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Abstract

Neural metrics have achieved impressive corre-
lation with human judgements in the evaluation
of machine translation systems, but before we
can safely optimise towards such metrics, we
should be aware of (and ideally eliminate) bi-
ases toward bad translations that receive high
scores. Our experiments show that sample-
based Minimum Bayes Risk decoding can be
used to explore and quantify such weaknesses.
When applying this strategy to COMET for
en→de and de→en, we find that COMET mod-
els are not sensitive enough to discrepancies in
numbers and named entities. We further show
that these biases are hard to fully remove by
simply training on additional synthetic data and
release our code and data for facilitating further
experiments.1

1 Introduction

Recently, neural machine translation evaluation
metrics have reached better correlation scores
with human evaluators than surface-level metrics
like BLEU (Papineni et al., 2002). In particular,
COMET (Rei et al., 2020a) has shown significant
potential as a leading evaluation metric both in
shared tasks (Mathur et al., 2020; Freitag et al.,
2021b) and other studies on machine translation
evaluation metrics (Kocmi et al., 2021). The main
benefits of such neural metrics are that they do
not rely on surface-level similarity to a reference
translation and that some of them operate in a mul-
tilingual representation space. This also allows for
comparing translations to the source sentence.

A recent evaluation as part of the WMT 2021
metrics shared task (Freitag et al., 2021b) suggests
that neural metrics are also less susceptible to many
weaknesses of earlier non-neural metrics, e.g. an
antonym in the translation hurting the BLEU score
exactly the same amount as a synonym. However,

1https://github.com/ZurichNLP/
mbr-sensitivity

it is still unclear whether or not these metrics also
introduce new biases that are harder to detect since
they are essentially “black box” metrics that do not
explain why a certain score is attributed to a trans-
lation. Failing to identify these biases in neural
metrics could lead the community to optimise to-
wards metric “blind spots”, either directly through
reward-based training methods such as Minimum
Risk Training (Shen et al., 2016), or more slowly
by basing modelling choices on metric scores. It is
therefore worthwhile to find new means to uncover
weaknesses of neural machine translation metrics.

In this paper, we show that sampling-based Min-
imum Bayes Risk (MBR) decoding - where a pool
of samples are compared against each other using
a machine translation evaluation metric as a utility
function - can render blind spots of these metrics
more observable. When applying COMET as the
utility function, we find many examples where a
translation hypothesis is chosen that contains dif-
ferent numbers or named entities than the source
and reference (see examples in Table 1). Through a
targeted sensitivity analysis, we identify that these
are indeed weaknesses of COMET and we show
that it can be hard to remove them from the model.

Our contributions are the following:

• We propose to use sample-based MBR de-
coding to explore and measure weaknesses of
neural machine translation evaluation metrics.

• We find that COMET is not sensitive enough
to number differences and mistranslations of
named entities when translating from de↔en.

• We show that simply retraining COMET on
synthetic data is not enough to fully eliminate
these blind spots.

2 Related Works

How to best evaluate machine translation models
has been a long-standing question in the research

https://github.com/ZurichNLP/mbr-sensitivity
https://github.com/ZurichNLP/mbr-sensitivity
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src Schon drei Jahre nach der Gründung verließ Green die Band 1970.

ref Green left the band three years after it was formed, in 1970.

MBRchrF++ Already three years after the foundation, Green left the band in 1970.

MBRCOMET Three years after the creation, Green left the band in 1980 .

src [...] Mahmoud Guemama’s Death - Algeria Loses a Patriot [...], Says President Tebboune.

ref [...] Mahmoud Guemamas Tod - Algerien verliert einen Patrioten [...], sagt Präsident Tebboune.

MBRchrF++ [...] Mahmoud Guemamas Tod - Algerien verliert einen Patriot [...], sagt Präsident Tebboune.

MBRCOMET [...] Mahmud Guemamas Tod - Algerien verliert einen Patriot [...], sagt Präsident Tebboene .

Table 1: Examples of MBR decoding outputs with chrF++ and COMET as utility metrics. The outputs chosen with
COMET indicate less sensitivity towards discrepancies in numbers and named entities.

community. Ideally, we could employ humans to
judge the quality of different models but this is
time-consuming, costly and requires trained pro-
fessionals. Various automatic machine translation
metrics have been proposed over the years that typ-
ically compare a machine translation output to a
reference sentence according to surface-level simi-
larity (Papineni et al., 2002; Popović, 2015) or on a
shallow semantic level (Banerjee and Lavie, 2005).

With the rise of contextual embeddings and large
multilingual Transformer language models, met-
rics that map translations and references into the
same latent space and compare the cosine similar-
ity between them (Lo, 2020) or use them as inputs
to predict a score (Sellam et al., 2020; Rei et al.,
2020a) have become popular. Such neural metrics
have been shown to agree more with human evalua-
tion than previously popular metrics such as BLEU
(Papineni et al., 2002) or chrF (Popović, 2015).

However, these neural metrics can also introduce
new biases that we are not yet aware of (Hanna and
Bojar, 2021). In this paper, we aim to find a way to
identify such weaknesses via Minimum Bayes Risk
(MBR) decoding. While MBR decoding was a fre-
quently used decoding strategy in the days of sta-
tistical machine translation (Goel and Byrne, 2000;
Kumar and Byrne, 2004; Tromble et al., 2008),
it has only recently gained traction in the context
of neural machine translation. Eikema and Aziz
(2020) argue that MBR decoding using samples as
hypotheses results in an unbiased candidate pool in
contrast to beam search outputs which maximise
the probability under the model. Indeed, if the
machine translation model generating the samples
is strong enough, humans prefer MBR-decoded
hypotheses selected with BLEURT (Sellam et al.,
2020) as the utility function over beam search out-
puts (Freitag et al., 2022).

Müller and Sennrich (2021) further show that
MBR outputs can inherit biases from the utility
function, for example, the length bias (Nakov et al.,
2012) when BLEU is used as the utility function.
Consequently, it stands to reason that MBR de-
coding can also be used to uncover new biases of
metrics that are used as utility functions, as we will
show in this work.

3 Minimum Bayes Risk Decoding

Traditionally, maximum a posteriori (MAP) de-
coding is used in the context of neural machine
translation. The goal is to find the translation hy-
pothesis hi among all possible hypotheses H that
is most probable under the translation model given
the source sentence x and the model parameters θ:

y∗ = argmax
hi∈H

pmodel(hi|x, θ) (1)

In practice, it is not feasible to consider every
possible hypothesis. Beam search offers a popular
and effective approximation.

In contrast, MBR decoding aims to find a trans-
lation that minimises the expected cost (risk) of
choosing a candidate translation hi, assuming that
we have some loss function L to compare the can-
didate to a true translation hj , and access to the
true probability distribution P :

y∗ = argmin
hi∈H

∑
hj∈H

P (hj |x)L(hi, hj) (2)

Since we do not have access to the true proba-
bility distribution P , and cannot exhaustively sum
over all possible translations H , we have to make
several approximations. First, we select a subset
of all possible hypotheses H as candidate transla-
tions C to make the computation tractable. Eikema
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and Aziz (2020) suggest drawing ancestral samples
from the translation model as a set of unbiased can-
didates, and we follow this sampling-based MBR
approach. Ancestral samples s are created by sam-
pling the next token w from the translation model
according to the probability distribution over the
vocabulary V at each time step t:

st = st−1 + sample
wi∈V

(pmodel(wi|x, st−1, θ)) (3)

The probability distribution is conditioned on
the source sentence x and the previously produced
output tokens st−1. For each ancestral sample s,
this sampling continues until the end-of-sentence
symbol is sampled as the next token w.

Second, we need to create an additional set of
“support hypotheses” S that serve as an approxima-
tion to the unknown true translation. The set of
candidates C and the set of support hypotheses S
can be created separately but in this work, we fol-
low Eikema and Aziz (2020) and let our translation
model produce a set of 100 ancestral samples that
are used both as candidates and support (C = S).

Third, we need to define a loss function L. In
practice, we often substitute the loss function for a
similarity function where higher values are better.
Such a “utility function” u is then used to search
for the translation hi that maximises the expected
utility or – to paraphrase – is most similar to all
hypotheses in the support set S:

y∗ = argmax
hi∈C

1

|S|
∑
hj∈S

u(hi, hj) (4)

Any automatic machine translation evaluation
metric can be used as the utility function u. Eikema
and Aziz (2021) find that BEER (Stanojević and
Sima’an, 2014) works best among a range of non-
neural metrics. More recently, Freitag et al. (2022)
compare several metrics as utility functions in a hu-
man evaluation of MBR-decoded outputs where the
neural metric BLEURT (Sellam et al., 2020) clearly
outperforms non-neural metrics. In this paper, we
explore the use of another neural evaluation metric
as the utility function, namely COMET. Since the
reference-based COMET model takes the source,
a translation hypothesis and a reference (approxi-
mated in MBR decoding with another hypothesis)
as input, our formulation of MBR decoding now
takes into account the source sentence x:

y∗ = argmax
hi∈C

1

|S|
∑
hj∈S

u(x, hi, hj) (5)

For an efficiency-related discussion of our im-
plementation, please refer to Section 4.3.

4 Experiment Setup

4.1 Translation Model

To be able to generate samples, we train two Trans-
former Base machine translation models (Vaswani
et al., 2017) using the nematus2 (Sennrich et al.,
2017) framework, one from de→en and one from
en→de. We follow Eikema and Aziz (2021) and
use all available parallel data from the WMT 2018
news shared task (Bojar et al., 2018) except for
Paracrawl as training data. This amounts to 5.9 mil-
lion sentence pairs. After deduplication, we have
approximately 5.6 million training examples.

Both models are trained for 250k updates and
we choose the best checkpoint based on the BLEU
score as evaluated on newstest2017 using
SacreBLEU (Post, 2018). We compute a joint
subword vocabulary of size 32k with byte pair
encoding (Sennrich et al., 2016) using the Sen-
tencePiece implementation (Kudo and Richardson,
2018). During training and decoding, the maxi-
mum sequence length is set to 200 tokens.

Our models are built with 6 encoder layers, 6
decoder layers, 8 attention heads with an embed-
ding and hidden state dimension of 512 and a feed-
forward network dimension of 2048. For regu-
larisation, we use a dropout rate of 0.1 for BPE-
dropout (Provilkov et al., 2020) during training, for
the embeddings, for the residual connections, in
the feed-forward sub-layers and for the attention
weights. We train with tied encoder and decoder
input embeddings as well as tied decoder input and
output embeddings (Press and Wolf, 2017) and ap-
ply exponential smoothing of model parameters
(decay 10−4) (Junczys-Dowmunt et al., 2018). Fol-
lowing previous work on MBR decoding (Eikema
and Aziz, 2020), we train without label smoothing.

For optimisation, we use Adam (Kingma and Ba,
2015) with standard hyperparameters and a learn-
ing rate of 10−4. We follow the Transformer learn-
ing schedule described in (Vaswani et al., 2017)
with a linear warm-up over 4,000 steps. Our to-
ken batch size is set to 16,348 and we train on 4
NVIDIA Tesla V100 GPUs.

2github.com/EdinburghNLP/nematus

github.com/EdinburghNLP/nematus
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4.2 COMET Models
We experiment with two COMET models that were
trained towards two different regression objectives:

• wmt20-comet-da (Rei et al., 2020b), de-
veloped for the WMT 2020 metrics shared
task (Mathur et al., 2020) and trained to pre-
dict Direct Assessment (DA) (Graham et al.,
2017) scores.

• wmt21-comet-mqm (Rei et al., 2021), de-
veloped for the WMT 2021 metrics shared
task (Freitag et al., 2021b) and trained to
predict MQM scores (Freitag et al., 2021a)
based on the Multidimensional Quality Met-
rics (MQM) methodology (Uszkoreit and
Lommel, 2013).

4.3 MBR Decoding Implementations
For non-neural metrics, we use the MBR decod-
ing implementation3 provided by Eikema and Aziz
(2021). We use only unique samples such that no
hypothesis is assigned a higher average MBR score
simply because it perfectly matches one or multi-
ple hypotheses in the support.4 In our experiments,
we use chrF++ (Popović, 2017) and BLEU as non-
neural metrics. For BLEU, the implementation
internally uses SacreBLEU (Post, 2018)5.

For our experiments with COMET, we adapt
the official COMET implementation6 and imple-
ment an option for MBR decoding. Since COMET
first creates a pooled sentence representation of the
source and each of the two hypotheses before con-
structing a single vector from these representations
and passing it through a regression layer, it is cru-
cial that the implementation does not naively call
COMET on every hypothesis pair. Instead, we en-
code the source sentence and hypotheses only once
with XLM-R (Conneau et al., 2020) and then score
all combinations of hypothesis pairs in parallel.

4.4 Evaluation Data
We decide to use the test sets from the WMT 2021
news shared task (Akhbardeh et al., 2021) as our
evaluation data. This dataset brings two major ben-
efits to our analysis:

• In the de↔en directions, it provides at least
two references for every source sentence. This

3https://github.com/Roxot/mbr-nmt
4Using all samples does not affect our results.
5Using floor smoothing with a smoothing value of 0.1.
6https://github.com/Unbabel/COMET

allows us to compare how much MBR scores
differ between two equivalent human transla-
tion alternatives as a reference point.

• This dataset was not part of the train-
ing data of the wmt20-comet-da and
wmt21-comet-mqm COMET models
which avoids the risk that the models
have seen scores for similarly erroneous
translations of these source sentences before.

There are 1000 sentence triplets (source, two
human translations) for de→en where we use trans-
lation A as our reference and translation B as an
alternative translation and 1002 sentence triplets for
en→de where we use translation C as our reference
and translation D as an alternative translation.

5 Exploration of MBR-Decoded Outputs

We employ sampling-based MBR decoding as a
strategy to identify weaknesses in evaluation met-
rics that are used as utility functions. We believe
that – in addition to general errors – we may also
find other errors that can stem from two sources:

First, since samples are often of lower quality
than hypotheses produced with beam search, neural
metrics may behave unexpectedly when faced with
errors that occur less frequently in beam search
based machine translation outputs on which they
were trained. Second, in MBR decoding, we com-
pare a candidate translation hypothesis to a pseudo-
reference (another hypothesis) instead of an actual
reference. This is also something neural metrics
were neither trained on nor designed to do.

We are most interested in general errors and er-
rors of the first type since the second type is only
relevant for MBR decoding itself. Therefore, we
conduct additional experiments in Section 6 to dis-
tinguish between these two sources for the errors
we identify below. Note that errors of the second
type may become more important to investigate
as MBR decoding becomes more prevalent or if
we evaluate against multiple translation hypotheses
instead of references (Fomicheva et al., 2020).

In our experiments, we first manually compare
MBR-decoded outputs that were chosen with two
different evaluation metrics as the utility function:
chrF++ and COMET. For COMET, we notice sev-
eral cases where the chosen hypothesis contains
numbers and named entities that do not match with
the source and the reference, even though the major-
ity of samples in the support set contain the correct

https://github.com/Roxot/mbr-nmt
https://github.com/Unbabel/COMET
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Numbers Named Entities

de-en en-de de-en en-de

reference 93.24 93.46 n/a n/a

alternative 94.83 + 1.59 95.66 + 2.20 73.73 77.66

beam search 95.91 + 2.67 95.73 + 2.27 71.55 - 2.18 70.03 - 7.63

MBR chrF++ 91.22 - 2.02 93.43 - 0.03 67.59 - 6.14 62.44 -15.22

MBR bleu 93.88 + 0.64 91.37 - 2.09 65.14 - 8.59 62.50 -15.16

MBR wmt20-comet-da 90.34 - 2.90 89.14 - 4.32 65.33 - 8.40 54.17 -23.49

MBR wmt21-comet-mqm 82.35 -10.89 77.10 -16.36 58.15 -15.58 53.31 -24.35

MBR retrain-comet-da 92.65 - 0.59 90.17 - 3.29 66.48 - 7.25 60.48 -17.18

Table 2: Results of the automatic evaluation. F1-scores (%) for number and named entity matches and F1-score
changes compared to the reference for numbers and alternative translation for named entities. F1-scores that
increased after retraining COMET are marked in green.

numbers and named entities. Two examples are
shown in Table 1.

To test if these findings apply at scale, we run
an automatic evaluation. For numbers, we use reg-
ular expressions to identify numbers in the MBR-
decoded outputs. We measure the overlap between
numbers in the source and the translation with the
F1-score. We decide to compare to the source to
be able to compute the overlaps for the reference
and the alternative human translation as well. The
results can be seen in the left part of Table 2. For
named entities, we use spaCy7 (Honnibal et al.,
2020) to identify entities of type “person”. Here,
we compute the F1-scores to measure the overlap to
the reference rather than to the source (as done for
numbers) since the named entity recognition (NER)
models are different for English and German. The
results are shown in Table 2 on the right.

These simple automatic “gold” annotations pro-
duce false positives8, which explains why neither
the reference nor the alternative reference (for
named entities) achieves an F1-score of 100%.
However, this approximate method is sufficient to
expose the large gap between the reference transla-
tion, the beam search output, and the output with
MBR decoding with surface-level metrics and with
COMET. We perform a manual error analysis of
all numbers that our evaluation script identifies as
errors for the MBR decoded outputs. The false
positive rate is similar for all three utility func-

7English: en_core_web_lg, German: de_core_news_lg
8For example, translating “3 pm” in the source to “15:00”

is a valid translation, but would be counted as a mistake with
the automatic number matching. Similarly, numbers translated
as numerals are counted as errors, e.g. “15” and “fifteen”.

tions: Around 3% of all numbers that occur ei-
ther in the source or the translation are mistak-
enly identified as number mismatches. In contrast,
the percentage of genuine errors increases: MBR
bleu has a true negative rate of 4.4%, MBR chrF++
of 4.6%, MBR wmt20-comet-da of 7.2% and
MBR wmt21-comet-mqm of 16.6% (computed
jointly over de↔en). Thus, the wide gap caused
with COMET as the utility function is due to gen-
uine number mismatches, not paraphrasing.

Consequently, these results indicate that MBR
decoding with the COMET metrics chooses more
erroneous translations with respect to these crite-
ria than with the two non-neural metrics or com-
pared to beam search decoding. Interestingly, the
wmt21-comet-mqm model performs consider-
ably worse than the wmt20-comet-da model in
this analysis. Oracle experiments where we choose
the sample closest to the two references according
to different metrics (see Appendix B) show smaller
F1-score differences between both COMET mod-
els and the non-neural metrics but they still perform
worse, particularly compared to chrF++.

It is worth noting that the beam search output has
the highest F1-score of all tested decoding strate-
gies. This suggests that mistranslations of numbers
and named entities do not occur as frequently in
beam search outputs and COMET’s insensitivity
to numbers and named entities could therefore be
less harmful when evaluating beam search outputs.
However, Wang et al. (2021) recently showed that
state-of-the-art research models and commercial
NMT systems still struggle with numerical transla-
tions even when decoding with beam search. Such
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mistranslations may also occur more frequently in
out-of-domain and low-resource settings and there-
fore, we argue that this insensitivity of COMET is
not only harmful for sampling-based MBR decod-
ing but also when evaluating beam search output.

This automatic evaluation has strengthened the
findings in our manual exploration that wrong
number and named entity translations are recur-
ring problems. To better quantify how sensitive
COMET models are toward these error types, we
propose to perform an MBR-based sensitivity anal-
ysis in the next section.

6 MBR-Based Sensitivity Analysis

Our findings in the previous section stand in con-
trast to the corrupted reference analysis performed
as part of the WMT 2021 metrics shared task (Fre-
itag et al., 2021b) where COMET mostly preferred
the correct alternative human translation to one
with swapped numbers when comparing to the ref-
erence. In reality, we will seldom have a hypothesis
pool with a perfect translation and variants of it that
only differ in one aspect. Ideally, evaluation met-
rics should be able to order translation hypotheses
with many different error types according to their
severity. Therefore, it makes sense to compare how
much metrics punish different error types.

Since our previous analysis showed that many
samples with number and named entity mismatches
are chosen in MBR decoding, this indicates that
COMET is not as sensitive to these error types as to
other errors. To further support this finding, we pro-
pose to look more closely at how COMET behaves
with different error types. As described in Section
3, in MBR decoding, every candidate translation is
assigned a score that represents the average simi-
larity to the support hypotheses. Consequently, if
the support is kept constant and a targeted change
is made to a candidate translation, the difference in
this MBR score indicates how sensitive the utility
function was towards this change. We term this an
“MBR-based sensitivity analysis”.

To measure COMET’s sensitivity towards
changes in numbers and named entities, we cre-
ate a candidate pool that consists of the reference
translation and several changed variants. Note that
the support still contains the same 100 samples
that were used to find the MBR-decoded outputs
described in Section 5. In particular, we make the
following targeted changes to the reference to mea-
sure the sensitivity towards each change:

• numadd: one digit is added to a number at a
random position.

• numdel: one digit is removed from a number
at a random position.

• numsub: one digit is substituted with another
digit in a number at a random position.

• numwhole: one entire number is substituted
with another number.

• NEadd: one letter is added to a named entity
at a random position.

• NEdel: one letter is removed from a named
entity at a random position.

• NEsub: one letter is substituted with another
letter in a named entity at a random position.

• NEwhole: a named entity is substituted with
another named entity.

As reference points, we also apply the same
types of changes to random nouns in the reference:

• nounadd: one letter is added to a random noun
at a random position.

• noundel: one letter is removed from a random
noun at a random position.

• nounsub: one letter is substituted with another
letter in a random noun at a random position.

• nounwhole: a random noun is substituted with
another noun.

Additionally, our candidate pool contains the
following hypotheses to be used as controls:

• alternative: the second human reference pro-
vided as part of the WMT 2021 news shared
task simulating an alternative translation.

• copy: the original, unchanged source sentence
simulating a model that simply copied the
source to the decoder side.

• hallucination: a sentence that is completely
unrelated to the source and randomly picked
from a larger corpus.

We use the same tools to identify numbers and
named entities as in Section 5 to create these per-
turbations of the reference. For each newly cre-
ated candidate, we compute the difference to the
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Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -0.047 -0.054 -0.255 -0.086 -0.101 -0.385 altern. 0.022
del -0.048 -0.044 -0.214 -0.085 -0.079 -0.314 copy -0.593 -0.472
sub -0.024 -0.056 -0.270 -0.041 -0.119 -0.410 hallucin. -1.277 -1.907

whole -0.064 -0.122 -0.320 -0.111 -0.212 -0.496

en-de

add -0.024 -0.053 -0.160 -0.057 -0.108 -0.257 altern. -0.014
del -0.037 -0.044 -0.113 -0.063 -0.078 -0.215 copy -1.449 -1.350
sub -0.011 -0.064 -0.180 -0.019 -0.113 -0.295 hallucin. -1.560 -2.055

whole -0.040 -0.103 -0.347 -0.079 -0.173 -0.509

average -0.037 -0.068 -0.232 -0.068 -0.123 -0.360

Table 3: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named
entity (NE) compared to the controls (alternative translation, copy of the source or hallucination). The numbers
show the average difference to the MBR score for the reference (left) and 1-best beam search output (right) when
using wmt20-comet-da as the utility function. Red means the sensitivity for random nouns is larger than for
both numbers and named entities.

MBR score of the reference. We then average
those differences across sentences for each pertur-
bation type. The results for the sensitivity analysis
with the wmt20-comet-da model can be seen
in the left part of Table 3. We focus here on the
wmt20-comet-da model since this is currently
the model the authors recommend to use.9

The controls, i.e. alternative translation, copied
sentence and hallucination, behave as expected.
The MBR score difference to the hallucination is
by far the largest, followed by the copied source.
For the alternative reference, we see the smallest
MBR score difference.10 More importantly, all tar-
geted changes to numbers or named entities result
in a much smaller difference in MBR score com-
pared to changes to the random nouns. This shows
that COMET is not as sensitive to such discrep-
ancies as it should be since such mistranslations
can drastically alter the meaning. Both BLEU and
chrF++ are more sensitive to changes to numbers
and named entities than to random nouns (see Ap-
pendix C).

Following our discussion of error sources at the
beginning of Section 5, it is a valid concern that if
we were to compare the candidates to high-quality
support translations rather than samples, COMET
may be more sensitive toward number and named

9https://github.com/Unbabel/COMET/
blob/master/METRICS.md

10Note that this is due to averaging over sentences where
the alternative sometimes gets a higher, sometimes a lower
score. The average absolute difference is 0.111 which shows
that the difference to the alternative of an individual sentence
can be much larger.

entity differences as there would be fewer other dis-
crepancies between the candidates and the support.
To test if this is the case, we repeat the sensitivity
analysis but now use the two alternative references
as the support instead of the 100 samples that were
used before. The candidates are formed by apply-
ing the same perturbations as before to the 1-best
beam search output instead of the reference. This
mimics an oracle setup. The results for this experi-
ment are shown in the middle of Table 3. Note that
we cannot compare to an alternative translation for
the beam search output in this setup.

The differences in the MBR score of the unper-
turbed beam search output are generally larger in
this setup, which indicates that COMET is indeed
more sensitive to errors when used as intended,
i.e. with high-quality translations and correct refer-
ences. However, we can still see that the perturba-
tions made to random nouns result in much larger
differences than perturbations made to numbers or
named entities. This indicates that the problem
cannot be attributed to the MBR decoding setting
and low-quality pseudo-references alone.

7 COMET Retraining

One possible explanation for the low sensitivity of
COMET to perturbations of numbers and named
entities is that these errors are too rare in the WMT
outputs used to train COMET. We decide to retrain
COMET on the original training data plus added
synthetic data on which we perform the same per-
turbations as described in Section 6. The idea is
that the newly trained model is more sensitive to-

https://github.com/Unbabel/COMET/blob/master/METRICS.md
https://github.com/Unbabel/COMET/blob/master/METRICS.md
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Figure 1: Difference in sensitivity to the same error type applied to a random noun for the de-en test set with
samples as support. Comparing the original wmt20-comet-da to three retrained models, with different amounts
subtracted from the original score for synthetic examples (-0.2, -0.5 and -0.8).

ward named entity or number mismatches between
the translation and its reference and/or source.

To retrain the wmt20-comet-da model, we
use the data from the WMT metrics shared tasks
collected in the years 2017 to 2019 (Bojar et al.,
2017; Ma et al., 2018, 2019) as training data. For
every de→en or en→de system output that contains
a number or a named entity, we randomly apply one
of the perturbations described in Section 6 (except
for the perturbations of random nouns and whole
named entities). To encourage COMET to punish
such synthetically inserted mismatches, we modify
the scores of the original examples by subtracting a
penalty from the z-score of the Direct Assessment
(DA) score. We retrain three different models with
penalties of -0.2, -0.5 and -0.8 respectively. Within
every experiment, the penalty is the same for all
error classes. The resulting ∼61k synthetic training
examples are then added to the ∼640k original
examples which means that roughly 10% of the
data are synthetic.11

We follow the hyperparameter suggestions in
Rei et al. (2020b) for retraining COMET but we
do not perform model averaging. The models are
trained for two epochs and the hyperparameters are
listed in Appendix A. We ensure that the retrained
models still perform as well as the original model
on the WMT 2020 metrics shared task (Mathur
et al., 2020). The average difference in system-
level Pearson correlation to the original COMET
model lies within 0.006 for all three penalties. The
full results can be found in Appendix F.

11We also trained models with larger amounts of synthetic
data but did not see an improvement (see Appendix E).

The effects of retraining with different penalties
can be seen in Figure 1 (tables in Appendix D).
Subtracting -0.2 from the original scores for syn-
thetic examples can slightly reduce the difference
between the MBR scores for numbers / named en-
tities and random nouns with the same error types.
Retraining with -0.5 subtracted from the original
score improves this further but still cannot close
this gap completely. With a penalty of -0.8, we now
see a larger sensitivity to numbers and named en-
tities than to random nouns for several error types.
However, the difference to random nouns is still
rather high for substituting a digit in numbers.

When repeating the automatic analysis from Sec-
tion 5 with the penalty -0.8 model, we see that
retraining does improve the F1-scores (see last row
in Table 2). However, the retrained COMET model
can still not beat non-neural utility functions which
indicates that it is still less sensitive to mismatches
in numbers and named entities.

From this experiment, we conclude that remov-
ing such blind spots from COMET - once identified
- might need more effort than simply training on
additional synthetic data. We hypothesise is that
the XLM-R component learns very similar repre-
sentations for numbers and rare words like named
entities during pretraining which could be hard to
reverse with finetuning only. Lin et al. (2020) show
that pretrained language models are surprisingly
bad at guessing the correct number from context
(e.g. "A bird usually has [MASK] legs.") which
supports this hypothesis. Several other works also
find that task-specific models often struggle with
numbers and named entities such as in summari-
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sation (Zhao et al., 2020) or question answering
(Dua et al., 2019; Kim et al., 2021). We leave a
more extensive analysis of biases in the human
evaluation training data (e.g. unpunished number
mismatches) and further experiments on weakness-
targeted training for future work.

8 Conclusion

Identifying weaknesses of neural machine transla-
tion evaluation metrics becomes more important
as these essentially “black box” evaluation tools
become more popular and are optimised towards
during model development. We show that MBR
decoding can be used to explore biases of such met-
rics. Through a case study, we show that COMET
is relatively insensitive to mistranslated numbers
and named entities. This can be seen both in the
MBR-decoded output which contains a higher num-
ber of these errors compared to beam search (or
MBR with other utility functions) and in an MBR-
based sensitivity analysis which compares the dif-
ferences in MBR scores that arise when such errors
are introduced to a candidate translation. We also
show that this insensitivity is not simply the result
of insufficient training data containing such errors:
retraining COMET with additional synthetic data
did not fully alleviate this weakness.

While errors related to number and named en-
tity translation were very salient in our exploration,
we do not claim that this case study is exhaustive.
In our manual analysis, we also see anecdotal ev-
idence of polarity errors and nonsensical German
compounds. We hope our findings motivate further
research into identifying and mitigating biases of
neural machine translation metrics – we envision
that actively searching for biases in neural metrics,
for example by using them as utility functions in
MBR, could become an important step during met-
ric development.
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Limitations

We limited our analysis in this work to the en↔de
translation directions and one machine translation
evaluation metric, namely COMET. Consequently,
we cannot draw any conclusions on whether the
identified weaknesses are specific to COMET or
also apply to other neural machine translation eval-
uation metrics and language pairs. We leave such
exploration for future work. While our approach
for identifying weaknesses in evaluation metrics
is readily applicable to other surface-level or neu-
ral metrics, the runtime for MBR decoding can
explode if the similarity computation cannot be
parallelised or the size of the sample pool is in-
creased. However, since our proposed approach is
a tool for metric analysis and is not intended to be
run regularly, we believe an increased runtime is
not obstructive.

Another limitation is that we do not use a state-
of-the-art machine translation model (in terms of
data size) to generate the samples for our metric
analysis. This does, however, not limit our findings
that COMET is not as sensitive to number and
named entity differences as it should be. Even
if machine translation models may produce fewer
mistakes of this nature in the future, eliminating
such weaknesses remains relevant, for example, if
COMET is used for Minimum Risk Training.

Finally, while our experiments indicate that
weaknesses related to number and named entity
changes cannot easily be eliminated by retraining
on synthetic data, alternative strategies to create or
retrain on synthetic data may be more successful.
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A Hyperparameters for COMET
Retraining

We list all hyperparameters used for training
the retrain-comet-da models with different
penalties in Tables 4. Each model was trained on 1
NVIDIA Tesla V100 GPU.

Hyperparameter Value

nr_frozen_epochs 1
keep_embeddings_frozen True
optimizer Adam
encoder_learning_rate 1.0e-05
learning_rate 3.0e-05
layerwise_decay 0.95
encoder_model XLM-RoBERTa
pretrained_model xlm-roberta-large
pool avg
layer mix
dropout 0.1
batch_size 2
accumulate_grad_batches 8
hidden_sizes 3072, 1536
load_weights_from_checkpoint null
min_epochs 2
max_epochs 2

Table 4: Hyperparameters used to retrain
wmt20-comet-da.

B Oracle Results for Automatic Analysis

In MBR, we use machine translation metrics in
an unintended way since we compare translation
hypotheses against other hypotheses rather than a
reference translation. To check if the results for
the COMET models in our automatic analysis stem
from this train-test mismatch, we also run an oracle
experiment. Rather than comparing all samples
against each other with MBR, we choose the sam-
ple that is most similar to the human reference
translations. The results can be seen in Table 5.
Most error rates are better in the oracle setup com-
pared to the MBR setup. Especially, the error rates
for the COMET models are now closer to the non-
neural metrics. However, the gap to chrF++ is still
rather large, especially for named entities.

C MBR-based Sensitivity Analysis for
BLEU and chrF++

The MBR-based sensitivity analysis can also be
used to compare COMET to non-neural metrics.
The results when using BLEU or chrF++ as the util-
ity function can be seen in Table 6 and Table 7 re-

spectively. We can see that with BLEU the changes
made to random nouns result in smaller MBR dif-
ferences than changes to numbers or named entities.
For chrf++, the changes to random nouns result in
smaller MBR differences than changes to named
entities but slightly larger differences than changes
to numbers. The cause for this may be that num-
bers are often shorter than named entities or nouns
and a change will affect fewer n-grams. For ran-
dom nouns, there may be many possible alternative
translations in the samples and the references. If
the random noun does not occur in the sentence
we compare to, making a change to it will not af-
fect the BLEU score and only partially the chrF++
score which can explain these results.

D Retraining with Different Penalties

Tables 8, 9, 10 show the results of the sensitivity
analysis for the retrained models with penalties
of -0.2, -0.5 and -0.8 respectively. The difference
between the sensitivity scores for numbers / named
entities and for random nouns becomes smaller as
the penalty increases. With a penalty of -0.8, we see
that for most error types the sensitivity scores for
random nouns are either lower than either (blue) or
both (green) for numbers and named entities. Note
that the differences in MBR score compared to the
reference (left) and the 1-best beam search output
(right) also become larger as the penalties increase.
However, this does not affect on the models’ ability
to score real translations as we confirm in Section
F.

E Retraining with Different Amounts of
Synthetic Data

Aside from varying the penalties for retraining
COMET (see Appendix D), we can also vary
the amount of synthetic data. Using the best
performing penalty from before (0.8), we run
experiments with 0%, 10%, 25%, 40%, 55%,
70%, 85% and 100% synthetic data for retraining
COMET. Note that 0% corresponds to the original
wmt20-comet-da model and 10% corresponds
to retrain-comet-da in the main paper ex-
periments. We evaluate these models based on two
factors: 1) the average difference in sensitivity be-
tween the number and named entity error types
and the random nouns (corresponding to an aver-
age over the individual columns in Figure 1) and
2) the change in Pearson correlation compared to
wmt20-comet-da. The first measure indicates
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Numbers Named Entities

de-en en-de de-en en-de

reference 93.24 93.46 n/a n/a

alternative 94.83 + 1.59 95.66 + 2.20 73.73 77.66

beam search 95.91 + 2.67 95.73 + 2.27 71.55 - 2.18 70.03 - 7.63

Oracle chrF++ 91.91 - 1.33 93.64 + 0.18 69.54 - 4.19 63.59 -14.07

Oracle bleu 90.77 - 2.47 92.05 - 1.41 65.73 - 8.00 60.16 -17.50

Oracle wmt20-comet-da 90.83 - 2.41 88.79 - 4.67 65.64 - 8.09 56.41 -21.25

Oracle wmt21-comet-mqm 91.35 - 1.89 86.01 - 7.45 64.75 - 8.98 55.98 -21.68

Table 5: Results of the automatic evaluation. “Oracle” means choosing the sample closest to the two reference
translations. F1-scores (%) for numbers and named entities and F1-score changes compared to the reference for
numbers and alternative translation for named entities.

Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -1.80 -1.80 -1.20 -4.92 -5.62 -4.41 altern. 1.11
del -1.70 -1.79 -1.20 -4.84 -5.62 -4.41 copy -5.87 -21.43
sub -1.78 -1.84 -1.19 -5.10 -5.78 -4.44 hallucin. -6.71 -22.75

whole -1.80 -2.28 -1.25 -4.92 -6.64 -4.46

en-de

add -1.62 -1.41 -0.88 -4.10 -3.56 -2.73 altern. -0.33
del -1.65 -1.37 -0.88 -4.24 -3.58 -2.73 copy -6.02 -20.06
sub -1.57 -1.41 -0.86 -4.09 -3.71 -2.75 hallucin. -6.71 -21.14

whole -1.62 -1.72 -0.90 -4.10 -4.41 -2.79

average -1.69 -1.70 -1.05 -4.54 -4.87 -3.59

Table 6: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named entity
(NE). Average difference to MBR score for reference (left) and 1-best beam search output (right) when using BLEU
as the utility function. Green means both numbers and named entities have higher sensitivity than random nouns.

Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -1.18 -1.66 -1.20 -2.18 -2.91 -2.55 altern. 0.32
del -1.52 -1.99 -1.41 -2.53 -3.30 -2.94 copy -17.18 -32.94
sub -1.54 -2.00 -1.47 -2.74 -3.53 -3.07 hallucin. -22.82 -43.39

whole -1.91 -4.85 -2.50 -3.25 -8.57 -5.27

en-de

add -0.88 -1.25 -0.80 -2.28 -2.04 -1.52 altern. -0.73
del -1.10 -1.47 -0.94 -1.89 -2.37 -1.78 copy -19.13 -32.68
sub -1.08 -1.51 -0.96 -1.87 -2.44 -1.81 hallucin. -24.96 -42.11

whole -1.33 -3.72 -1.98 -2.28 -5.81 -3.68

average -1.32 -2.31 -1.41 -2.38 -3.87 -2.83

Table 7: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named
entity (NE). Average difference to MBR score for reference (left) and 1-best beam search output (right) when using
chrf++ as the utility function. chrf++ scores are mapped to 0-100 scale for better comparison to BLEU. Green
means both numbers and named entities have higher sensitivity than random nouns, blue means at least one is higher
than random nouns.
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Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -0.059 -0.067 -0.230 -0.116 -0.135 -0.386 altern. 0.021
del -0.048 -0.053 -0.199 -0.092 -0.105 -0.326 copy -0.778 -0.690
sub -0.028 -0.065 -0.242 -0.054 -0.146 -0.403 hallucin. -1.081 -1.720

whole -0.082 -0.127 -0.287 -0.151 -0.250 -0.493

en-de

add -0.040 -0.044 -0.153 -0.083 -0.107 -0.260 altern. -0.015
del -0.046 -0.038 -0.117 -0.080 -0.083 -0.211 copy -1.513 -1.625
sub -0.015 -0.051 -0.169 -0.034 -0.111 -0.277 hallucin. -1.402 -1.891

whole -0.055 -0.106 -0.353 -0.109 -0.197 -0.541

average -0.047 -0.069 -0.219 -0.090 -0.108 -0.362

Table 8: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named entity
(NE) compared to the controls (alternative translation, copy of the source or hallucination). The numbers show
the average difference to the MBR score for the reference (left) and 1-best beam search output (right) when using
retrain-comet-da with a penalty of -0.2 as the utility function. Red means the sensitivity for random nouns
is larger than for both numbers and named entities.
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Figure 2: The average difference in sensitivity between
the noun/named entity error categories and their cor-
responding random noun error categories. The x-axis
shows how the difference changes as the amount of syn-
thetic data is increased.

how the retrained models’ sensitivity to numbers
and named entities changes compared to random
nouns with increased synthetic data. The second
measure shows whether an increased amount of
synthetic data reduces the agreement with human
judgements (this is computed as described in Ap-
pendix F).

Figure 2 shows that with an increased percentage
of synthetic data, the difference between sensitivity
towards nouns and named entities and towards ran-
dom noun changes first becomes smaller (at 10%
synthetic). When we further increase the amount
of synthetic data, this improvement gradually de-
creases as the model sees less and less contrasting
examples and more and more only examples with
number mismatches.

Increasing the amount of synthetic data during
retraining also has an effect on the correlation with
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Figure 3: The correlation with human judgements evalu-
ated as described in Appendix F. The x-axis shows how
the correlation changes as the amount of synthetic data
is increased.

human judgements. We show this in Figure 3. Sim-
ilarly to the difference in sensitivity, the correlation
with human judgements also improves with small
amounts of synthetic data (10% and 25%) but then
decreases slowly as the amount of synthetic data
is increased further. These additional experiments
show that using 10% of synthetic data is a sensible
choice for our main experiments.

F Correlation with Human Evaluators

We use our retrained retrain-comet-da mod-
els to score all systems that are part of the WMT
2020 metrics shared task evaluation (Mathur et al.,
2020).12 Then, we use the official evaluation
script13 from the WMT 2020 shared task to com-

12We run the run_ref_metrics.sh script provided
at https://drive.google.com/drive/folders/
1n_alr6WFQZfw4dcAmyxow4V8FC67XD8p

13https://github.com/WMT-Metrics-task/
wmt20-metrics

https://drive.google.com/drive/folders/1n_alr6WFQZfw4dcAmyxow4V8FC67XD8p
https://drive.google.com/drive/folders/1n_alr6WFQZfw4dcAmyxow4V8FC67XD8p
https://github.com/WMT-Metrics-task/wmt20-metrics
https://github.com/WMT-Metrics-task/wmt20-metrics
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Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -0.243 -0.229 -0.337 -0.417 -0.382 -0.523 altern. 0.026
del -0.217 -0.180 -0.261 -0.380 -0.295 -0.410 copy -0.471 -0.409
sub -0.152 -0.223 -0.347 -0.256 -0.402 -0.542 hallucin. -1.076 -1.724

whole -0.312 -0.197 -0.320 -0.529 -0.374 -0.521

en-de

add -0.224 -0.210 -0.231 -0.405 -0.379 -0.379 altern. -0.017
del -0.197 -0.156 -0.148 -0.319 -0.261 -0.262 copy -1.142 -1.133
sub -0.129 -0.196 -0.250 -0.213 -0.352 -0.392 hallucin. -1.370 -1.895

whole -0.275 -0.196 -0.339 -0.493 -0.351 -0.516

average -0.219 -0.198 -0.279 -0.377 -0.350 -0.511

Table 9: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named entity
(NE) compared to the controls (alternative translation, copy of the source or hallucination). The numbers show
the average difference to the MBR score for the reference (left) and 1-best beam search output (right) when using
retrain-comet-da with a penalty of -0.5 as the utility function. Red means the sensitivity for random nouns
is larger than for both numbers and named entities, blue means at least one is higher than random nouns and green
means both numbers and named entities have higher sensitivity than random nouns.

pute the system-level Pearson correlation for our
retrained models. The results can be seen in Ta-
ble 11. We also ensure that evaluation setup re-
sults in the same scores as in the WMT 2020
publication (Mathur et al., 2020) when we use
wmt20-comet-da to score the systems. For
most language pairs, all models reach an almost
identical correlation with human assessments.
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Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -0.435 -0.412 -0.401 -0.706 -0.687 -0.617 altern. 0.024
del -0.385 -0.331 -0.293 -0.655 -0.526 -0.450 copy -0.306 -0.234
sub -0.305 -0.547 -0.394 -0.472 -0.667 -0.614 hallucin. -1.225 -1.962

whole -0.547 -0.267 -0.320 -0.889 -0.495 -0.539

en-de

add -0.381 -0.337 -0.337 -0.657 -0.635 -0.575 altern. -0.015
del -0.355 -0.254 -0.230 -0.614 -0.457 -0.402 copy -0.852 -0.755
sub -0.264 -0.322 -0.351 -0.437 -0.585 -0.570 hallucin. -1.498 -2.046

whole -0.470 -0.271 -0.370 -0.827 -0.484 -0.550

average -0.393 -0.343 -0.337 -0.657 -0.567 -0.540

Table 10: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named
entity (NE) compared to the controls (alternative translation, copy of the source or hallucination). The numbers
show the average difference to the MBR score for the reference (left) and 1-best beam search output (right) when
using retrain-comet-da with a penalty of -0.8 as the utility function. Red means the sensitivity for random
nouns is larger than for both numbers and named entities, blue means at least one is higher than random nouns and
green means both numbers and named entities have higher sensitivity than random nouns.

wmt20-comet-da retrain-comet-da

-0.2 -0.5 -0.8

en-cs 0.978 0.981 0.981 0.981

en-de 0.972 0.971 0.965 0.963

en-ja 0.974 0.987 0.974 0.982

en-pl 0.981 0.983 0.985 0.983

en-ru 0.925 0.863 0.900 0.918

en-ta 0.944 0.948 0.949 0.954

en-zh 0.007 0.026 0.034 0.049

en-iu 0.860 0.861 0.851 0.873

cs-en 0.783 0.799 0.798 0.808

de-en 0.998 0.996 0.995 0.997

ja-en 0.964 0.966 0.968 0.968

pl-en 0.591 0.570 0.570 0.563

ru-en 0.923 0.924 0.921 0.925

ta-en 0.880 0.888 0.887 0.890

zh-en 0.952 0.952 0.942 0.951

iu-en 0.852 0.878 0.866 0.880

km-en 0.971 0.981 0.981 0.974

ps-en 0.941 0.951 0.949 0.945

avg diff +0.0016 -0.0006 +0.0060

Table 11: Pearson correlation of to-and-from-English system-level COMET scores with DA human assessments.
Last row shows the average difference to the original wmt20-comet-damodel. Results with wmt20-comet-da
corresponding to “COMET” in Tables 5 and 6 in Mathur et al. (2020).


