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Abstract

Lexical normalization, in addition to word
segmentation and part-of-speech tagging, is a
fundamental task for Japanese user-generated
text processing. In this paper, we propose
a text editing model to solve the three task
jointly and methods of pseudo-labeled data
generation to overcome the problem of data
deficiency. Our experiments showed that the
proposed model achieved better normalization
performance when trained on more diverse
pseudo-labeled data.

1 Introduction

User-generated text (UGT), such as social media
and blog posts, is a valuable source of knowledge
and opinions from diverse users. A notable char-
acteristic of UGT is that it contains non-canonical
sentences, and this degrades the performance of
natural language processing (NLP) systems trained
on canonical sentences. To reduce the gap between
the performance on general text and on UGT, lexi-
cal normalization techniques—which convert non-
standard word forms to standard forms—have been
explored, particularly for English (Aw et al., 2006;
Baldwin et al., 2015). In addition, Japanese UGT
requires a further step: to identify nonstandard
words in unsegmented sentences written without
word delimiters. For this reason, the problem of
Japanese lexical normalization has been solved by
predicting word boundaries, part-of-speech (POS)
tags, and normalized word forms simultaneously
(Sasano et al., 2013; Saito et al., 2014). Similarly to
previous work, we tackle the joint task comprising
Japanese word Segmentation, POS tagging, and
lexical Normalization (SPN).

A critical problem in lexical normalization is the
lack of labeled data. Manual annotation of nor-
malized forms is a time-consuming task; therefore,
the size of the available annotated corpora is quite
small (Kaji and Kitsuregawa, 2014; Higashiyama
et al., 2021). A prospective solution to this problem

is the use of pseudo-labeled data. In this paper, we
propose methods of generating pseudo-labeled data
using (auto-) segmented sentences and standard
and nonstandard word variant pairs. To generate
high quality labels, we acquire reliable variant pairs
based on lexical knowledge, namely, a dictionary
with lemma definition and hand-crafted rules.

For efficient learning from a limited amount of
data, we adopt a text editing approach. Our neural
tagging model predicts edit operations to normal-
ize input characters, while predicting segmentation
and POS tags at the same time. The editing pro-
cess is similar to that proposed in previous work
on English lexical normalization (Chrupała, 2014;
Min and Mott, 2015), but we design a specific tag
set for the Japanese SPN task, which requires the
management of a large number of character types.

Our extensive experiments on the SPN task
demonstrated that our model achieved better nor-
malization performance when the model used more
additional features, it was trained on more types of
pseudo-labeled data, and it was trained on training
instances with more diverse context.

2 Task Definition

As shown in Table 2, a training instance for the
SPN task is defined as a pair, comprising a sen-
tence x = (x1, . . . , xn) and its label sequence
t = {(fj , lj , pj , Sj)}mj=1, where n and m (≤ n)
are the numbers of characters and words in x, fj
and lj are the indexes of the first and last charac-
ter in j-th word wj , and pj is the POS tag of wj .
The set of standard forms Sj is equal to the empty
set ∅ when wj is a standard form, whereas Sj con-
sists of one or more standard forms when wj is a
nonstandard form.

A system is required to predict the word bound-
aries of an input sentence and the POS tag of each
word, detect nonstandard words, and generate one
of the standard forms of each nonstandard word.
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Meaning Nonstandard word w Standard form s SEdit tags te CConv tags tc

(a) really まぢ まじ K, REP(じ) K, K
(b) difficult ムズカシー むずかしい K, K, K, K, REP(い) HR, HR, HR, HR, K
(c) terrific すごーいー すごい K, K, D, K, K, D K, K, K, K, K
(d) high/expensive たっけぇ たかい K, REP(か), REP(い), D K, K, K, K
(e) awesome さいこー 最高 K, K, K, REP(う) KJ, KJ, KJ, KJ

Table 1: Examples of labels for nonstandard and standard word pairs. K, D, HR, and KJ represent KEEP, DEL,
TO_HIRAGANA, and TO_KANJI, respectively.

j 1 2 3 4

wj
日本 語 まぢ ムズカシー

(Japan) (language) (really) (difficult)
fj , lj 1, 2 3, 3 4, 5 6, 10
pj Noun Noun Adverb Adjective

Sj ∅ ∅ {まじ, {難しい,
マジ} むずかしい}

Table 2: Words in and labels of a sentence x =“日本語
まぢムズカシー” (nihon go maji muzukashı̄), which
means “Japanese language is really difficult.”

3 Joint SPN Method

3.1 Multiple Sequence Labeling Formulation

In this work, we formulate the SPN task as multiple
character-level sequence labeling problems. We
convert the label sequence t to four tag sequences:
a segmentation tag sequence ts, a character-level
POS tag sequence tp, a string edit operation (SEdit)
tag sequence te, and a character type conversion
(CConv) tag sequence tc.

We employ a tag set Tseg = {B,I,E,S} for
segmentation, where B, I, and E represent the be-
ginning, inside, and end of a multi-character word,
and S represents a single-character word. We set
tpi = pj ∈ Tpos for the POS tag of a character xi
in a word wj (fj ≤ i ≤ lj), where Tpos denotes a
POS tag set. We use two types of tags for the nor-
malization task. For xi in a standard word wj , we
set tei = tci = KEEP, which means that no edit op-
eration or conversion is required for xi. For xi in a
nonstandard word wj , two types of tags tei ∈ Tsedit
and tci ∈ Tcconv are generated based on the closest
standard form s?j ∈ Sj , where Tsedit and Tcconv
represent the tag sets of SEdit and CConv, which
we define in §3.2. The procedure for selecting the
closest standard form is as follows1: a character
alignment between wj and s ∈ Sj is calculated,
and then the standard form with the most charac-
ters aligned to wj is selected.

1We describe the procedure in detail in Appendix §A.

3.2 Tag Definition

The Japanese writing system comprises three
major scripts: two syllabographic kana (i.e.,
hiragana and katakana), and the morphographic
kanji. The numbers of character types in them
are different: approximately 80 in hiragana, 80
in katakana,2 and more than 4,000 in kanji. To
decrease the tag space size, we allow insertion and
replacement operations only for kana characters.
Specifically, we define the SEdit tags as Tsedit =
{KEEP,DEL,INSL(c),INSR(c),REP(c)} for
a kana character c. DEL indicates deletion of the
current character, INSL(c) and INSR(c) indi-
cate insertion of c immediately to the left and right
of the current character, respectively, and REP(c)
indicates replacement of the current character by c.
In addition, we define the CConv tags as Tcconv =
{KEEP,TO_HIRA,TO_KATA,TO_KANJI},
where the last three tags indicate conversion of the
current character to hiragana, katakana, and kanji,
respectively.3

For the example sentence x in Table 2, the tags
for w3 = x4:5 =まぢ and w4 = x6:10 =ムズカ
シー are shown as (a) and (b) in Table 1, and the
tags for the other characters are tei = tci = KEEP
(1 ≤ i ≤ 3). Both types of tags are automatically
generated, according to the character alignments
between original and standard tokens. Table 1 lists
examples (c)–(e), which have other types of tags.

A remaining problem is the ambiguity of charac-
ters assigned with the TO_KANJI tag; for example,
あき aki can be converted to 秋 ‘autumn’, 空き
‘vacancy’, or 飽き ‘bored’ depending on its sur-
rounding context. We use an external kana-to-kanji
converter to select the most likely candidates.

2We distinguish kana characters with and without a voicing
mark (e.g., “か” ka and “が” ga).

3Tag definition different from above could be used. We
investigated two alternative settings, but our preliminary ex-
periments showed no gains over our proposed setting: a case
where SEdit and CConv tags were merged into a single tag
set and a case where additional SEdit tags similar to the spe-
cial operators used in the pronunciation feature (§3.4) were
introduced.
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There still exist cases in which a nonstandard
word with many deleted or replaced characters can-
not be restored to its standard form (e.g., よろ
yoro to よろしく yoroshiku ‘thank you’) by the
defined tags when the required number of insertion
and replacement operations exceeds the number
of characters in the original token. This can be
solved by introducing multi-character operations
(e.g., INSR(しく)), but we assume that most in-
stances can be expressed by single-character opera-
tions, and leave those cases for future work.

3.3 Model Architecture

We use a long short-term memory (LSTM)-based
architecture (Hochreiter and Schmidhuber, 1997)
for the sequence labeling tasks. Our model consists
of shared bidirectional LSTM (BiLSTM) layers
and task-specific inference layers.

An input character sequence x is transformed to
embedding vectors e1:n = (e1, · · · , en) and fed
into a multi-layer BiLSTM. Hidden vectors from
forward and backward LSTMs are concatenated, to
form a single hidden vector hi for each character.
hi is then mapped to a score distribution vector yu

i

for each task u ∈ U = {seg, pos, sedit, cconv}, via
a softmax layer.

Given training data D, the model parameters are
learned by minimizing a loss function L during
training. The loss L is defined as the sum of the
cross-entropy between the gold and predicted tag
distributions for all tasks:

L = −
∑

(x,y)∈D

∑
u∈U

λu
∑

1≤i≤|x|

tui log yu
i , (1)

where 0 ≤ λu ≤ 1 is a coefficient to control the
contribution of each task u and tui is the one-hot
vector of the gold label tui , which is assigned to xi.

3.4 Features

We use three input features, based on character,
pronunciation, and lexicon entries. Feature vec-
tors from the three sources for each character are
concatenated, to form a single vector ei in §3.3.

Character Feature. A character embedding vec-
tor eci for each character xi is retrieved from a
character embedding matrix.

Pronunciation Feature. We introduce a pronun-
ciation element that corresponds to a vowel, a con-
sonant, the long sound symbol, or a special op-
erator (voicing V, semi-voicing P, or lowercasing

S) in a kana character sequence.4 These elements
are similar to romaji (Roman letter transcription)
but differ mainly with respect to the special oper-
ators. For example, “グ” gu, “ァ” a, and “パ” pa
are decomposed into {k, u, V}, {a, S}, and {h, a,
P}, respectively. Each character xi is decomposed
into one or more pronunciation elements. A pro-
nunciation vector epi for xi is the average of its
pronunciation element embeddings retrieved from
an embedding matrix.

Lexicon Feature. We define two types of binary
features based on a nonstandard word lexicon.5 A
lexicon word feature for a character xi is defined
as a (|P |×|K|)-dimensional vector ed,wi , each el-
ement of which indicates whether xi corresponds
to a particular position p ∈ P = {immediate left,
immediate right, beginning, middle, end} of any
nonstandard word of length k ∈ K in the lexicon.
Similarly, a lexicon POS feature for xi is defined
as a |TPOS|-dimensional vector ed,pi , each element
of which indicates whether the xi corresponds to
an inside position of any nonstandard word with a
particular POS.

4 Pseudo-labeled Data Generation

To overcome the lack of training data for the nor-
malization task, we construct a set of standard and
nonstandard word variant pairs V and then generate
different types of pseudo-labeled data by two ap-
proaches: distant supervision on formal target-side
(DStgt) and informal source-side text (DSsrc).

DStgt generate a sentence where the original to-
kens are retained but nonstandard tokens among
them are annotated with pseudo standard tokens;
specifically, given a segmented sentence, a token
matching with a nonstandard form vnst in V is an-
notated with SEdit and CConv tags to convert to
its standard form, while other tokens are annotated
with KEEP tags. On the other hand, DSsrc gen-
erate a sentence where one or more of the orig-
inal tokens are replaced by pseudo nonstandard
forms; given a standard and nonstandard variant
pair (vst, vnst) ∈ V , DSsrc extracts a segmented
sentence containing a token with the same lemma
as that of the pair, replaces the token by vnst, and
generates SEdit and CConv tags to convert vnst to

4We generate pronunciation features only for kana charac-
ters and use zero vectors for other types of characters.

5We use nonstandard words in dictionary-derived (Vd) and
rule-derived variant pairs (Vr) (described in §4) for the models
trained on dictionary-derived (Ad) and rule-derived data (Ar)
(described in §5.1) in our experiments, respectively.
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Lemma
(語彙素)

〈大きい〉
ōkī

‘big’

Word form
(語形)

オオキイ
ōkī

オッキイ
okkī

Orthographic form
(書字形)

大きい

おおきい

おっきい

Surface form
(出現形)

大きい [term]

大きく [cont]

…

おおきい [term]

おおきく [cont]

…

おっきい [term]

おっきく [cont]

…

Figure 1: Hierarchical lemma definition in UniDic. Ter-
mination forms (term) and continuative forms (cont)
are illustrated as examples of surface forms.

vst. We present examples of DStgt and DSsrc in
Appendix §B.

As the main difference between two approaches,
DStgt does not change original sentences but DSsrc

does. Although we can use actual sentences with
DStgt, we can easily obtain any number of syn-
thetic sentences containing nonstandard words of
interest with DStgt. However, both approaches re-
quire reliable variant pairs to generate useful data.
For this purpose, we use two strategies for variant
pair acquisition: dictionary-based and rule-based.

4.1 Dictionary-derived Variant Pairs
As the first approach to variant pair acquisition, we
use UniDic6 (unidic-cwj-2.3.0) (Den et al., 2008),
but any dictionary with lemma and conjugation in-
formation can be used. UniDic is an electronic dic-
tionary for Japanese morphological analysis (MA)
and employs hierarchical definition of word in-
dexes. As shown in Figure 1, a lemma in UniDic
aggregates word forms with different pronunciation
and word forms with different conjugation types, a
word form aggregates orthographic forms, and an
orthographic form aggregates surface forms (which
mostly correspond to different conjugation forms).
Thus, surface forms with the same lemma and con-
jugation form compose a variant set; for example,
the continuative surface forms of a lemma 〈大き
い〉 include 大きく ōkiku, おおきく ōkiku, and
おっきく okkiku.

We extract valid standard and nonstandard word
pairs from variant sets by the following steps. (1)
Words whose POS is symbol, space, person name,
or number are excluded. (2) Each variant in a vari-
ant set is automatically classified as a standard form
or valid nonstandard form by predefined rules,7

6https://ccd.ninjal.ac.jp/unidic
7The classification procedure is as follows: a variant with

different pronunciation from its lemma is regarded as a non-

which are based on pronunciation and frequency of
occurrence among the variant forms of the lemma
in a corpus. (3) Finally, each nonstandard form is
paired with the closest standard form.

4.2 Rule-derived Variant Pairs

As an alternative approach, we use hand-crafted
rules to transform standard forms to nonstandard
forms. We classify lexical variations that have
been reported in previous work (Kaji et al., 2015;
Miyazaki and Sato, 2019) or observed by us into
dozens of patterns. We then choose patterns that
are easy-to-implement or widely adaptable to many
words, and implement them as variant generation
rules. Specifically, we use four rules: change of
character type (e.g., 疲労 hirō ‘fatigue‘ → ひろ
う), and substitution by a character with the same
pronunciation (e.g., マジ maji ‘really’ → マヂ),
mora consonant (e.g.,行こう ikō ‘go’→行こっ),
and uppercase kana (e.g.,ちょっと chotto ‘bit’→
ちよつと), as well as six rules similar to those
used by Sasano et al. (2013) and Ikeda et al. (2016).
We describe the rules in detail in Appendix §C

To obtain plausible variant pairs, we follow these
steps: (1) apply the rules to standard forms, which
are obtained by the dictionary-based approach, and
generate nonstandard form candidates, (2) count
frequencies of character n-grams that match origi-
nal standard forms or generated nonstandard forms
in a corpus, and (3) accept variant pairs of which
both the standard and nonstandard forms have fre-
quencies higher than a threshold value of 10.

5 Experimental Settings

5.1 Language Resources

As training data Dt and development data Dv for
the segmentation and POS tagging tasks, we used
57K and 3K sentences, respectively, with the short
unit word (SUW) annotation from the core data
of the Balanced Corpus of Contemporary Written
Japanese (BCCWJ)8 1.1 (Maekawa et al., 2014).

For variant pair acquisition, we counted the fre-
quencies of UniDic entries (§4.1) using 3.5M sen-
tences in parts of registers of the BCCWJ non-core
data and character n-gram frequencies (§4.2) using
8.8M sentences in Yahoo! Chiebukuro data.9

standard form, a variant with a frequency of occurrence of 5%
or less as a nonstandard form, and a variant with a frequency
of 10% or more as a standard form.

8https://ccd.ninjal.ac.jp/bccwj/en/
9https://www.nii.ac.jp/dsc/idr/yahoo/

chiebkr3/Y_chiebukuro.html

https://ccd.ninjal.ac.jp/unidic
https://ccd.ninjal.ac.jp/bccwj/en/
https://www.nii.ac.jp/dsc/idr/yahoo/chiebkr3/Y_chiebukuro.html
https://www.nii.ac.jp/dsc/idr/yahoo/chiebkr3/Y_chiebukuro.html
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We constructed three pseudo-labeled datasets
using the dictionary-derived and rule-derived vari-
ant pairs, which we denote by Vd and Vr. The
first dataset At was generated by applying DStgt

to Dt using Vd.10 The second dataset Ad and third
dataset Ar are 173K and 170K synthetic sentences
generated by DSsrc from the 3.5M BCCWJ non-
core sentences, using the top np = 20K frequent
pairs11 in Vd or Vr. Notably, for each pair in Vd
or Vr, we extracted at most ns = 10 original sen-
tences that contained their lemma.12 Similarly, we
constructed an additional 3K sentences from the
top 3K frequent pairs in Vd and 3K from 3K pairs
in Vr, and used them as development data, together
with Dv.

For evaluation, we used Yahoo! blog and Ya-
hoo! Chiebukuro sentences annotated with SUW
segmentation and POS tags, and with normalized
forms (Higashiyama et al., 2021), as the test data.

5.2 Training Setting
During each training epoch, we randomly con-
structed a mini-batch consisting only of real train-
ing sentences (At) or synthetic training sentences
(Ad orAr) for each iteration, and trained the model
for up to 20 epochs. We randomly initialized all
parameters, applied mini-batch stochastic gradient
descent to optimize parameters, and reduced the
learning rate by a fixed decay ratio every epoch
after the first five epochs. We set the loss coeffi-
cient values in Eq. (1) as λseg = λpos = 1 for real
sentences, and set them as λseg = λpos = λ0 for
synthetic sentences with automatic segmentation
and POS tags, where λ0 is a hyperparameter. We
set the other coefficient values for any sentences as
λcconv = λsedit = 1.

We searched for the best values, within given
ranges, for some hyperparameters of the model and
used predetermined values for the others: character
embedding size 200 from {100, 200, 300}, pronun-
ciation embedding size 30 from {10, 20, 30, 40,
50}, BiLSTM hidden unit size 1,000 from {200,
400, 600, 800, 1,000}, BiLSTM dropout (Zaremba
et al., 2014) rate 0.1 from {0.1, 0.2, 0.3, 0.4}, loss
coefficient λ0 = 0.4 from {0.2, 0.4, 0.6, 0.8, 1.0},
number of BiLSTM layers 2, mini-batch size 100,

10We did not construct DStgt-based data using Vr .
11We obtained 404K pairs from 873K UniDic entries and

47K pairs from 868K rule-generated nonstandard form candi-
dates by the processes described in §4.1 and §4.2.

12Fewer than 200K sentences were generated because 10
sentences were not necessarily included for every variant pair
in the original corpus.

initial learning rate 1.0, learning rate decay ratio
0.9, and gradient clipping threshold 5.0.

5.3 Kana-to-Kanji Conversion Model
For kanji conversion (KC), we trained an n-
gram language model (LM) of kana-kanji mixed
sentences using SRILM13 (Stolcke, 2002) on
1.2M sentences in the BCCWJ core and non-
core data, and performed Viterbi decoding with
negative log probability of the LM using the
decode_ngram.py14 script. Specifically, if the
TO_KANJI tag was predicted for one or more char-
acters in a predicted word span by the normaliza-
tion model, the word was given to the KC model, to-
gether with six preceding and six succeeding char-
acters, and the best hypothesis found was output as
a normalized form.

5.4 Post-processing
We defined post-processing rules to apply to the
predicted segmentation or normalization results.
The first rule Seg-PP changes segmentation tags
tsi+1:i+k to I∈ Tseg when k consecutive charac-
ters xi:i+k are the same vowel kana, long sound
symbol, mora nasal, or mora consonant characters,
according to our finding that such cases were rare
from our preliminary experiment. The second rule
Norm-PP changes a predicted normalized word to
its original string if the predicted form does not
exist in a standard form lexicon. We used standard
forms in Vd as the lexicon.

5.5 Baseline Methods
We evaluated the following two methods for com-
parison. The first method was MeCab15 (0.996)
(Kudo et al., 2004) with UniDic (unidic-cwj-2.3.0),
which is a popular Japanese MA toolkit based on
conditional random fields (CRFs). The second
method, which we call MeCab+ER, was Sasano
et al. (2013)’s joint MA and normalization method,
implemented by Higashiyama et al. (2021). This
enhances MeCab’s word lattices by their expansion
rules to recognize specific types of nonstandard
words shown in Appendix §C.

5.6 Evaluation Metrics
We used word-level precision, recall, and F1 score
to evaluate systems on each task. As shown in

13http://www.speech.sri.com/projects/
srilm/

14https://github.com/yohokuno/neural_
ime

15https://taku910.github.io/mecab/

http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
https://github.com/yohokuno/neural_ime
https://github.com/yohokuno/neural_ime
https://taku910.github.io/mecab/
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Method Use of data Seg POS Norm
At Ar Ad P R F P R F P R F

MeCab 89.2 95.1 92.1 87.5 93.3 90.3 – – –
MeCab+ER 93.5 96.5 95.0 91.4 94.3 92.8 55.9 25.8 35.3

Ours

X 91.3 93.8 92.6 87.6 90.0 88.8 50.9 19.4 28.1
X X 91.0 93.7 92.3 88.1 90.8 89.4 42.4 28.0 33.8
X X 91.9 94.2 93.1 89.0 91.2 90.1 52.9 32.1 39.9
X X X 91.1 93.8 92.5 88.3 90.9 89.6 49.7 37.0 42.4

Ours +Seg-PP X X X 92.9 94.1 93.5 89.9 91.1 90.5 50.8 37.8 43.4
Ours +Seg-PP +Norm-PP X X X 92.9 94.1 93.5 89.9 91.1 90.5 65.8 36.6 47.1

Table 3: Precision (P), recall (R), and F1 score (F) of the proposed and compared methods for word segmentation,
POS tagging, and lexical normalization.

Table 2, a test word has labels corresponding to an
index pair of the first and last character, i.e., span,
a POS tag, and a standard form set. A predicted
word w∗ is counted as a true positive (TP) when
the span of w∗ equals to that of a test word for
the segmentation task and when the span and POS
tag of w∗ equal to those of a test word for the
POS tagging task. For the normalization task, a
predicted word w∗ is counted as a TP when the
span of w∗ equals to that of a test word and the
normalized form of w∗ is included in the standard
form set of the test word, whereas w∗ is counted
as a false positive (FP) when either of the span or
normalized form of w∗ does not match with a test
nonstandard word. A test word w is counted as a
false negative when the span and normalized form
of any predicted word do not match with w.

6 Results and Analysis

6.1 Main Results

Table 3 shows the performance of the proposed
model (with the full features, unless otherwise spec-
ified) on the three tasks.16 Although the proposed
model trained only on At achieved low normaliza-
tion recall, the model with additional data Ad or
Ar achieved a higher score, and the model with the
three datasets achieved the highest score. These
results are roughly consistent with the observation
that adding different types of pseudo-labeled data
reduced the number of out-of-vocabulary (OOV)
tokens in the test data, as shown in Appendix §D.
Our model with post-processing achieved further
improvements; Seg-PP improved F1 for each task
by approximately 1 point and Norm-PP improved
normalization precision by 15 points. However, the
latter results indicate that avoiding the predictions
of meaningless or unusual forms has the potential

16We used a majority-vote to transform character-level POS
tags predicted by the proposed model to a word-level tag.

to improve our model.
Compared with MeCab+ER, our model achieved

better normalization performance when trained on
sufficient training data. Conversely, MeCab+ER
achieved the best segmentation and POS tagging
performance. The superiority of MeCab+ER over
MeCab indicates the advantage of the explicit pre-
diction of normalized word spans by the method
on the two tasks, which contrasts with the inde-
pendent prediction of word spans, POS tags, and
normalized forms performed by our model.

6.2 Effect of Dataset Size

To investigate the effect of the amount of pseudo-
labeled data, we generated dictionary-derived data
A′d with different settings of ns and np, where ns
is the number of extracted sentences per variant
pair and np is the number of variant pairs, as de-
scribed in §5.1. We then evaluated the normaliza-
tion performance of the proposed model trained on
At ∪ A′d.17

Figure 2 (a) shows the performance of the model
with varying ns and fixed np = 20K. A larger ns
led to both better precision and better recall, indi-
cating that training with the same variant pairs but
with more diverse context sentences contributed
to more robust prediction. Figure 2 (b) shows the
performance of the model with fixed ns = 10 and
varying np. Increasing np from 5K to larger values
contributed to better performance but increasing np
above 10K did not improve recall, and degraded
precision in most cases, probably because of the
infrequent and ineffective variant pairs. Although
the frequencies of the 5K-th and 10K-th nonstan-
dard words in the constructed variant pairs were six
and two, respectively, entries ranked below about

17We also evaluated the model’s performance given gold
segmentation to remove the influence of segmentation errors,
but the model showed a similar tendency regardless of whether
gold segmentation was given, as shown in Figure 2.
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Figure 2: Normalization performance of the proposed
model trained on At ∪ A′

d with different size settings.

16K-th had a frequency of zero.18

These two results suggest that the gain discussed
in §6.1 was caused by both the additional variant
pairs and the additional contexts of existing variant
pairs in the combined data of Ad and Ar.

6.3 Detailed Results of Normalization

We semi-automatically annotated the test sentences
with SEdit and CConv tags. Of 767 nonstandard to-
kens, six and three words required multi-character
edit operations and replacement by Roman letters,
respectively. Therefore, the upper bound of nor-
malization recall was 99% by our tag set.

We then evaluated the proposed model with
different features trained on the full At ∪ Ad ∪
Ar dataset, with respect to the character-level
SEdit/CConv tag prediction accuracy for the KEEP
tag and other tags, and the word-level text editing
accuracy of negative and positive normalization
instances, which is calculated according to gold
segmentation. A negative instance indicates a gold
word annotated with no standard forms, and a pre-
diction is regarded as correct when only KEEP tags
are predicted for the word. Notably, in the test data,
KEEP tags account for 95.8% and 96.8% of all
SEdit and CConv tags, respectively, and negative
instances account for 93.9% of all word tokens.

As shown in Table 4, for the KEEP tag and
negative normalization instances, the three mod-
els with different features achieved a high recall
(close to, or better than, 99%) and a somewhat
lower precision (around 97%–98%), indicating that
over-normalized words and undetected nonstan-
dard words accounted for the remaining 1% and

18Different entries with the same frequency were sorted in
Japanese alphabetical order.

Feature SEdit (Keep) CConv (Keep) Norm-neg
P R P R P R

C 97.4 99.5 98.2 99.0 97.2 98.7
C+L 97.2 99.6 98.4 99.0 97.0 98.8
C+L+P 97.4 99.6 98.5 99.2 97.3 99.0

Feature SEdit (other) CConv (other) Norm
P R P R P R

C 77.5 39.5 56.7 41.5 48.6 36.9
C+L 77.7 34.0 60.6 48.0 50.4 35.6
C+L+P 80.5 39.8 67.9 52.2 54.6 40.3

Table 4: Precision/Recall of the proposed models with
character (C), lexicon (L), and pronunciation (P) fea-
tures for character-level tag prediction (SEdit/CConv)
and word-level text editing (Norm-neg/Norm).

Type Gold Det ValTag CorSeg CorKC R
SCV 419 255 164 156 156 37.2
CTV 248 149 105 94 92 37.1
AR 132 78 55 51 51 38.6
Typo 23 3 1 1 1 4.4
FP – 121 – – – –

Table 5: Evaluation of the proposed model for each cat-
egory. Sound change variants (SCV), character type
variants (CTV), and alternative representations (AR)
are categories defined in Higashiyama et al. (2021). FP
indicates the number of words detected incorrectly by
the model.

2%–3%, respectively. For other tags and positive
normalization instances, both character-level and
word-level performance were much lower because
of the small number of training instances. However,
the models with more additional features achieved
better performance, indicating the effectiveness of
the lexicon and pronunciation features. In particu-
lar, each additional feature substantially improved
the performance of CConv tag prediction.

6.4 Error Analysis

We conducted step-by-step evaluation of the pro-
posed model trained on the full dataset. Table 5
shows the number of gold normalization instances
(Gold), predictions correctly detected (Det) out of
Gold, predictions with valid SEdit/CConv tags (Val-
Tag) out of Det, predictions correctly segmented
(CorSeg) out of ValTag, and predictions matched
with correct standard forms after text editing and
KC (CorKC) out of CorSeg, for each category.
For each of the top three categories (SCV, CTV,
and AR), two major errors were detection failure,
which accounted for 39%–41% (Gold−Det

Gold ), and tag
prediction error, which accounted for 17%–22%
(Det−ValTag

Gold ), whereas the true positives accounted
for 37%–39% (R= CorKC

Gold ). This tendency was
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Type Gold DetKC ValTag CorSeg CorKC
Req. 116 58 52 49 48
Opt. 170 22 21 21 20
FP – 47 – – –

Table 6: Evaluation of the proposed model for kanji
conversion (KC). Required (Req.) indicates that any
standard forms of a nonstandard word require KC. Op-
tional (Opt.) indicates that some standard forms require
KC but other standard forms can be generated without
KC. FP indicates the number of words detected incor-
rectly by the model.

common to all three categories.
Table 6 shows similar evaluation results for KC,

where DetKC indicates the number of gold words
assigned TO_KANJI tag(s) by the model. We
found that most errors for the “required” instances
were detection failures, and the KC model correctly
converted 97% (CorKC

CorSeg ) of the “required” and “op-
tional” instances.

With respect to precision degradation, the model
over-normalized 121 negative instances. We found
that 61 cases of these instances were interjections
or onomatopoeic words, and their characteristics
were similar to general nonstandard words; this
made it difficult to distinguish them from words
to be normalized. We present further analysis and
actual examples in Appendix §F.

7 Related Work

Word Segmentation and Lexical Normalization.
For word segmentation and lexical normalization
of Japanese UGT, most previous work applied a
lattice-based MA framework, which jointly pre-
dicts word sequence and POS tag sequences over
a word lattice of an input sentence. To incorporate
informal word nodes into a word lattice, Sasano
et al. (2013) and Kaji and Kitsuregawa (2014) used
hand-crafted rules for recognizing variant forms
of known words, and Saito et al. (2014) and Saito
et al. (2017) acquired formal-informal word pairs
from manually-annotated or unlabeled text. In con-
trast to those methods, Ikeda et al. (2016) applied a
sequence-to-sequence model trained on synthetic
formal-informal sentence pairs to sentence-level
Japanese text normalization.

For Chinese, also an unsegmented language, non-
standard word detection and normalization meth-
ods have been proposed. Li and Yarowsky (2008)
extracted formal-informal word pairs using web-
searched sentences defining informal words and a
conditional log-linear ranking model. Wang and

Ng (2013) proposed beam-search decoding meth-
ods for lexical normalization as well as punctuation
correction and recovery of missing words, for Chi-
nese and English UGT, as preprocessing steps for
Chinese↔English machine translation (MT). Qian
et al. (2015) proposed a transition method based on
a perceptron framework and a normalization dic-
tionary for the joint SPN task. Zhang et al. (2017)
proposed a transition method using character-level
and word-level LSTMs for word segmentation and
detection of informal words.

English Lexical Normalization. Early work on
lexical normalization of English SMS and mi-
croblog text employed a noisy channel formulation;
to restore plausible standard forms from observed
nonstandard words, Aw et al. (2006) trained a statis-
tical MT model and Choudhury et al. (2007) trained
a hidden Markov model on parallel sentences of
standard and nonstandard English. Liu et al. (2011)
automatically collected training word pairs using
carefully-designed web search queries and trained
CRFs to calculate the conditional probability of
a nonstandard character given a standard charac-
ter. Recently, Muller et al. (2019) adapted BERT
(Devlin et al., 2019) for lexical normalization by in-
troducing a subword alignment algorithm between
standard and nonstandard words and a task-specific
fine-tuning strategy.

Some other work has adopted unsupervised
methods: a log-linear model to score standard and
nonstandard word sequences (Yang and Eisenstein,
2013), a graph-based method to model contextual
and lexical similarity (Sönmez and Özgür, 2014),
and a finite-state transducer using word embedding
and string similarity (Rangarajan Sridhar, 2015).

Text Editing. Text editing methods have also
been applied to English lexical normalization.
Chrupała (2014) used character embeddings based
on a recurrent neural network LM and trained CRFs
to predict character-level edit operations. Min and
Mott (2015) proposed an LSTM-based model to
perform word-level edit operations that aggregate
character-level edit operations.

Recently, text editing models based on Trans-
former and BERT (Malmi et al., 2019; Mallinson
et al., 2020; Stahlberg and Kumar, 2020) have been
proposed for monolingual sequence transduction
tasks, such as grammatical error correction and text
normalization for speech synthesis, because of their
sample-efficient and fast inference characteristics
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compared to sequence-to-sequence models.

Data Synthesis. Data synthesis and augmenta-
tion methods have been explored for various NLP
tasks, to increase the diversity of training examples
(Feng et al., 2021) and for lexical normalization
to address the deficiency of training data. Ikeda
et al. (2016) synthesized Japanese formal-informal
sentence pairs by hand-crafted rules to convert stan-
dard forms to nonstandard forms. Zhang et al.
(2017) synthesized training data for Chinese in-
formal word detection by random substitution of
formal words in segmented sentences by informal
words in a dictionary of formal-informal word pairs.
To train statistical and neural MT models for Turk-
ish text normalization, Çolakoğlu et al. (2019) gen-
erated a pseudo-parallel corpus where nonstandard
words in original tweet text were aligned with plau-
sible standard words using their weighted edit dis-
tance algorithm. Dekker and van der Goot (2020)
explored data synthesis methods for English lexi-
cal normalization using the clean-to-noisy policy
(mainly based on manually-designed rules) and the
noisy-to-clean policy (based on predicted standard
forms).

8 Conclusion

This paper presents our text editing model and
methods of pseudo-labeled data generation for the
joint segmentation, POS tagging, and normaliza-
tion task. The experiments demonstrated that the
proposed model was successfully trained on gener-
ated pseudo-labeled data, but more exhaustive de-
tection and accurate normalization of nonstandard
words have the potential to improve the model.

Future work includes (1) explicit consideration
of nonstandard word spans for accurate segmenta-
tion and normalization, (2) the use of a large-scale
pretrained LM for better normalization coverage,
and (3) evaluation on broader UGT domains.
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Original sentence Updated information
Word Lemma ID POS Conjugation Word SEdit tags CConv tags Standard

form (Substituted) form
スゴく 19163 Adjective Continuative – K, K, K HIRA, HIRA, K すごく
気 8263 Noun – – K K –
に 28178 Particle – – K K –
なる 28061 Verb Termination – K, K K, K –

Table 7: An example of DStgt. Assume that we have a standard and nonstandard word variant pair pa = (スゴく,
すごく) ‘very’ with lemma ID of 19163 and continuative form. A segmented sentence xa =“スゴく|気|に|な
る” (sugoku ki ni naru), which means “(I’m) very curious.”, is annotated with SEdit and CConv tags by DStgt,
according to the matched tokenスゴく with the same lemma ID and conjugation form as those of pa.

Original sentence Updated information
Word Lemma ID POS Conjugation Word SEdit tags CConv tags Standard

form (Substituted) form
ほんとう 34947 Noun – ほんっと K, K, D, INSR(う) K, K, K, K ほんとう
に 28198 Particle – – K K –
心配 19516 Noun – – K, K K, K –
です 25653 Copula Termination – K, K K, K –

Table 8: An example of DSsrc. For a standard and nonstandard word variant pair pb =(ほんとう, ほんっと)
‘truth’ with lemma ID of 34947 and no conjugation form, a segmented sentence containing a token with the same
lemma ID and conjugation form as those of pb is extracted: xb =“ほんとう|に|心配|です” (hontō ni shimpai
desu), which means “(I’m) really worried.” Then, a synthetic sentence “ほんっと|に|心配|です” annotated with
SEdit and CConv tags is generated by DSsrc.

A Selection of Closest Standard Form

Let wj be a word and Sj be the set of standard
forms of wj . We define four character types of a
word: “hiragana-only”, “katakana-only”, “kanji-
kana-mixed”, and “other”. The process of selecting
the closest standard form, which is mentioned in
§3.1, comprises the following steps:

1. If Sj contains standard forms with the same
character type as wj , those standard forms
are prioritized; standard forms with different
character types are removed from Sj .

2. If Sj contains only standard forms with dif-
ferent character types from wj , the standard
forms with the same character type as the stan-
dard form occurring most frequently in a cor-
pus are retained, and others are removed from
Sj .

3. The standard form with the most characters
that are aligned to wj is selected as the closest
standard form s?j . Character alignment be-
tween wj and s ∈ Sj is calculated, to find the
longest matching substrings recursively, until
any substrings in wj and s are not matched.

B Examples of Pseudo Label Annotation

An example of DStgt to a sentence xa and a variant
pair pa is shown in Table 7. Also, an example
of DSsrc to a sentence xb and a variant pair pb is
shown in Table 8. The notation of SEdit and CConv
tags in Table 7 and 8 is the same as that in Table 1.

C Variant Generation Rules

We define 10 rules in Table 9 to generate nonstan-
dard form candidates from standard forms. Rule
2 interchangesお↔を,じ↔ぢ,ず↔づ,ぶ↔ゔ,
オ↔ヲ,ジ↔ヂ,ズ↔ヅ, orブ↔ヴ as characters
with the same pronunciation. We generate multiple
variants from an original word using any combi-
nation of applicable rules in {0, 1} × {0, 2, 7} ×
{0, 3, 8} × {0, 4, 5, 6} × {0, 9, 10}, where 0 indi-
cates that no rule is applied.

D Out-of-vocabulary Tokens in Test Data

Table 10 shows the number and percentage of OOV
tokens for each training dataset. Adding either
Ad orAr (separately) toAt reduced the number of
OOV nonstandard tokens by 102 or 110, but adding
both datasets decreased the number of OOV tokens
by 161. This indicates that the remaining 51 tokens
were contained in both datasets.
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ID Rule Sub-rule Original Variant
1 Change of character type (a) Hiragana to katakana たいへん taihen ‘hard’ タイヘン

(b) Katakana to hiragana スーパー sūpā ‘super’ すーぱー
(c) Kana-kanji mixed to hiragana 疲労 hirō ‘fatigue’ ひろう
(d) Kana-kanji mixed to katakana 苦手 nigate ‘weak’ ニガテ

2 Sub. by character with the same – マジ maji ‘really’ マヂ
pronunciation

3 Sub. by mora consonant (a) “です” です desu (copula) っす
(b) Adjective ends with “い” 広い hiroi ‘wide’ 広っ
(c) Verb ends with “う” 行こう ikō ‘go’ 行こっ

4 Sub. by uppercase kana – ちょっと chotto ‘bit’ ちよつと

5S,I Sub. by lowercase kana – いや iya ‘unpleasant’ ぃゃ

6S,I Sub. of vowel by long sound – 楽しい tanoshı̄ ‘fun’ 楽しー

7I Sub. of vowel sequence (a) Adjective ends with -ai to ē うるさい uruasi ‘loud’ うるせえ urusē
(b) Adjective ends with -ui to ı̄ わるい warui ‘bad’ わりい warı̄
(c) Adjective ends with -oi to ē おそい osoi ‘late’ おせえ osē
(d) Word ends with -oう to oお そう sō ‘so’ そお
(e) “言う/いう” toゆう 言い ı̄ ‘say’ ゆい yui

8I Deletion of tail vowel (a) Adjective ends with “い” ひどい hidoi ‘terrible’ ひど hido
(b) Word ends with “う” だろう darō (copula) だろ daro

9I Insertion of mora consonant (a) Into the middle きつい kitsui ‘tough’ きっつい kittsui
(b) Into the end けど kedo ‘but’ けどっ

10S,I Insertion of long sound (a) Long sound sym. into the middle 大きい ōkı̄ ‘big’ 大きーい ōkı̄i
(b) Long sound sym. into the end 正解 seikai ‘answer’ 正解ー seikaī
(d) Uppercase vowel into the middle かなり kanari ‘quite’ かなあり kanāri
(c) Uppercase vowel into the end 強い tsuyoi ‘strong’ 強いい tsuyoı̄
(e) Lowercase vowel into the middle ずっと zutto ‘always’ ずぅっと zūtto
(f) Lowercase vowel into the end ます masu (copula) ますぅ masū

Table 9: Variant generation rules and examples of generated variants. “Sub.” indicates substitution. The IDs with
“S” and “I” indicate that similar rules were used in Sasano et al. (2013) and Ikeda et al. (2016), respectively.

All Nonstandard
Training data Test OOV Test OOV

# % # %
∅ 12,600 100.0 767 100.0
At (Dt) 1,055 8.4 445 58.0
At ∪ Ar 734 5.8 335 43.7
At ∪ Ad 764 6.1 343 44.7
At ∪ Ad ∪ Ar 636 5.1 284 37.0

Table 10: Number and percentage of (all and nonstan-
dard) test OOV tokens for each training dataset.

E Performance for Known and
Unknown Normalization Instances

Letting a token be known if the token and its gold
standard form are included in the full training data
Ad ∪ Ar ∪ At, normalization instances in the test
data consist of 385 known and 382 unknown in-
stances. Recall of the proposed models trained on
the full dataset with different features for both type
of instances is shown in Table 11. Unsurprisingly,
all model variations recognized known instances
much better than unknown instances. Although the
model with full features achieved the highest recall
of 62.1%, this is lower than the model’s recall of
86.0% on the pseudo development data that only

Feature Known Unknown
C 54.3 11.8
C+L 55.8 7.3
C+L+P 62.1 11.8

Table 11: Recall of the proposed models with charac-
ter (C), lexicon (L), and pronunciation (P) features for
known and unknown normalization instances

included known normalization instances. The per-
formance difference for known test instances and
development instances is likely because of more
distant context distribution of test instances from
training instances.

F Examples of Over-normalization

As mentioned in §6.4, the proposed model over-
normalized 121 negative instances, including 61
cases that were interjections or onomatopoeic
words.19 Examples that were over-normalized by
the model trained on the full dataset are shown in
Table 12. Both interjections and onomatopoeic

19Interjections except idiomatic greetings and most ono-
matopoeic words were not annotated with any standard forms
mainly because defining standard forms is difficult for these
types of words.



80

Type Original word Edited word KC result Assess
(a) Onomatopoeia ガコンッ gakon (thud) ガコン – X
(b) Onomatopoeia ジンジン jinjin (tingling) じんじん – X
(c) Onomatopoeia ゴホゴホ gohogoho (coughing sound) ごほごホ – ?
(d) Interjection はぁぁ haā (sighing sound) はああ – X
(e) Interjection ぅん un (yeah) うん – X
(f) Interjection ひーひっひー hı̄hihhı̄ (evil laugh sound) ひいひっひい – X
(g) Interjection あらっ ara (oh) あらい arai 洗い (wash) ×
(h) Interjection おお〜〜 ō (wow) おう 王 (king) ×
(i) Informal ケータイ kētai (mobile phone) ケイタイ – X
(j) Informal ダルい darui (dull/tired) だるい – X
(k) Informal キズ kizu (wound) キズ 傷 X
(l) Informal かっこ[Ｅ] kakko[ı̄] (cool) かっこ カッコ X
(m) Informal ムレる mureru (stuffy) むレる – ?
(n) Informal ヤバイ yabai (crazy) やバイ – ?

Table 12: Examples of over-normalization, i.e., FP, by the proposed model. Words in “[]” indicate surrounding
context. The “Edited word” column shows the output of the model after editing, according to predicted tags, and
the “KC result” column shows the result after performing kanji conversion (KC). The “Assess” column shows our
assessments: “X”, “?”, and “×” indicate that the final output is acceptable (the meaning is mostly preserved),
questionable (the meaning is understandable but the spelling is peculiar), and obviously incorrect, respectively.

words have characteristics similar to those of
general nonstandard forms, such as insertion of
Japanese special mora characters (a and e–h in Ta-
ble 12), use of lowercased kana characters (d–e),
and repetition of the same characters (d and h).
These characteristics made it difficult to distinguish
negative instances from words to be normalized.

Another 29 cases were somewhat informal forms
written in katakana or hiragana (i–n in Table 12)
and approximately 60% of the predicted normal-
ized forms were acceptable, according to our as-
sessment. This is because of the difficulty of anno-
tating all words in a test sentence with all possible
lexical variations.

Incorrect normalization results included cases
with peculiar spellings where some hiragana or
katakana characters were converted to another type
of kana (c and m–n).


