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Abstract

Natural language understanding (NLU) tasks
are typically defined by creating an annotated
dataset in which each utterance is encountered
once. Such data does not resemble real-world
natural language interactions in which certain
utterances are encountered frequently, others
rarely. For deployed NLU systems, this is a
vital problem, since the underlying machine
learning (ML) models are often fine-tuned
on typical NLU data, in which utterance fre-
quency is never factored in, and then applied
to real-world data with a very different distri-
bution. Such systems need to maintain inter-
pretation consistency for the high-frequency
(head) utterances, while also doing well on
low-frequency (tail) utterances. We propose
an alternative strategy that explicitly uses utter-
ance frequency in training data to learn mod-
els that are more robust to unknown distri-
butions. We present a methodology to simu-
late utterance usage in two public corpora and
create two new corpora with head, body and
tail segments. We evaluate several methods
for joint intent classification and named entity
recognition (referred to as IC-NER), and pro-
pose to use two domain generalization (DG)
approaches that we adapt to sequence label-
ing task. The DG approaches demonstrate up
to 7.02% relative improvement in semantic ac-
curacy over baselines on the tail data. We
provide insights as to why the proposed ap-
proaches work and show that the reasons for
the observed improvements do not align with
those reported in previous work.

1 Introduction

In academic research, natural language understand-
ing (NLU) tasks are typically defined by creating
annotated data, and then that data is used to train
and evaluate machine learning models designed to
solve that task. In such datasets, each utterance is
typically encountered only once. But real-world
natural language interactions do not look like that –

in the real world, frequency matters. When people
interact with each other “in the wild”, some things
are said often ("Time to go to bed!"), others are
infrequent to the point of being unique.

The same holds for how people interact with
digital assistants such as Alexa, Siri, or Google
Assistant, which we use as the case study in this pa-
per. The backbone of such commercial systems is
the task of joint intent classification and named en-
tity recognition (IC-NER) (Su et al., 2018; Coucke
et al., 2018; Anantha et al., 2021). The goal of this
task is to identify the intended action (play music,
open calendar, etc) and actionable slots (names,
places, objects, etc) from a user utterance.

The underlying joint IC-NER models must cor-
rectly handle both the frequently occurring requests
and a long tail of less common entities. But in the
common IC-NER corpora such as SNIPS (Coucke
et al., 2018), there is no way to distinguish be-
tween requests for generic entities ("play music
from youtube") and requests for a low-frequency
entity ("help me locate a game called the master of
ballantrae"). IC-NER models are fine-tuned on all
training data, and then applied to real-world data
with a very different distribution.

In order to mitigate this issue, this work pro-
poses a method for creating annotated data which
explicitly factors in utterance frequency. We divide
an NLU dataset into three disjoint segments: head
(most frequent utterances), tail (least frequent utter-
ances) and body (all remaining utterances). In this
work, we define a segment as a subset of the dataset
with similar characteristics, for example the head
segment contains utterances with high frequencies
in the real world. We then develop learning strate-
gies which benefit from the token and label distri-
butions in the head, body, and tail segments of the
resulting frequency-enriched datasets.

We simulate utterance usage patterns using
two common public corpora for the IC-NER
task: SNIPS (Coucke et al., 2018) which con-
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Table 1: Selected examples from head and tail segments in the newly created corpora: SNIPSesv and TOPesv.
Utterances from head segments include the repetition counts. Tokens with slot labels are boldfaced.

SNIPSesv TOPesv

Head "play music off youtube": 76
" play some google music": 36

"is the weather causing traffic delays today": 65
"where is macys": 46
"what new movies start this weekend": 32

Tail

"add outside the dream syndicate to millicent’s
fresh electronic playlist"
"what s the weather in south punta gorda heights"
"add 9th inning to my bossa nova dinner playlist"

"what is the quickest route to get to valdosta from atlanta"
"how long does it take to drive from adair to chelsea"

tains real-world utterances directed towards the
SNIPS voice assistant, and the Facebook Dialog
Corpus (TOP; Gupta et al. 2018) which is a crowd-
sourced collection of natural language queries re-
lated to navigation and event inquiries, creating
two frequency-enriched datasets (SNIPSesv and
TOPesv). Our methodology is based on entity
search volumes, which allows us to emulate a realis-
tic utterance frequency distribution in the data. Ut-
terances are then upsampled according to their esti-
mated frequency. SNIPSesv and TOPesv datasets
separate test data for head, body and tail segments,
enabling the comparison of model performance on
each segment. The proposed methodology can be
easily extended to other NLU tasks such as part-of-
speech tagging, sentence generation, or question
answering.

Using our frequency-enriched datasets, we com-
pare IC-NER performance of several methods. We
propose modifications to two domain generaliza-
tion (DG; (Blanchard et al., 2011)) approaches: do-
main masks for generalization (DMG; Chattopad-
hyay et al. 2020) and optimal transport (OT; (Zhou
et al., 2020a)). We adapt these methods for IC-NER
and demonstrate up to 7.02% relative improvement
in semantic accuracy on the tail data over strong
baselines.

We provide insights as to why the proposed DG
approaches work, showing that OT learns segment-
invariant representations using segment classifica-
tion analysis. Our analysis using random-valued
masks reveals that performance improvements by
DMG are rather likely due to the training process
resembling an enhanced version of dropout, rather
than learning segment-specific mask parameters,
an observation which does not align with those
reported in previous work. We corroborate our
observations in NLU with similar findings on a re-
lated task from computer vision, for which DMG
was originally proposed.

The main contributions of this work are thus as
follows: (i) We simulate utterance usage frequency

for two public NLU corpora. To the best of our
knowledge, these frequency-enriched datasets are
the first attempt to explicitly incorporate utterance
usage information in NLU. (ii) We adapt two do-
main generalization approaches to the sequence
labeling task in NLU and show improvement over
strong baselines on the tail segment, using the
frequency-enriched data. (iii) We demonstrate that
the reasons for improved performance from DMG
do not align with those reported in previous work.

2 Background

2.1 Improving tail recognition
Previous work on head to tail transfer learning
has typically focused on assigning classes to ei-
ther head or tail based on the number of examples
present in each class (Xiao et al., 2021; Raunak
et al., 2020). Our problem setting is different in
that we divide the dataset into head, body and tail
based on the estimated usage frequency of each
utterance. For example, in our case, the utterances
belonging to a common class (such as "play music"
intent) may not all be assigned to the head segment,
but rather may be split between head, body, and
tail, depending on their frequencies.

Since our problem setting presumes a different
definition of head and tail, many of the methods
(Kang et al., 2020; Ouyang et al., 2016; Cao et al.,
2019) developed for head-to-tail transfer are not
directly applicable in our case.

2.2 Domain generalization approaches
Domain generalization techniques (Blanchard et al.,
2011) are a subset of transfer learning approaches
where multiple domains with different label dis-
tributions and class-conditional distributions are
used for model building. As distinct from domain
adaption, no data from the target domain(s) is as-
sumed available for training/adaptation. We wanted
to investigate DG methods for our scenario, since
this would allow us to treat head, tail, and body
segments as virtual domains, without making any
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specific assumptions about the data and label dis-
tributions in each segment.

A variety of DG approaches have been pro-
posed: kernel-based optimization methods (Blan-
chard et al., 2011, 2021; Muandet et al., 2013), aug-
menting with synthetic data perturbed using loss
gradients (Shankar et al., 2018), learning a transfor-
mation to jointly classify domains and labels (Zhou
et al., 2020b), learning a segment-invariant fea-
ture space by minimizing the optimal transport
between domain pairs (Zhou et al., 2020a), etc.
Broadly, these approaches learn to project dat-
apoints from different segments into equivalent
feature spaces for data representation, which im-
proves performance. This paradigm closely resem-
bles meta-learning, with the difference being that
meta-learning assumes access to labeled samples
from the target segment during the meta-testing
phase (Ravi and Larochelle, 2017). An alterna-
tive set of approaches focuses on learning segment-
specific knowledge, e.g., using outputs from a
model trained on seen segments to train a model for
unseen segments (Zhou et al., 2021) or selecting
convolution activations to create segment-specific
subnetworks in the model (Chattopadhyay et al.,
2020; Mallya et al., 2018; Berriel et al., 2019).

DG has been relatively less explored in NLU
when compared to computer vision. A handful
of works have applied DG for semantic parsing:
Wang et al. (2021) employed an adaptation of
MAML (Finn et al., 2017) to simulate new seg-
ments, Marzinotto et al. (2019) used an adversar-
ial domain classifier as a regularization technique.
We adapt two categories of DG approaches: learn-
ing representations which are segment-specific
(DMG; Chattopadhyay et al. 2020) and segment-
invariant (optimal transport; (Zhou et al., 2020a)).
We apply these approaches for generalizing IC-
NER performance from head, body and tail seg-
ments.

3 Methods

3.1 Dataset preparation

Both SNIPS (Coucke et al., 2018) and TOP (Gupta
et al., 2018) contain almost exclusively unique ut-
terances, and SNIPS is purposefully designed to
contain a balanced number of utterances per intent.
Following Chen et al. (2019), IC-NER models are
commonly evaluated on data that excludes nested
intents, since BERT-based architectures make han-
dling nested intents challenging. In order to enable

fair comparison of model performance, we follow
this strategy and remove nested intents from TOP.
We also remove all utterances labeled with “Unsup-
ported” intent.

3.1.1 Estimating usage frequency
In order to estimate usage frequency of each utter-
ance, we use the internet search volumes of each
labeled entity (defined as a token labeled with a
slot, e.g., ArtistName). We hypothesize that the
utterance’s usage frequency is influenced primarily
by the mentioned entities (e.g., master of ballantrae
in Section 1) and not the remaining tokens (e.g.,
stop words, play, order, etc)

We collect the monthly entity search volume (de-
noted esv) averaged over the last year using the
Google AdWords API1. We estimate the utterance
search volume as mean esv for all entities, assum-
ing that each entity contributes equally to the utter-
ance usage. For example, consider the following
utterance in the SNIPS corpora: “Book reserva-
tions at a restaurant in Olton around supper time".
There are two labeled entities in it: Olton (city) and
supper (time interval). Monthly search volumes in
Google for each entity are 266 and 33.1K respec-
tively. Hence, the estimated utterance usage esvu is
16.7K. In a similar manner, we estimate the usage
frequency of all utterances in SNIPS and TOP.

Another option for estimating usage frequencies
is to use utterance perplexity estimated by a high-
quality pre-trained language model. In preliminary
analysis, we used the perplexities from GPT-2 to
approximate usage frequency. We did not find that
this method produced good estimates of usage fre-
quencies in spoken requests to digital assistants,
likely due to the domain difference of the data used
pre-training of GPT-2. Pre-training on in-domain
data can be used to address this in the future, po-
tentially enabling this alternative strategy for esti-
mating utterance frequency.

3.1.2 Utterance sampling
We used the frequency estimate for each utterance
to determine the upsampling factor for that utter-
ance. Intuitively, an utterance with a higher esvu
should be sampled more, and is more likely to be
present in the head segment.

We normalize the obtained search volume to de-
rive a probability distribution pu over utterances.
However, we compared the resulting distribution

1https://developers.google.com/
adwords/api/

https://developers.google.com/adwords/api/
https://developers.google.com/adwords/api/
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Figure 1: Overview of the dataset preparation process. For each utterance from the original train, dev and test
sets from SNIPS and TOP, we estimate the utterance frequency. The frequency is normalized to a probability
distribution which is used to sample utterances.

against the utterance in a proprietary commercial
dataset2, and observed that while pu gave reason-
able estimates in many cases, it was not well cali-
brated. Specifically, it produced a heavy skew in
favor of frequent utterances, possibly due to the
fact that we were only able to approximate fre-
quencies at the entity, rather than utterance level.
Sampling directly from pu would therefore have
produced a corpus with a small number of unique
utterances and many repetitions, while omitting
most utterances from the original dataset.

To avoid this issue, we cap the maximum sam-
pling probability pmax of an utterance. We define
pmax to be the probability of the most common
utterance, defined as follows:

pmax =
|umax|∑
i|ui|

(1)

where ui denotes a unique utterance and umax de-
notes the most common unique utterance. We em-
pirically determine pmax = 0.00245 using the pro-
prietary corpus of user queries with semantically
similar intent labels to SNIPS and TOP. Further
details are provided in the Appendix.

3.1.3 Splitting into head, body and tail
We create frequency-enriched versions of the TOP
and SNIPS datasets using the capped probability
distribution to sample utterances with replacement.
We fix the total number of utterances (N ) in the
new corpus and sample utterances using the capped
distribution until we collect N utterances. We seg-
ment the upsampled corpus into head, body, and
tail, where head and tail are designed to contain
fewer utterances than body. The frequency of ut-
terances in the head and tail segments is very high
or very low, respectively. We assign 10% most

2See Appendix for details.

frequent utterances to head, 10% least frequent ut-
terances to tail and remaining utterances to body3.
We create the train and test partitions of SNIPSesv
and TOPesv separately from the original train and
test partitions, hence resulting in six segments (3
train + 3 test) for each corpus.

We report utterance and label statistics of the
resulting datasets in Table 2. In both SNIPSesv
and TOPesv, the head segment contains relatively
fewer unique utterances than other segments, but
each unique utterance is repeated multiple times.
Note that the head segment does not contain the
complete set of labels (intents and classes) found in
the original corpora. Specifically, the head segment
in SNIPSesv and TOPesv contain only 30.5% and
38.4% of all the slot labels in the original segment,
respectively. Some intent labels are also missing
in other segments in TOPesv, likely because the
TOP corpus (Gupta et al., 2018), unlike SNIPS,
has a non-uniform intent distribution. In Table
1, we provide representative examples from head
and tail segments in the newly created corpora.
Note that utterances with popular/generic entities
(e.g., youtube, weather) are likely to end up in the
head segment when compared to less widely used
entities.

3.2 Domain Generalization Approaches

As the omitted intent statistics in Table 2 suggest,
head, body and tail segments of both datasets have
very different label distributions P (Y ). At the
same time, since utterances are sampled accord-
ing to the entity search volume, each segment has a
different distribution over tokens P (X) (Table 1).
These differences in label and token distributions
motivate our choice of DG approaches for improv-

3Utterances are not shared between segments, hence the
exact fraction of utterances across head, body and tail may not
be equal to 10%-80%-10%
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Table 2: Dataset statistics for head, body and tail segments in SNIPSesv and TOPesv, along with the respective
original corpora ("Original" segment). Splits (train, dev and test) for each segment are created using the corre-
sponding splits from the original corpora. For each split within a segment, the total utterance count (Utt), unique
utterance count (Uniq Utt), average repetition of unique utterances (Rep), and missing labels are provided. The
total number of intents and slot labels are provided against the respective column headers.

SNIPSesv TOPesv

Segment Split Utt Uniq
Utt

Rep #Missing
Intents(7)

#Missing
Slots(72)

Utt Uniq
Utt

Rep #Missing
Intents(12)

#Missing
Slots(26)

Original
Train 13084 12860 1.02 - - 20265 19764 1.03 - -
Dev 700 695 1.01 - 2 2955 2937 1.01 5 1
Test 700 699 1.00 - 2 5884 5834 1.01 4 2

Head
Train 1323 34 38.91 2 44 1748 40 43.7 6 12
Dev 73 8 9.13 5 50 253 26 9.73 9 16
Test 74 11 6.73 1 48 515 40 12.88 7 15

Body
Train 10453 2537 4.12 - 2 13922 5668 2.46 - 1
Dev 558 230 2.43 - 11 2020 749 2.70 2 5
Test 557 267 2.09 - 3 4063 1634 2.49 2 5

Tail
Train 1308 1308 1.00 - 2 1740 1740 1.00 3 7
Dev 69 69 1.00 - 21 252 252 1.00 2 5
Test 69 69 1.00 - 14 508 508 1.00 3 5

ing performance on unseen segments (Blanchard
et al., 2011).

Both DG approaches explored in this work,
DMG (Chattopadhyay et al., 2020) and OT (Zhou
et al., 2020a), assume that the model can be broken
down into a feature extractor FΨ and a task network
TΘ. A typical feature extractor and task network
for IC-NER are BERT-based pretrained model and
sequence/slot classification network respectively
(Chen et al., 2019).

3.2.1 Domain Masks for Generalization
(DMG)

DMG encodes segment knowledge in masks (m̃d),
which are segment-specific parameters jointly
learnt with FΨ and TΘ. For segment d, we ex-
tract binary activations md from masks as follows:

md ∼ Bernoulli(σ(m̃d)) (2)

where σ represents the sigmoid activation function.
During forward pass, we multiply each activation
by md to compute the effective activation passed
to the next layer. Hence, masks serve as layer-wise
“on”/“off” gates within Tθ. Masks are sampled
during training, hence a different set of neurons
are activated for different mini-batches within the
same segment.

Similar to the original formulation of
DMG (Chattopadhyay et al., 2020), we en-
sure that masks are incentivized to learn
segment-specific information and avoid learning
similar representations for all segments by using a

soft overlap loss (sIoU; Rahman and Wang 2016).
The soft-overlap loss is used in place of Jaccard
Similarity Coefficient which is non-differentiable
and hence cannot be optimized with gradient
descent. Specifically, we compute:

sIoU(m̃di , m̃dj ) =
m̃di · m̃dj∑

(m̃di + m̃dj − m̃di � m̃dj )

At each mini-batch, we compute sIoU(m̃di , m̃dj )
for every segment pair and sum across all pairs.
This soft-overlap loss is added to the classification
loss and used as the overall objective for optimiza-
tion.

LDMG =
1

n

∑
i

Lclass(xi, yi)+

λDMG

∑
di,dj∈d

sIoU(m̃di , m̃dj ) (3)

where n, d and Lclass represent the mini-batch size,
set of segments in the mini-batch, and the classifica-
tion loss function. At test time, we do not have seg-
ment labels for a sample. We arrive at the predicted
label by computing the mean prediction obtained
with all segment-specific masks.

3.2.2 Optimal Transport
Optimal transport (Shen et al. (2018)) learns
segment-invariant feature representations by en-
suring feature compactness, i.e., samples from the
same class across different segments are brought
close to each other and vice versa. Assuming



6

Figure 2: Illustrating the different approaches used in this work: baselines Per-segment, aggregate and multihead,
and DG approaches: DMG++ and Optimal Transport.

c : Rn × Rn → R+ is the cost function for trans-
porting an unit mass from xi to xj , the p-th order
Wasserstein distance between di and dj is:

W p
p (di, dj) = inf

γ∈Π(di,dj)

∫
Rn×Rn

c(xi,xj)dγ(xi,xj)

(4)
where Π(di, dj) is a collection of all joint prob-
ability measures on Rn × Rn with marginals di
and dj . Following Zhou et al. (2020a) and from
the Kantorovich-Rubinstein theorem (Kantorovich
and Rubinshtein, 1958), the first order Wasserstein
distance can be given as:

W1(di, dj) = sup
‖f‖L<1

Ex∈dif(xi)− Ex∈dif(xj)

(5)
Given sets Xi = {xi}Nii=1 and Xj = {xj}

Nj
j=1 from

segments di and dj respectively, we can compute
the empirical Wasserstein distance between these
two sets as:

W1(Xi, Xj) =
1

Ni

∑
xi

f(xi)−
1

Nj

∑
xj

f(xj)

(6)
where f represents a learnable function which
transforms inputs to segment-invariant represen-
tations. In this work, we parameterize f = FΨ ◦CΩ,
where CΩ is a critic function that is applied on the
output from the feature extractor. At each training
mini-batch, we compute the critic loss LC as the
sum of absolute pairwise Wasserstein-1 distances
(Eq. 6) between all segment pairs. The critic loss
is jointly optimized with the classification loss to
learn representations that minimize segment varia-

tions while maximizing classification performance.

LOT =
1

n

∑
i

Lclass(xi, yi)+

λOT
∑

di,dj∈d
W1(Xi, Xj) (7)

3.3 Baselines
We compare DG approaches with three baselines:
Per-segment, Aggregate and Multihead models.
Among these three baselines, we experiment with
shared and separate networks for the feature ex-
tractor FΨ and task networks Tθ (Figure 2). In
the per-segment baseline, we construct a separate
model for each segment, and train them using re-
spective segment’s data. In the multihead baseline,
FΨ is shared between segments while a different
TΘ is trained for each segment. In the aggregate
baseline, both FΨ and TΘ are shared between the
segments. For the first two baselines where we
have multiple task networks, we predict the intent
and slot labels for a test sample by computing the
mean prediction from all segment-specific models.

4 Experiments

4.1 Model Components
We use the pretrained BERT-base model (Devlin
et al., 2019) as the feature extractor network FΨ.
The task network TΘ consists of two sub-networks:
(i) The IC network is a linear feed-forward layer
which predicts the intent given the CLS token em-
bedding using a single feed-forward layer (ii) The
NER network uses a similar feed-forward layer to
predict the slot at each word given the hidden state
from the last BERT layer. Similar to Chen et al.
(2019), we use the hidden state of the first sub-word
token of each word for slot prediction. We update
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Table 3: IC-NER performance on SNIPSesv (top) and TOPesv (bottom) corpora for baselines: Per-segment, Ag-
gregate and Multihead; and domain generalization approaches: DMG++, Optimal Transport and Combined

Head Body Tail Original
Approach Sem SlotF1 Sem SlotF1 Sem SlotF1 Sem SlotF1
Per-segment 87.84 96.73 84.74 94.57 82.61 92.69 83.43 93.64
Aggregate 77.03 95.34 87.97 95.60 81.16 91.81 86.14 94.46
Multihead 87.84 96.73 85.28 94.75 81.16 91.36 84.43 94.05
DMG++ 87.84 96.73 88.33 95.59 88.41 93.87 87.00 94.74
Optimal Transport 77.03 95.34 88.51 95.77 85.51 93.28 86.43 94.26
Combined 77.03 95.34 89.95 96.32 85.51 93.28 86.29 94.42

Head Body Tail Original
Approach Sem SlotF1 Sem SlotF1 Sem SlotF1 Sem SlotF1
Per-segment 88.54 96.93 88.53 95.15 84.06 93.09 86.71 93.49
Aggregate 88.74 97.10 91.31 96.29 86.22 94.01 88.95 94.67
Multihead 92.23 98.27 90.16 95.87 87.40 94.32 88.71 94.51
DMG++ 88.93 97.06 90.18 95.94 86.81 93.91 89.03 94.63
Optimal Transport 91.46 98.71 91.19 96.25 87.40 94.60 89.34 94.88
Combination 88.54 97.58 90.67 96.01 87.60 93.74 88.73 94.40

parameters of both IC and NER networks using a
joint classification loss LIC + LNER in order to
benefit from any shared knowledge between IC and
NER tasks.

4.2 Adapting DMG and OT for NER

Note that the DMG model learns a single mask pa-
rameter per segment, i.e it learns one mask for
IC (m̃d

IC) and another mask for NER (m̃d
NER).

This implies that m̃d
NER is common across all to-

kens in the segment and the same activations in
FΨ are selected for all tokens. This constrains the
learning process, since different tokens can benefit
from selecting different activations when learning
segment-specific representations. To support this,
we propose formulating the mask parameters as a
function of the segment and the token embedding:

m̃d
t = wdht + bd (8)

where ht represents activation from FΨ for token
t. We introduce a weight vector wd and bias bd

for each segment. The masks are sampled using
m̃d
t similar to Eq. 2. We refer to this modified

version of DMG as DMG++. Similarly, we use two
critic networks for OT: CΩ,IC is a feed-forward
linear layer which uses the CLS token embedding
similar to the IC network, whereasCΩ,NER applies
a single long short-term memory (LSTM) layer to
extract longitudinal information from the BERT
hidden states at each token.

We also train a DG approach combining DMG
and OT (referred to as Combined). We retain the
critic networks from OT, and introduce masks at the
input of critic networks in addition to masks at the
inputs of IC and NER networks. The overall loss

function to be optimized is a sum of classification
losses, critic loss and the overlap penalty loss. We
explore whether we can obtain any gains in task
performance due to the complementary nature of
these approaches.

We use AdamW (Loshchilov and Hutter, 2018)
optimizer (initial LR: 5e-5, decay rate: 0.96, (β1,
β2) = (0.9, 0.999), ε = 1e-8) to minimize the respec-
tive loss objectives for each approach. We train the
models for 10 epochs for SNIPSesv and 5 epochs
for TOPesv. To improve training stability, we ac-
cumulate gradients from two mini-batches before
back-propagation. We follow Chattopadhyay et al.
(2020) and Zhou et al. (2020a) to fix approach-
specific learning parameters: we set λDMG = 0.1
(Eq. 3) and set the critic coefficient as a function of
the training progress p, λOT = 2

1+e−δp
− 1 where

δ = 10. We apply dropout with the rate of 0.1 at
all layers in FΨ and TΘ. Following (Chen et al.,
2019), we use two metrics to evaluate IC-NER per-
formance: (1) slot-filling F1 (Slot F1), which is the
weighted average of F1 scores across slot labels
and (2) semantic accuracy rate (Sem Acc), which
computes the exact match accuracy of ordered slot
labels prefixed with the intent label.

5 Results

5.1 Performance on Seen and Unseen
Segments

We report IC-NER performance on the test sets
from all four segments in Table 3. For each
segment and method, we report mean Slot F1

and Sem Acc over 5 trials with different random
seeds. We observe that for both datasets, perfor-
mance on the head segment differs substantially
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between approaches. Note that in SNIPesv, differ-
ent approaches produce the same evaluation fig-
ures, which we attribute to the limited number of
unique utterances in the head segment (Table 2),
even though it contains roughly the same utterance
count as the tail. While DG approaches do not pro-
vide a boost in performance over baselines for the
head segment, this is not necessarily a cause for
concern. We believe that in a real-world scenario
with digital assistants, very frequent requests can be
easily recognized using non-statistical models such
as rules and deterministic finite-state-transducers
(Mohri, 1997).

Among the three segments, improvements with
DG approaches (DMG++, OT & Combined) are
more visible in tail: the best DG approach returns
7.02% and 1.27% relative improvement in seman-
tic accuracy and slot F1 on SNIPSesv datasets over
the best performing baseline. The original test
set, which is not modified by our work and rep-
resents yet another segment demonstrates minor
but consistent improvements in both metrics across
SNIPSesv and TOPesv. Further, we observe com-
petitive performance by optimal transport-based
approaches (OT and Combined) on the body seg-
ment: upto 2.25% relative improvement with the
best performing baseline on SNIPSesv and identi-
cal performance on TOPesv.

We observe that improvements in TOPesv are
lesser than SNIPSesv, specifically for Tail and
Body segments. We believe that there exists
a clearer variation between segments in case of
SNIPSesv due to a wider range of topics spanned
by the utterances (music, books, events, weather)
whereas TOPesv intents are generally confined to
navigation. Hence, DG approaches are more likely
to exhibit gains over baselines in SNIPSesv vs
TOPesv.

5.2 Analysis of DG performance gains

5.2.1 Segment Classification Model

Since OT attempts to learn segment-invariant rep-
resentations, we validate this paradigm by building
a segment classifier on the representations from
the trained feature encoder. We extract CLS token
embeddings for the above approaches and train a
multi-class linear regression model using the seg-
ment as class information. We downsample the
body segment by a factor of 8 to ensure a uniform
class distribution. The per-segment approach trains
a different FΨ for each segment, hence we compute

the mean embedding from all three models. We
report segment accuracy (%) in Table 5.

We observe that the approaches which learn
segment-specific network components such as per-
segment (FΨ) and multi-head (TΘ) yield relatively
high classification accuracy, while the aggregate
model which learns a single network across seg-
ments returns the lowest performance among base-
lines. Optimal transport performs the worst, sug-
gesting that it learns the least segment-related infor-
mation. However, the difference with the majority
baseline (≈ 33%) suggests that segment-invariant
representations may not be completely achieved on
the test set, also observed in Galstyan et al. (2022).

5.2.2 Random-valued Mask Analysis
In order to analyze the segment-specific masks
learned by DMG++ approach, we compare the
learned masks using three metrics: (i) M1: Mean
pairwise cosine distance between m̃d, (ii) M2:
Mean pairwise cosine distance between md, and
(iii) M3: Mean fraction of “off” (0) dimensions in
md. Since md is sampled from m̃d (Eq. 2), we
compute M2 and M3 over 5 trials and report their
mean and standard deviation. Note that we only
analyze m̃d

IC since m̃d
NER is dependent on token

embeddings.
From Table 6, we notice that m̃d are clearly dif-

ferent between segments in both SNIPSesv and
TOPesv. These differences extend to the sampled
versions (which are used in forward-pass) are illus-
trated in M2 and M3, a result of the overlap penalty.
Further, masks from all segments are “on” (= 1)
for ≈ 59% and ≈ 53% dimensions for SNIPSesv
and TOPesv respectively. To ascertain if segment-
specific information is learned by masks, we con-
duct a sanity check experiment where we replace
the masks with a random parameter that encourages
similar fraction of “on” dimensions to the learned
masks.

Surprisingly, we notice that random masks re-
turn on-par performance on all metrics and seg-
ments with the learned masks on both SNIPSesv
and TOPesv corpora (Table 4). This result clearly
indicates that the masks do not provide segment-
specific information and the exact set of “on”/“off”
dimensions which are controlled by the learned
masks are not critical for performance on unseen
segments. To further ascertain this finding, we
repeated the random masks experiment on PACS
corpora (Li et al., 2017) from computer vision, fol-
lowing (Chattopadhyay et al., 2020), with similar
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Table 4: Comparing IC-NER performance between learnt masks (DMG) and random masks (DMG-Random;
repeated over 10 trials) on SNIPSesv and TOPesv. For brevity, only semantic accuracy (Sem) and slot filling F1
(Slot F1) are presented

Head Body Tail Original
Dataset Approach Sem SlotF1 Sem SlotF1 Sem SlotF1 Sem SlotF1

SNIPSesv
DMG++ - 87.84 96.73 88.33 95.59 88.41 93.87 87.00 94.74
DMG-

Random
µ 78.65 95.55 88.26 95.58 87.97 93.66 86.74 94.67
σ 2.55 0.33 0.18 0.05 0.67 0.29 0.18 0.08

TOPesv
DMG++ - 88.93 97.06 90.18 95.94 86.81 93.91 89.03 94.63
DMG-

Random
µ 88.80 96.96 90.08 95.85 86.83 93.86 88.91 94.55
σ 0.45 0.26 0.18 0.06 0.26 0.23 0.11 0.09

Table 5: Segment classification accuracy (%) for base-
lines and optimal transport. Majority baseline: ≈ 33%

Per Agg Mul OT
SNIPSesv 91.03 86.03 90.13 69.36
TOPesv 79.22 72.33 76.78 65.56

Table 6: Comparing learnt (m̃d) and sampled mask
(md) parameters across segments

Metric SNIPSesv TOPesv
M1 0.41 0.95
M2 0.41 ± 0.03 0.53 ± 0.01
M3 40.76 ± 1.57 52.70 ± 1.31

results (see Appendix).
Instead of learning segment-specific information

as suggested by Chattopadhyay et al. (2020), we
believe that the improvements yielded by DMG
approach can be attributed to learning generaliz-
able parameters using masks. Masks are encour-
aged to be robust by the training process, since md

are stochastically determined at each mini-batch
even for samples from the same segment. Further,
our experiments with random masks resemble the
training process in that a different set of masks
are sampled, except that gradients are not back-
propagated. Finally, we note that sampled masks
operate similar to a segment-specific dropout (Sri-
vastava et al., 2014) strategy. Hence, generalization
improvements in deep learning which have been
observed by dropout are likely to be enhanced with
segment-specific mask parameters.

6 Limitations

Obtaining search volumes using the Google Ad-
words API cannot disambiguate between different
context-based semantic interpretations of the same
word, especially when there are no additional to-
kens to provide context. For instance, search vol-
umes for apple will combine volumes related to
the corporation and the fruit, while apple phone
and apple juice will return only the relevant search

volumes. Further, this work did not address avail-
ability concerns for tail utterances/entities which
may be more expensive or labor intensive to collect
and annotate.

7 Conclusions

We presented a methodology to estimate utterance
frequency information in public datasets for IC-
NER task. We create two new corpora: SNIPSesv
and TOPesv which use the frequency information
to segment the original corpora into head, body and
tail segments. We adapt two DG approaches for IC-
NER and compute performance on each segment
as well as the original test set, which represents
an unseen segment. Our experiments show im-
provement in tail entity recognition by each DG
approach as well as their combination. Our follow-
up analyses validate the segment-invariant repre-
sentation learning by OT and suggest that DMG
provides enhanced generalization using segment-
specific masks. To assist future research in this di-
rection, we will release the SNIPSesv and TOPesv
datasets used in this work upon publication.
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A Determining Maximum Utterance
Sampling Probability

We collected a real-world dataset of user-queries
directed to our voice-controlled agent to determine
the maximum utterance sampling probability pmax.
We uniformly sample from all queries within a 10-
day duration to preserve the frequency distribution.
However, we retain only utterances which were
identified as belonging to services similar to intents
in SNIPS and TOP corpora: entertainment (music,
books, video), weather, bookings and local search.
This results in a total of 15M utterances. We com-
pute repetition counts for each unique utterance
and compute pmax using the utterance with maxi-
mum repetition count following Eq. 1. This results
in pmax=0.00245. We apply this estimated value
for Pmax on SNIPSesv and TOPesv.

B Random-valued Masks for PACS

PACS corproa (Li et al., 2017) is a commonly used
DG benchmark from computer vision and contains

images from four different styles: sketch, cartoon,
photo and art painting. Similar to previous evalua-
tions (Li et al., 2017; Chattopadhyay et al., 2020;
Zhou et al., 2020a), we compute the leave-one-
domain-out accuracy, where one domain is treated
as target and remaining three domains are treated
as source. We build a DMG model following the
same architecture as (Chattopadhyay et al., 2020)
and repeat our evaluations by replacing the learned
masks with random valued parameters. We observe
identical performance with random masks, similar
to SNIPSesv and TOPesv.

Table 7: Leave-one-domain-out accuracy (%) on PACS.
DMG (rep) represents results reported in Chattopad-
hyay et al. (2020), DMG (ours) reports results from our
implementation, and DMG (rand) uses random valued
masks.

Approach Sketch Cartoon Photo Art
DMG (rep) 71.42 69.88 87.31 64.65
DMG (ours) 67.98 67.83 84.25 63.48
DMG (rand) µ 67.24 67.71 83.75 63.19

σ 0.32 0.06 0.13 0.24
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