the mean of each class y:

M(x) =
√
(x − µy)

⊤Σ−1
y (x − µy), (5)

where µy and Σy are the class mean and covari-
ance.2 The greater the distance of x is from µy, the
likelier it is to be an OOD example.

Then, we filter OOD examples by comparing
the calculated Mahalanobis distance against a chi-
squared distribution with a critical value α of 0.001
and a degree of freedom df :3

xi ∈

{
Sin if pi < α,

Sout if pi ≥ α,
(6)

2We compute Σy using the standard covariance maximum
likelihood estimate (MLE) implemented in scikit-learn.

3We select a value of df that yields the best worst-group
accuracy on the dev set.
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Figure 2: T-SNE visualization of samples from the class
Entailment of the MultiNLI training set. Correct pre-
dictions of groups with and without negation (blue and
red) are quite well separated. Wrong predictions lie at
the top left, and outliers lie further away. Outliers are
detected by their Mahalanobis scores.

where Sin and Sout are the sets of in-distribution
and OOD training examples, and pi is the p-value
of the i-th example. We show the T-SNE visualiza-
tion in Figure 2.

Once the OOD examples are identified, we re-
move the subset of misclassified OOD examples
from the error set E, forming a new error set Ein:

Ein = {(xi, yi) s.t. ŷi ̸= yi ∧ xi /∈ Sout)}, (7)

which is then upweighted as per JTT:

Jup-in(θ,Ein)

=
1

Nup

(
λup

∑
(x,y)
∈Ein

ℓ(gθ(x), y)+
∑
(x,y)
/∈Ein

ℓ(gθ(x), y)

)
,

(8)

4 Experiments

4.1 Training details
We follow Sagawa et al. (2020); Liu et al. (2021);
Idrissi et al. (2022) in using different optimization
settings for different training methods to maximize
the validation accuracy. For ERM, we used the
AdamW optimizer (Loshchilov and Hutter, 2019),
linear learning rate decay, and a gradient clipping
of 1. For the first training of JTT, we used the SGD

optimizer without gradient clipping. The second
training used the same settings as those of ERM.

We used HuggingFace’s implementation (Wolf
et al., 2020) of BERT-base with default parameter
settings. For all methods, we used a batch size
of 32, initial learning rate of 2e-5, and we trained
them for 2 epochs. We tried df ∈ {4, 5, 6} and
λup ∈ {1, 2, 3, 4} and selected the values yielding
the best worst-group accuracy on the dev set. Since
no dev set is provided for MultiNLI, we tuned the
hyperparameters on FEVER and applied them to
MultiNLI.

4.2 Results

We compared our proposed method (referred to
as JTT-m, Eq. (8)) against two baselines: ERM
(Eq. (1)) and JTT (Eq. (4)). Table 2 shows the re-
sults for the average and worst-group performances
of various approaches.

As expected, ERM had the best average ac-
curacy but performed poorly on the worst group
across the two datasets. JTT and JTT-m had
improved performance on the worst group with
slightly decreased average accuracies on both
datasets compared with ERM. On FEVER, JTT-m
outperformed JTT in average accuracy while main-
taining the same worst-group [SUP, neg] accuracy.
On MultiNLI, JTT-m performed significantly bet-
ter on the worst group [Neut, neg] and maintained
the same average accuracy as JTT.

We also observed larger variations in the results
for FEVER. This is likely due to the smaller group
sizes in FEVER. The worst group of MultiNLI
[Neut, neg] accounted for around 3.5% of the test
set, while FEVER’s [SUP, neg] was only 0.5% of
the test set and was about 5 times lower than the
smallest group in MultiNLI in absolute numbers.
For the same reason, another minority group of
FEVER, [NEI, neg], also displayed a higher varia-
tion.

In addition, JTT-m slightly reduced training
time due to the smaller training set. Our Maha-
lanobis distance method detected 2,077 and 1,821
examples as outliers in the FEVER and MultiNLI
error sets. By eliminating these examples, we could
reduce the training time while achieving results
similar to or better than JTT.

4.3 Discussion

The improvements for the MultiNLI worst group
agree with our hypothesis: removing outliers from
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Dataset FEVER MultiNLI

Avg. (%) Worst (%) Avg. (%) Worst (%)

ERM 87.8±0.2 48.6±0.7 84.9±0.1 72.0±1.0

JTT 86.8±0.2 50.5±3.5 83.0±0.2 75.5±1.5

JTT-m 87.4±0.1∗ 50.2±2.8 83.0±0.3 77.3±0.4∗

Table 2: Average and worst-group test accuracies for all methods. The “Worst” column indicates the worst-group
accuracies on [SUP, neg] and [Neutr, neg] for FEVER and MultiNLI, respectively. We report mean and standard
deviation computed across five runs using different random seeds. “∗” indicates the statistical significance compared
with JTT (paired t-test, p < 0.05).

Group JTT JTT-m

[REF, no neg] 79.9±0.5 80.7±0.3

[REF, neg] 93.8±0.6 96.2±0.6∗

[SUP, no neg] 94.7±0.2 94.5±0.1

[SUP, neg] 50.5±3.5 50.2±2.8

[NEI, no neg] 82.5±0.5 83.0±0.3

[NEI, neg] 71.5±0.9 72.1±3.3

(a) FEVER

Group JTT JTT-m

[Contr, no neg] 82.8±0.7 82.8±1.0

[Contr, neg] 91.9±0.1 91.8±0.6

[Ent, no neg] 82.6±0.2 82.2±1.1

[Ent, neg] 79.5±0.5 78.9±1.9

[Neut, no neg] 81.2±0.6 81.7±0.8

[Neut, neg] 75.5±1.5 77.3±0.4∗

(b) MultiNLI

Table 3: Accuracies and standard deviations for each
group on (a) FEVER and (b) MultiNLI. “∗” indicates
statistical significance (paired t-test, p < 0.05).

the upweighted error set improves model perfor-
mance. As seen in Table 3, all other groups of
MultiNLI were either not affected by the removal
of outliers or showed insignificant changes. On
the other hand, removing outliers from the FEVER
error set seemed to have a larger effect on groups
other than the worst group [SUP, neg], especially
on [REF, neg] and [NEI, neg].

We examined the group-wise percentage of the
error-set OOD examples (i.e., the ones removed in
JTT-m) to see how each group may be affected by
the removal of their OOD examples (Figure 3). De-
spite the improvements in groups [REF, neg] and
[Neut, neg], few to no examples from these groups
were regarded as outliers by the Mahalanobis dis-
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Figure 3: Percentage of OOD examples in the error set
of each group. A large percentage of examples from
classes SUP and Ent are regarded as outliers. FEVER’s
SUP has a much higher percentage removed compared
with MultiNLI’s Ent. All other groups contain only less
than 1% of examples regarded as outliers.

tance method. Instead, groups of classes SUP and
Ent, whose performance does not improve when
outliers are removed, contained the highest percent-
age of OOD examples. This suggests that these
outliers can affect the model’s decision boundaries
among classes.

To investigate the properties of the OOD exam-
ples detected, we randomly sampled 100 examples
from Sin and Sout for both FEVER and MultiNLI.
For FEVER, we found 24 annotation errors in Sout,
much higher than the 1 annotation error in Sin.
For MultiNLI, Sout contained 10 annotation errors,
whereas Sin contained 4. We show a sample of the
annotation errors found in Table 4. This suggests
that (1) the Mahalanobis distance method can de-
tect at least a subset of annotation errors as outliers,
and (2) the improvements in either the group or
the overall performance may be partially due to the
removal of these annotation errors.
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Claim: Nice & Slow was released in 1968.
Evidence: "Nice & Slow" is a 1998 single from

Usher’s second album My Way.
Annotated label: SUPPORTS
Predicted label: REFUTES

(a) FEVER

Premise: So far, no promising treatments exist ac-
cording to Larry Gentilello.

Hypothesis: Larry Gentilello asserted that effective
treatments already exist, not just treat-
ments that hold promise.

Annotated label: Entailment
Predicted label: Contradiction

(b) MultiNLI

Table 4: Example of annotation errors from (a) FEVER
and (b) MultiNLI.

5 Conclusion

We have shown that the JTT algorithm can benefit
from pruning the error set before upweighting and
training a second time, improving worst-group ac-
curacy or overall accuracy on two popular datasets.
We also showed that annotation errors may occur in
the error set, hampering JTT’s effectiveness. These
annotation errors can be mitigated by detecting
and removing them with our Mahalanobis distance
method. Investigating the effects of using other
OOD-detection methods and finding a more effec-
tive way to tune the additional hyperparameters are
directions for our future work.
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