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Abstract

Existing self-supervised learning strategies are

constrained to either a limited set of objec-

tives or generic downstream tasks that predom-

inantly target uni-modal applications. This

has isolated progress for imperative multi-

modal applications that are diverse in terms

of complexity and domain-affinity, such as

meme analysis. Here, we introduce two

self-supervised pre-training methods, namely

Ext-PIE-Net and MM-SimCLR that (i) em-

ploy off-the-shelf multi-modal hate-speech

data during pre-training and (ii) perform self-

supervised learning by incorporating multiple

specialized pretext tasks, effectively catering

to the required complex multi-modal represen-

tation learning for meme analysis.

We experiment with different self-supervision

strategies, including potential variants that

could help learn rich cross-modality repre-

sentations and evaluate using popular linear

probing on the Hateful Memes task. The

proposed solutions strongly compete with the

fully supervised baseline via label-efficient

training while distinctly outperforming them

on all three tasks of the Memotion challenge

with 0.18%, 23.64%, and 0.93% performance

gain, respectively. Further, we demonstrate

the generalizability of the proposed solutions

by reporting competitive performance on the

HarMeme task. Finally, we empirically es-

tablish the quality of the learned representa-

tions by analyzing task-specific learning, us-

ing fewer labeled training samples, and argu-

ing that the complexity of the self-supervision

strategy and downstream task at hand are cor-

related. Our efforts highlight the requirement

of better multi-modal self-supervision meth-

ods involving specialized pretext tasks for ef-

ficient fine-tuning and generalizable perfor-

mance.

1 Introduction

The overwhelming scale of digital mutation con-

stantly transpiring over the web is “creating the

illusion of reality, addressing the viewer, and rep-

resenting a convoluted space" (Manovich, 2001).

Almost every social activity affects or is affected by

an online entity, sometimes even disturbing social

harmony, influenced by a prominent surge of multi-

modal harmful, abusive and hateful online content.

Therefore, it is imperative to explore solutions to-

wards automatic mediation of online activities that

pre-dominantly involve multi-modality. Recently,

there has been a defining resurgence of advance-

ments in multi-modal AI, albeit slowly.

Existing self-supervision strategies for visual-

linguistic applications involve different pretext

tasks like Masked Language Modeling (MLM)

(Devlin et al., 2019), Masked Region Modeling

(MRM) (Chen et al., 2020b), Word-Region Align-

ment (WRA) (Gupta et al., 2017), and Image-

Text Matching (ITM) (Li et al., 2019a; Radford

et al., 2021), which inherently presume visual-

linguistic grounding (Karpathy and Fei-Fei, 2017).

As a consequence, the large-scale datasets like MS

COCO (Lin et al., 2014), Conceptual Captions

(CC) (Sharma et al., 2018), Wikipedia-based Image

Text (WIT) (Srinivasan et al., 2021) and LAION-

400M (Birhane et al., 2021), curated towards the re-

quired pre-training, are either mostly generic in na-

ture or represent a greater degree of visual-semantic

association between the image and text pairs. More-

over, the required multi-modal datasets are rather

challenging to create, as they often require multi-

dimensional and fine-grained manual annotations

for a large volume of multi-modal data.

These frameworks have demonstrated impres-

sive pre-training schemes for addressing down-

stream multi-modal tasks like Visual Question

Answering (VQA), Image Captioning (IC), Vi-

sual Commonsense Reasoning (VCR), etc. (Mo-

gadala et al., 2021). Still, there is significant room

for improvement in terms of their generalizability.

For instance, besides masked language modelling

(MLM), state-of-the-art multi-modal models like
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Visual BERT, ViLBERT and LXMERT are pre-

trained wrt pretext tasks like sentence-image predic-

tion (Li et al., 2019b), masked multi-modal learn-

ing, multi-modal alignment prediction (Lu et al.,

2019a) and detected-label classification (Tan and

Bansal, 2019), which presume aspects like avail-

ability of multiple semantically grounded sentences

corresponding to an image and visual-semantic

object and pixel-level annotations for the images.

These requirements constrain modeling aspects for

multi-modal content like memes. Although such

approaches address the issue of scale and cross-

modal alignment in terms of common-sense rea-

soning extremely well, they tend to fall short on

performance for complex multi-modal tasks like

meme analysis (Chen et al., 2020a; Kiela et al.,

2020). This is because memes do not represent

strong visual-linguistic grounding and solicit so-

phisticated multi-modal fusion along with contex-

tual knowledge integration.

This paper presents the design and evaluation

of efficient multi-modal frameworks that do not

rely upon large-scale dataset curation and anno-

tation and can be pre-trained using the datasets

from the wild. Also, the pre-training employed is

optimally designed toward learning enriched multi-

modal representations, which can be further used

for addressing downstream tasks like meme analy-

sis in a label-efficient manner. Our contributions,

as enlisted below, are three-fold:

1. We propose two self-supervision-based multi-

modal pre-training frameworks which learn se-

mantically rich cross-modal features for meme

analysis.

2. We empirically establish the efficacy of the

proposed self-supervision frameworks towards

adapting to downstream tasks using only a few

labeled training samples.

3. We finally demonstrate the generalizability of

the representations learned across tasks and

datasets.1

2 Related Work

Self-supervised and Semi-supervised Learning:

Self-supervised learning approaches are formulated

to optimize training objectives that do not require

an explicit set of labels. They incorporate pretext

tasks to introduce pseudo-labels and learn embed-

ding space rather than solving a specific down-

1The source codes are uploaded as supplementary material.

stream task. One of the prominent pretext tasks

for pre-training language models is next word pre-

diction using a part of the sentence (Peters et al.,

2018). ALBERT (Lan et al., 2020) performs sen-

tence order prediction (SOP) to achieve a similar

objective.

Although self-supervision has taken long strides

for NLP applications, it has taken a while to show

promise for vision applications. A prominent se-

ries of work aims at optimizing the similarity be-

tween positive pairs of augmented representations

while reducing it for negative pairs (Oord et al.,

2018), (Chen et al., 2020a), also known as con-

trastive learning. A non-contrastive learning ap-

proach increases similarity with the previous ver-

sions of augmented views (Grill et al., 2020). Such

works have long been attempting to solve problems

about specific modalities only. We aim to learn

multi-modal embedding space enriched to solve

non-trivial downstream tasks.

Multi-modal Pre-training: Recently, Wang et al.

(2021) proposed a simple yet effective multi-modal

system with specialized convolution layers at the

beginning of the encoder and a textual decoder

as a follow-up. Other recent similar works include

DALL-E (Ramesh et al., 2021), a zero-shot, genera-

tive scalable Transformer that models multi-modal

information in an auto-regressive manner and is

conditioned on a textual query. This is followed

by CLIP, a contrastive learning-based model (Rad-

ford et al., 2021), which is pre-trained on 400 mil-

lion image-text pairs collected from different web-

based resources. The primary objective of such

efforts is to learn multi-modal embedding space

jointly. However, the datasets used to pre-train are

too generic to capture complex semantics. In this

work, we intend to examine such constraints and

their impact on the performance of multi-modal

systems.

Studies on Memes: Although the recent past has

witnessed an overwhelming amount of research re-

lated to memes, especially for topics like online

hate, harm, offense, abuse, etc. (Kiela et al., 2020;

Sharma et al., 2020), still, there are a wide array

of meme related tasks, that are yet to be addressed.

Kolawole (2015) explored the classification task

on a small dataset and with a linear SVM on low-

level descriptors, leveraging only visual informa-

tion. Significant efforts have been invested towards

meme generation by representing the meme im-

age and the catchphrase in the same vector space
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using a deep neural network (Kido Shimomoto

et al., 2019), leveraging pre-trained Inception-v3

network-based feature extraction. This was fur-

ther explored in (Peirson et al., 2018) for caption

generation and rule-based classification. The hu-

man assessment in this study outperformed random

choices. The quality, however, was below-par as

compared to human-produced memes. Efforts are

solicited wherein richer and more meaningful con-

tent modeling is achieved towards solving tasks

that conventional multi-modal approaches cannot.

3 Dataset

Pretraining: To address generalizability to-

wards an array of such topics, we employ the

MMHS150K dataset (Gomez et al., 2020) as our

primary data source for pre-training our proposed

systems. It consists of 150K multi-modal (images +

text) tweets spanning over four hate-inclined topics

– racism, sexism, homophobia, and religious extrem-

ism. Moreover, the images in the dataset represent

diversity with the presence of memes, morphed

images, satirical art, etc.

Besides this, to ensure that our pre-training

dataset reasonably represents the content type we

would evaluate as part of downstream tasks, we also

add the memes from the training split of the Face-

book’s Hateful Memes dataset (Kiela et al., 2020),

that we reserve exclusively for our pre-training.

Training and Evaluation: We employ three

datasets (Hateful Memes, Harm-P, and Mem-

otion) and five different tasks (hate detection,

harmfulness detection, sentiment analysis, emo-

tion classification, and emotion class quantifica-

tion) to demonstrate the efficacy of our proposed

approaches. The Harm-P dataset belongs to the

HarMeme task (Pramanick et al., 2021) and con-

sists of 3552 memes annotated with two labels –

harmful or not-harmful. The Memotion dataset

(Sharma et al., 2020) has approx. 8K memes

and defines three subtasks2 – sentiment analy-

sis (positive/negative), emotion classification (hu-

mour/sarcasm/offense/motivational), and emotion

class quantification (slightly/mildly/very). Al-

though these datasets are based on memes or multi-

modal content, their objectives are different and

2We use abbreviations SENT, EMOT and EMOT-Q for
sentiment analysis, emotion classification, and emotion class
quantification, respectively.

have varying complexities. 3.

We leverage a dataset that represents the raw,

unprocessed large-scale corpus of multi-modal

information, specifically emphasizing different

types of hate speech. We acknowledge that a la-

beling scheme initially accompanies the dataset

(MMHS150K). However, we do not utilize that in-

formation either during the pre-training stage or

during the task-specific fine-tuning stage. This

is also represented in the form of proposed loss

functions, which do not utilize source data labels

but solely rely on the intermediate neural repre-

sentations, hence self-supervised. Also, the un-

derlying presumption for utilizing such a dataset

(MMHS150K) in a self-supervised way is based on

the fact that the original dataset owners collected

it using a pre-defined set of database keywords

(Gomez et al., 2020), and this is all that one would

need to do to obtain such a dataset at scale towards

pre-training the models proposed. Also, no explicit

annotation process is required for pre-training MM-

SimCLR and Ext-PIE-Net. Now, as for the task-

specificity, we already showcase the performances

of the fully supervised systems that utilize fine-

tuning of the models, pre-trained using a generic

dataset. We propose the frameworks that, if pre-

trained using a "domain-oriented" dataset that can

be easily obtained, without any special annotations,

can quickly and in a label-efficient way adapt to

related downstream tasks.

4 Proposed Solution

We propose two methods: MM-SimCLR and Ext-

PIE-Net, that utilize adaptations of popular con-

trastive and triplet loss formulations for learning

multi-modal embedding space. Proposed solutions

also encapsulate specialized multi-modal pretext

tasks suited toward joint multi-modal representa-

tion learning. Before describing the proposed so-

lutions, we first review the two-loss formulations

below.

• SimCLR: The SimCLR framework (Chen

et al., 2020a), a popular self-supervision technique,

learns representations for images by maximizing

agreement between their augmented views in a la-

tent space. The objective function is defined as:

LNT-Xent
(i,j) = − log

exp(sim(zi, zj)/τ)∑2N
k=1 ✶[k 6=i] exp(sim(zi, zk)/τ)

(1)

where ✶[k 6=i] ∈ {0, 1} is an indicator function; zi

3We present further details like lexical characteristics and
text-length comparison for the datasets used in App. B.
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Figure 1: Solution architectures of multi-modal self-

supervision for memes. MM-SimCLR: Multi-modal

SimCLR (left); Ext-PIE-Net: Extended Pie-Net

(right).

and zj are the projections for augmented views i

and j, respectively; and τ is temperature.

• Hinge Loss: Conventionally, hinge loss has been

known to be applied to characterize optimization

in uni-modal vector space (Rosasco et al., 2003).

The formulation of the multi-modal hinge loss has

been employed in (Faghri et al., 2018). For a two-

modality system with u and v as modality-specific

representations in common space, a multi-modal

weighted hinge loss (LwHinge) is formulated using

a cosine similarity function s(·). It assumes a mar-

gin of α and clamps the value with a ReLU func-

tion. Moreover, the individual terms are weighted

by λu2v and λv2u before aggregation. This is ex-

pressed as follows:

LwHinge(u, v) = λu2v

∑

û

ReLU
(
α− s(u, v ) + s(û, v )

)

+ λv2u

∑

v̂

ReLU
(
α− s(u, v ) + s(u, v̂ )

)
(2)

MM-SimCLR: In our first approach, MM-

SimCLR, we integrate discriminative modeling

capacity, which leverages contrastive learning in

the latent space for images and a dedicated formu-

lation for a multi-modal setup. This is motivated

by (Zhang et al., 2020), which performs contrastive

learning between the medical images and their asso-

ciated texts. Their objective function L constitutes

two terms (ℓu→v
i and ℓv→u

i ) to maximize associa-

tion between image and text representations (ui and

vi). Both ui and vi are normalized to unit-vectors

before being incorporated into the loss terms. τ is

a scaling factor that controls the sensitivity of asso-

ciation, and λ controls the weight of the individual

term in the final equation. This is given by:

ℓv→u
i = − log

exp(〈vi, ui〉/τ)∑N

k=1 exp(〈vi, uk〉/τ)
(3)

ℓu→v
i = − log

exp(〈ui, vi〉/τ)∑N

k=1 exp(〈ui, vk〉/τ)
(4)

We will refer to this objective function as Multi-

modal InfoNCE loss in our work, given by:

LMMInfoNCE = −
1

N

N∑

i=1

(λℓu→v
i + (1− λ)ℓv→u

i ) (5)

Finally, we formulate a new objective function

for MM-SimCLR as the summation of SimCLR

(Eq. 1) and Multi-modal InfoNCE (Eq. 5) losses.

The overall process flow is shown in Fig. 1 (left).

L = LMMInfoNCE +

N∑

i=1

LNT-Xent
i (6)

Ext-PIE-Net: Inspired by PIE-Net (Song and

Soleymani, 2019), which is a diversity-inducing

visual-semantic embedding learning framework,

we propose Ext-PIE-Net, which optimizes an aug-

mented multi-modal objective function (in Eq. 7).

PIE-Net leverages a representation learning scheme

to cater to the lexical diversity within languages

via symmetric cross-modal loss formulations. On

the other hand, we augment such a formulation by

factoring in an additional loss term due to image-

specific contrastive loss. It essentially has three

major components – SimCLR LNT-Xent (Eq. 1) and

a pair of weighted hinge losses LwHinge (Eq. 2).

LNT-Xent optimizes the agreement between the aug-

mented multi-modal representations fi,1 and fi,2.

We compute these multi-modal representations us-

ing multi-headed co-attention between the textual

and visual representations. The intuition is to lever-

age the contrasting representations of the visual

and textual modalities.

We then fuse image views via max-pooling and

subsequently with the textual representation using

multi-headed co-attention. The obtained multi-

modal representation helps in computing modality-

reinforcing weighted hinge losses, LwHinge(ii, fi)
and LwHinge(ti, fi), w.r.t. the image (ii) and text

(ti) representations, respectively. The losses are

weighted by λf2f (= 0.6), λf2i (= 0.2) and λf2t
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(= 0.2) to compute the final loss L. Fig. 1 (right)

shows the Ext-PIE-Net framework.

L =

N∑

i

[
λf2f · LNT-Xent(fi,1, fi,2) + λf2i · L

wHinge(ii, fi)

+ λf2t · L
wHinge(ti, fi)

]
(7)

5 Experiments and Results

This section presents the evaluation strategy, de-

scription of systems examined, results of experi-

ments on self-supervision, and downstream eval-

uation. We first experiment with various self-

supervision strategies and then evaluate the rep-

resentations learned from best-performing systems

by evaluating different downstream tasks for label-

efficient supervised learning.4,5

To evaluate the representations learned through

pre-training, we employ the linear evaluation strat-

egy (Oord et al., 2018), which trains a linear classi-

fier with frozen base network parameters. This is

a popular strategy for assessing the quality of the

representations learned with a minimal predictive

modeling setup that facilitates a fair assessment of

the resulting inductive bias. The performance on

the test set implies the quality of the representations

learned. Since the primary focus of our work is self-

supervision for multi-modal applications, we em-

phasize our investigation and compare mainly with

the multi-modal state-of-the-art setups. Also, as we

motivate in the Introduction section, standardized

large-scale multi-modal datasets like MS-COCO,

CC, etc., used towards pre-training visual-linguistic

models like ViLBERT (Lu et al., 2019a) and Visual

BERT (Li et al., 2019b) incur significant develop-

ment cost, we mostly restrict our SSL+FT com-

parison either to the setups that can conveniently

leverage raw datasets like MMHS150K (Gomez

et al., 2020), which are conveniently accessible via

web (one of the primary motivations for this work),

or pre-trained and fine-tuned versions of ViLBERT

and Visual BERT. For comparison, we comply with

the respective works and compute accuracy values

for the Hateful Memes task and Macro-F1 scores

for the Memotion and HarMeme tasks and report

all the results by taking the average across five in-

dependent runs.

4We use abbreviations SL, SSL and FT for supervised,
self-supervised learning, and fine-tuning, respectively.

5Additional details of experiments, along-with hyperpa-
rameters explored are included as part of App. A.

5.1 Self-supervised Learning and Linear

Evaluation

Systems: We experiment with a few existing re-

lated approaches and different uni-modal and multi-

modal variants and compare self-supervised and

supervised learning frameworks for a comprehen-

sive assessment. We do not consider explicit pre-

training of models like Visual BERT and ViLBERT

within the scope of the current study because their

pre-training strategies are designed for explicitly

modeling visual-linguistic grounding. This can

constrain the self-supervised learning based upon

domain-aware pre-training, using a dataset from

the wild (WWW), which is a crucial aspect of our

study. However, we do compare the SSL+FT sys-

tems with completely fine-tuned and pre-trained

checkpoints of Visual BERT (MS-COCO) and ViL-

BERT (CC) systems. The details of these systems

are enlisted as follows: • SimCLR (Chen et al.,

2020a): The framework focuses on incentivizing

the agreement between similar image views. •
VSE++ (Faghri et al., 2018): It focuses on mining

hard negatives to heavily penalize for dissimilar-

ity with the anchor images through a hinge-like

loss. • Modified SimCLR: We try to extend the

loss proposed in SimCLR to text modality via aug-

mentation. We do so using WordNet (Fellbaum,

1998) synonyms replacement and through back-

translation (Sennrich et al., 2016) approaches.

We also compare state-of-the-art multi-modal

systems for better task-specific assessment. These

are: • Late fusion: Averages prediction scores of

ResNet-152 and BERT. • Concat BERT: Concate-

nates representations from ResNet-152 and BERT,

using a perceptron as a classifier. • MMBT: Mul-

timodal Bitransformer (Kiela et al., 2019), cap-

turing the intra/inter-modal dynamics. • ViL-

BERT CC: Vision and Language BERT (Lu et al.,

2019b), trained on an intermediate multi-modal ob-

jective (conceptual captions) (Sharma et al., 2018),

comprises of task-independent joint representation

multi-modal framework. • Visual BERT COCO:

Pre-trained (Li et al., 2019b) using MS-COCO

dataset (Lin et al., 2014).

Results: We first examine representations learnt

by SimCLR (Chen et al., 2020a) and evaluate them

by fine-tuning on Hateful Memes task. As shown

in Table 1, this results in a meagre accuracy of 0.50
– a difference of only 0.67% against the image-

only fully supervised baseline (accuracy 0.5067).

Moving forward, our initial attempt toward mod-
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Type Model Acc.

SL

Image-Grid (image-only) 0.507

ViLBERT 0.631

ViLBERT CC 0.661

Visual BERT 0.650

Visual BERT COCO 0.659

alfred lab 0.732

SSL

SimCLR (image-only) 0.500

Mod. SimCLR-WN 0.481

Mod. SimCLR-BT 0.450

VSE 0.501

VSE++† 0.536

MM-SimCLR 0.551

Ext-PIE-Net⋆ 0.600

∆(⋆-†)×100(%) ↑ 6.42%

Table 1: Comparison between the proposed SSL

method and baselines on the Hateful Memes dataset.

† represents SSL baseline and ⋆ is for the proposed ap-

proach.

eling multi-modality involves evaluating a VSE++

(Faghri et al., 2018) setup, which leverages hard-

negative sampling to distinguish similar and dis-

similar representations. Due to the factoring of

hard-negatives in VSE++, the mutual information

between the representations of semantically close

image-text pairs is regulated and yields an im-

proved accuracy of 0.53. Our attempt to extend

SimCLR for textual modality results in low accu-

racy values of 0.48 and 0.45, respectively. The low

performances are possible due to the changes in

the textual semantics that augmentation techniques

could induce, effectively reducing potential harm-

fulness modeling affinity.

In comparison, MM-SimCLR enhances the per-

formance, yielding an accuracy of 0.5508. Ext-

PIE-Net is observed to further enhance it to 0.5998
– a gain of +9.98% over the image-only SimCLR

framework, whereas +9.84% and +6.42% over the

multi-modal VSE and VSE++ systems respectively

(Table 1). One of the characteristic changes that the

proposed solutions incorporate in contrast to the

other frameworks is the combined consideration

of multiple image views and a single textual rep-

resentation toward modeling a specialized multi-

modal contrastive learning setup. This is likely

responsible for the cross-modal efficacy observed

in the performance. Although the performances of

the proposed models fall behind that of their fully-

supervised counterparts, they perform reasonably

better than the strong self-supervised methods.

Type Systems
Task-wise Macro-F1 scores

SENT EMOT EMOT-Q

SL

Baseline 0.218 0.500 0.301

Visual BERT 0.320 - -

ViLBERT 0.335 - -

Previous Best‡ 0.355 0.518 0.323

SSL

SimCLR (image-only) 0.330 0.629 0.244

VSE 0.248 0.580 0.292

VSE++† 0.343 0.675 0.327

Ext-PIE-Net⋆ 0.357 0.755 0.283

MM-SimCLR⋆ 0.351 0.682 0.332

∆(⋆-†)×100(%) ↑ 1.37% ↑ 7.93% ↑ 0.46%

Table 2: Comparison of SSL+FT with previous best

and baseline for Memotion tasks. † represents SSL

baseline and ⋆ is for the proposed approach and ‡ (Pre-

vious best): best scores for the corresponding tasks.

5.2 Label-Efficient Training on Downstream

Tasks

We evaluate the representations learned via lin-

ear classification using a subset of labeled sam-

ples following self-supervised pre-training to as-

sess label efficiency during adaption. A classi-

fication head consisting of a linear layer brings

the modalities into the same dimension (we use

512). Furthermore, a shallow, fully connected net-

work classifies the obtained multi-modal represen-

tation into target labels. We opt for the Memotion

and HarMeme tasks for this paradigm. Based on

the results obtained from the evaluation of self-

supervision strategies, we evaluate the pre-training

performance on these downstream tasks.

Results on Memotion Analysis: Due to the com-

plex nature of the dataset and the tasks involved,

the baselines and the leader-board for Memotion

task (Sharma et al., 2020) reflect the resulting non-

triviality – with SOTA results as 0.354, 0.518, and

0.32 Macro-F1 for SENT, EMOT, and EMOT-Q

tasks, respectively. Moreover, the complexity of

the tasks can be further ascertained via the base-

line’s Macro-F1 scores of 0.217, 0.500, and 0.300
for the three tasks – the baseline systems are trivial

early fusion (for SENT task), and late fusion-based

(for EMOT and EMOT-Q tasks) approaches on top

of CNN and RNN based image and text encoding

mechanisms. The previous best systems involve

a word2vec (Mikolov et al., 2013b,a) based feed-

forward neural network for SENT (Keswani et al.,

2020), a multi-modal multi-tasking based setup

for EMOT (Vlad et al., 2020), and a feature-based

ensembling approach for the EMOT-Q task (Guo

et al., 2020). These results solicit improvement in

multi-modal systems.
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Figure 2: Comparison between the proposed method and baselines on Memotion tasks. X-axis signifies the

incremental supervision during fine-tuning.
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Type Systems Macro-F1

SL

Late Fusion 0.7850

Concat BERT 0.7638

MMBT 0.8023

ViLBERT CC 0.8603

Visual BERT COCO 0.8607

MOMENTA 0.8826

SSL

SimCLR (image-only) 0.6328

VSE 0.6569

VSE++† 0.7912

Ext-PIE-Net 0.5717

MM-SimCLR⋆ 0.8140

∆(⋆-†)×100(%) ↑ 2.28%

Table 3: Comparison of SSL+FT with previous best

and baseline for HarMeme task.

We showcase the results on the same tasks by

our proposed approaches in Table 2. Ext-PIE-Net

outperforms Late-fusion baseline, Visual BERT,

ViLBERT, the previous best (amongst SL), and uni-

modal, multi-modal, and MM-SimCLR (amongst

SSL) systems in the SENT and EMOT tasks. It

reports an improvement of 1.37% in SENT but a

significant 7.93% increment over that from VSE++

(best SSL) in EMOT at 0.3565 and 0.7547 Macro-

F1 scores, respectively. In comparison, the perfor-

mance in EMOT-Q is non-convincing at 0.2827
Macro-F1 score – this could be due to the multi-

class and multi-label nature of the task. Whereas,

since SENT and EMOT tasks are formulated by

aggregating data samples for the higher level of cat-

egorical consideration, they are relatively complex

due to the resulting data imbalance. Although MM-

SimCLR performs better on EMOT-Q task and

overall, at-par or better than the baseline, it still

lags by a small margin for SENT task and signifi-

cantly for Task B compared to Ext-PIE-Net. Also,
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Ext-PIE-Net setup has a relatively more significant

number of trainable parameters than MM-SimCLR,

facilitating better modeling capacity for SENT and

EMOT tasks. Conversely, MM-SimCLR performs

better on EMOT-Q task due to better compatibil-

ity of the modeling capacity and task. The overall

results signify the efficacy of proposed SSL strate-

gies on complex downstream multi-modal tasks.

These results highlight the task-specific peculiar-

ities that modeling needs to factor in for optimal

performance.

Results on Harmful Memes: The transferability

of the representations learned through pre-training

is examined by fine-tuning on another meme

dataset, i.e., Harm-P. We report the results in Table

3. The fully supervised models, such as VilBERT

CC (Pramanick et al., 2021), Visual BERT COCO

(Pramanick et al., 2021), and MOMENTA (Praman-

ick et al., 2021), obtain Macro-F1 scores of 0.8603,

0.8607, and 0.8826, respectively. In comparison,

MM-SimCLR in a label-efficient setup records a

convincing performance of 0.8140 Macro-F1. One

of our proposed approaches Ext-PIE-Net performs

poorly with 0.5717 F1 against an impressive F1

score of 0.8140 by MM-SimCLR. Like its per-

formance on Memotion task, MM-SimCLR is

observed to perform better on a relatively more

straightforward HarMeme task. Even though MM-

SimCLR lags behind by 4.6% from strong SL base-

lines ViLBERT CC and Visual BERT COCO, and

MOMENTA by 7.02%, it distinctly outperforms

other competitive multi-modal baselines (super-

vised) like Late Fusion, Concat BERT and MMBT

by 2.9%, 5.02% and 1.87%, respectively. MM-

SimCLR also leads SimCLR (0.6328) by 18.12%,

and SSL multi-modal baselines VSE (0.6569),

VSE++ (0.7912) and Ext-PIE-Net (0.5717) by

15.71%, 2.28% and 24.2%, respectively on the

HarMeme task.

It is also worth highlighting that the perfor-

mances of strong multi-modal models like Visual

BERT and ViLBERT can be inconsistent, depend-

ing upon the task being addressed. This is primarily

due to the fact that the corresponding pre-training

involved leverages strong visual-linguistic ground-

ing, which based on downstream task complexity,

can give varying results as observed for Memo-

tion (c.f. Table. 2) and HarMeme (c.f. Table 3).

This suggests the scope of enhancement towards

the pre-training objectives and frameworks within

the existing multi-modal systems.
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Figure 4: Comparison b/w the proposed method and

baselines on HarMeme tasks. X-axis signifies the in-

cremental supervision during fine-tuning.

6 Impact of Label-Efficient Supervision

During Fine-tuning

Towards assessing the label-efficient setup, we com-

pare the performances over incremental supervi-

sion. We also analyze their temporal training be-

havior.

As can be observed from Fig. 2a, Ext-PIE-Net

converges efficiently to 0.3565 F1 score with just

10% (600) training samples, as compared to MM-

SimCLR which converges to 0.3511 F1 score after

learning from 50% (3000) of the labeled samples.

This highlights the capacity of a sophisticated SSL

regime to learn better representations for a complex

setup for the SENT task compared to a slightly

simpler model MM-SimCLR. A similar pattern

can be observed for EMOT task in Fig. 2b. Ext-

PIE-Net is observed to achieve an overall better F1

score of 0.7547, which is better than MM-SimCLR

and outperforms all other results.

Although the optimal performance of SimCLR

is reasonably at-par or even better for SENT and

EMOT tasks compared to the baseline and the pre-

vious best results, there is barely any active conver-

gence visible within the plots depicted in Fig. 2 for

it. This is obvious considering the incomplete in-

formation that an image-only based uni-modal sys-

tem would learn for the downstream task. VSE is

observed to yield 3.02% and 7.98% improvement

over the SL baseline. Still, it fails to register an im-

pressive performance compared to the increment of

12.52% and 17.52% for the two tasks, respectively,

by VSE++.

These observations can also be correlated with

the training performance (c.f. Fig. 3), wherein

the performance curves are depicted for a total of

100 epochs across four different label-efficiency
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scenarios. For primary assessment, we showcase

smoothed curves overlaid on unsmoothed ones to-

wards observing global and local trends. 6

Fig. 3 presents a clear depiction of progressive

learning for all the supervision configurations eval-

uated in case of Ext-PIE-Net for the SENT and

EMOT tasks (c.f. Fig. 3) is given. On the other

hand, the training curves for MM-SimCLR show

saturated learning for tasks SENT and EMOT re-

spectively (c.f. Fig. 3).

Delineating on the performance trend observed

in the EMOT-Q task earlier, neither Ext-PIE-Net

nor SimCLR shows definite convergence, as we

consider the incremental supervision depicted in

Fig. 2c. Whereas, MM-SimCLR is observed to

show stable, yet non-incremental growth in per-

formance reporting the best overall F1 score of

0.3318 (c.f. Table 2). This task entails a relatively

balanced training set (Sharma et al., 2020), and

MM-SimCLR is observed to offer just the required

simplicity for solving such a task. The training

characteristics observed for this task, are found to

be contrasting for Ext-PIE-Net and MM-SimCLR

(c.f. Fig. 3, last figures from first and second rows,

respectively). MM-SimCLR indicates overall pro-

gressive learning. On the other hand, Ext-PIE-Net

depicts a consistently regressive trend. This corrob-

orates the optimal convergence demonstrated by

a simple multi-modal contrastive loss-based self-

supervision for a more straightforward task formu-

lation.

For HarMeme task, the incremental supervision

(c.f. Fig. 4) exhibits incremental performance with

the increase in the amount of supervision during

fine-tuning. Notably, the final F1 score of 0.814 ob-

tained by the MM-SimCLR model is on just 50 %
(1510) of the actual training set. This demonstrates

the efficacy and generalizability of the pre-training

via strategies adopted in this work. Also, the pro-

gressive convergence observed at 50% supervision,

as shown in Fig. 4 for MM-SimCLR, demonstrates

the generalizability of the proposed approach. This

also suggests the importance of having smaller ar-

chitectures with sophisticated fusion strategies to

solve the task at hand effectively.

7 Discussion

The observations made from the results obtained

for the downstream evaluation suggest interest-

6For further reference, unsmoothed training curves are also
included and discussed separately in App. C.

ing trends. Since Memotion dataset involves

multi-class, multi-label and multi-level hierarchi-

cal granularity due to the natural distribution of

such realistic dataset, either ensembling-based ap-

proaches are observed to yield better results or,

there are strong variations observed in the perfor-

mance trends across the three Memotion tasks

(Sharma et al., 2020). The results reported as part

of Table 1, 2 and 3 exhibit insights correlating the

task complexity with that of the modelling solu-

tions required. This is further corroborated by the

results on HarMeme task. To this end, we have

highlighted the performances and drawn compar-

isons for two models that we empirically examined

as part of this investigation.

8 Conclusion

This work empirically examined various self-

supervision strategies to learn effective representa-

tions that help solve multiple multi-modal down-

stream tasks in a label-efficient setting. We propose

two strategies for this – (i) MM-SimCLR: a multi-

modal contrastive loss formulation that factors in

the loss terms for image modality and the multi-

modality in a joint manner, and (ii) Ext-PIE-Net:

a joint formulation of weighted modality-specific

hinge loss terms, combined with the contrastive

loss that is computed between a pair of represen-

tations, obtained using symmetric multi-modal fu-

sion. Extensive analysis over 2 datasets and 5 tasks

demonstrate how domain-aware self-supervised

pre-training, using a multi-modal dataset, that can

be directly obtained from the wild (WWW) in raw

form, can be leveraged to perform label-efficient

multi-modal adaptation, leading to competitive,

even superior performance gains for some scenar-

ios.

The performances observed for the proposed

methods indicate task-dependent efficacies. MM-

SimCLR being a lighter model is observed to per-

form better on EMOT-Q and HarMeme tasks,

having a lower level of granularity to be mod-

eled. Whereas Ext-PIE-Net performs better on

SENT and EMOT tasks, which require modeling

a higher abstraction level for the target categories.

Despite exhibiting interesting performance within

label-efficient evaluation settings, the objectives

addressed in this work can further benefit from ex-

tensive analysis and evaluation towards obtaining

a broader understanding of the generalizability of

the proposed methodology.
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Type Name BS Epochs LR Image Encoder Text Encoder

SSL

SimCLR

32

150 0.1 ResNet-50 -

VSE++

100 0.0001 ResNet-18 distilbert-base-uncased
Mod. SimCLR

MM-SimCLR

Ext-PIE-Net

SL

SimCLR 512

100

0.0001 ResNet-50 -

MM-SimCLR
256 0.0005 ResNet-18 distilbert-base-uncased

Ext-PIE-Net

Table 4: Hyperparameter values for the experiments.

A Experimental setup and

Hyperparameters:

We train all our experiments using Pytorch on an

NVIDIA Tesla P4 with 8 GB dedicated memory.

We use VISSL, an open-source library (da Costa

et al., 2021) to evaluate SimCLR, a uni-modal

image-only setup for memes. For the multi-modal

setups, we initialize the networks with weights of

pre-trained models available for image encoders

with PyTorch library and the text models with

weights available from transformers package

from hugging face library7.

The image encoder is a ResNet-18 (He et al.,

2016) architecture and the text encoder is a

distilbert-base-uncased in all our multi-

modal experiments. After self-supervised pre-

training, we freeze the text and image encoder

weights and discard the projection heads attached.

As part of the classification head, a new set of lay-

ers are added to perform supervised learning using

fewer labeled samples. We initialize the layers us-

ing Xavier initialization (Glorot and Bengio, 2010)

and set the bias to zero. We train all the models

using the Adam optimizer (Kingma and Ba, 2015)

and a cross-entropy loss as the objective function

for supervision for all the tasks evaluated in this

work. We perform multi-modal self-supervision

experiments keeping a batch size of 32 for 100
epochs at a learning rate of 0.0001. The SimCLR

experiment in self-supervision is carried out for

150 epochs with a batch size of 32 and a learning

rate of 0.1 using a ResNet-50 backbone. The en-

coder weights are frozen during the label-efficient

training, and the classification heads are used, al-

lowing 256 batch-size in multi-modal experiments

and 512 for uni-modal SimCLR experiment. The

SimCLR-based label-efficient setup is trained with

0.0001 learning rate, while the other multi-modal

experiments are trained with 0.0005 learning rate.

We also present these details in Table 4.

7https://huggingface.co

B Statistical Analysis of Datasets

The datasets used in this work have been either

created synthetically using specific hate topics or

downloaded from social media platforms using

generic and domain-specific hate keywords (Kiela

et al., 2020; Gomez et al., 2020; Pramanick et al.,

2021). The top-5 hate and non-hate keywords

ranked as per the tf-idf scores of their occurrences

within the accompanying texts are shown in Table

5. This table shows that the hateful lexicon for

MMHS150K represents extreme urban parlance,

depicting realistic social media communication,

whereas in the Hateful Memes dataset, hate key-

words are canonical and topic-oriented. To counter

the potential keyword bias within the datasets, the

categorical representation of these keywords was

explicitly balanced by introducing confounders or

considering contrastive examples for the exact hate

keywords.

The accompanying texts from all datasets used

have a mean length of 8 (c.f. Fig. 5). The distribu-

tion observed for MMHS150K in Fig. 5a is almost

uniform, with most of the posts having lengths

of less than 30 words, primarily due to the 280-

character limit on tweets. Hateful Memes, on the

other hand, is created with reasonable variation,

having examples with lengths greater than 30 as

well. Their confounding effect is also clearly vis-

ible within these histogram plots, where hateful

content with larger corresponding text could also

be present in some samples (Fig. 5b), as against the

general trend where the variation in the length is

confined. Finally, Harm-P reflects the distribution

of the accompanying textual contents over social

media. Hence the variation depicted in Fig. 5c.

C Training Characteristics

The unsmoothed training curves, depicted in Fig.

6 reflects the trends observed with the smoothed

depiction in Fig. 3. Besides significant fluctua-

tions within the training curves across tasks, espe-

cially for SENT and EMOT-Q tasks, subtle tem-

poral trends can be inferred. There is a gradual

enhancement in the performances observed within

early epochs (<60) for both SENT and EMOT

tasks, for both Ext-PIE-Net and MM-SimCLR,

with Ext-PIE-Net registering the best macro-f1,

along with significant variation. But overall, the

performances are reasonably similar. For SENT

task, Ext-PIE-Net showcases consistent growth in

the macro-f1 score for all the label-configuration
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MMHS150K Hateful Memes Harm-P

Hateful Not-hateful Hateful Not-hateful Harmful Not-harmful

Word tf-idf score Word tf-idf score Word tf-idf score Word tf-idf score Word tf-idf score Word tf-idf score

faggot 0.0441 redneck 0.0099 black 0.0433 like 0.0337 photoshopped 0.0589 party 0.02514

cunt 0.0364 love 0.0098 white 0.0378 day 0.018 married 0.0343 debate 0.0151

nigger 0.0346 happy 0.0081 muslim 0.0321 got 0.0174 joe 0.0309 president 0.0139

retarded 0.0306 good 0.0074 jews 0.0239 time 0.0172 trump 0.0249 democratic 0.0111

trash 0.0214 hillbilly 0.0071 kill 0.0223 love 0.0138 nazis 0.0241 green 0.0086

Table 5: The top-5 most frequent words and their tf-idf scores in each class.
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Figure 5: Distributions of the text’s length. Blue: Hateful/Harmful; Orange: Not-hateful/harmful.
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Figure 6: Training performance comparison (unsmoothed) for different label fractions [1 % – 10 % – 20 % –

50 %] for Ext-PIE-Net (top row) and MM-SimCLR (bottom row) on Memotion tasks.

scenarios. In contrast, MM-SimCLR showcases

progress for scenarios involving 1% and 50% la-

beled samples only. On the other hand, for EMOT-

Q task, MM-SimCLR is observed to exhibit better

convergence after 30th epoch, as against that by

Ext-PIE-Net, across label-configurations, suggest-

ing better training behavior (c.f. Fig. 6).

D Ethics and Broader Impact

User Privacy. The meme content and the associ-

ated information do not include any personal infor-

mation. Issues related to copyright are addressed

as part of the dataset source.

Biases. Any biases found in the datasets (Gomez

et al., 2020; Kiela et al., 2020; Pramanick et al.,

2021) leveraged in this work are presumed to be

unintentional, as per the attributions made in the

respective sources, and we do not intend to cause

harm to any group or individual. We acknowledge

that detecting emotions and harmfulness can be sub-

jective, and thus it is inevitable that there would be

biases in gold-labeled data or the label distribution.

The primary aim of this work is to contribute with

a novel multi-modal framework that helps perform

downstream-related tasks, utilizing the representa-

tions learned via self-supervised learning.
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Misuse Potential. We find that the datasets

used in this work can be potentially used for ill-

intended purposes, like biased targeting of individ-

uals/communities/organizations, etc., that may or

may not be related to demographics and other in-

formation within the text. Any research activity

would require intervention with human moderation

to ensure this does not occur.

Intended Use. We use the existing dataset in our

work in line with the intended usage prescribed

by its creators and solely for research purposes.

This applies in its entirety to its further use as well.

We commit to releasing our dataset, aiming to en-

courage research in studying harmful targeting in

memes on the web. We distribute the dataset for

research purposes only, without a license for com-

mercial use. We believe that it represents a valuable

resource when used appropriately.

Environmental Impact. Finally, due to the re-

quirement of GPUs/TPUs, large-scale Transform-

ers require many computations, contributing to

global warming (Strubell et al., 2019). However,

in our case, we do not train such models from

scratch; instead, we fine-tune them on relatively

small datasets. Moreover, running on a CPU for

inference, once the model has been fine-tuned, is

perfectly feasible, and CPUs contribute much less

to global warming.
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