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Abstract

Lexical normalization is the task of transform-
ing an utterance into its standardized form.
This task is beneficial for downstream analy-
sis, as it provides a way to harmonize (often
spontaneous) linguistic variation. Such vari-
ation is typical for social media on which in-
formation is shared in a multitude of ways, in-
cluding diverse languages and code-switching.
Since the seminal work of Han and Baldwin
(2011) a decade ago, lexical normalization
has attracted attention in English and multi-
ple other languages. However, there exists a
lack of a common benchmark for comparison
of systems across languages with a homoge-
neous data and evaluation setup. The MUL-
TILEXNORM shared task sets out to fill this
gap. We provide the largest publicly available
multilingual lexical normalization benchmark
including 12 language variants. We propose a
homogenized evaluation setup with both intrin-
sic and extrinsic evaluation. As extrinsic evalu-
ation, we use dependency parsing and part-of-
speech tagging with adapted evaluation met-
rics (a-LAS, a-UAS, and a-POS) to account
for alignment discrepancies. The shared task
hosted at W-NUT 2021 attracted 9 participants
and 18 submissions. The results show that neu-
ral normalization systems outperform the pre-
vious state-of-the-art system by a large mar-
gin. Downstream parsing and part-of-speech
tagging performance is positively affected but
to varying degrees, with improvements of up
to 1.72 a-LAS, 0.85 a-UAS, and 1.54 a-POS
for the winning system.1

1 Introduction

The rise of social media has led to a tremendous
increase in the amount of data shared over the In-
ternet. But because of its spontaneous nature, the
data naturally abounds with numerous language
variations, both intended (e.g., slang, abbreviations,

1Data and submissions are available at https://
bitbucket.org/robvanderg/multilexnorm/

non-standard capitalization) and unintended ones
(e.g., typos). This, in turn, poses considerable
problems for existing natural language processing
(NLP) tools (e.g., Baldwin et al., 2013; Eisenstein,
2013), most of which were originally designed to
process canonical texts. One way to improve the
performance of such systems is to normalize text
and thus make it more similar to the data the NLP
systems were initially designed for (and trained
on).

At this point, to avoid confusion with other ex-
isting notions of text normalization (cf. Sproat
et al., 2001; Aw et al., 2006), we should state that,
throughout this paper, we will only deal with lexi-
cal normalization—a task which Han and Baldwin
(2011) define as “a mapping from ‘ill-formed’ out-
of-vocabulary (OOV) lexical items to their standard
lexical forms.” We focus only on social media data,
as opposed to historical data (Tang et al., 2018;
Bollmann, 2019) or medical data (Dirkson et al.,
2019), and extend the scope of this task further to
the cases where wrong in-vocabulary (IV) tokens
can be normalized to (i.e., replaced with) their in-
vocabulary counterparts, arriving at the following
formulation:

Definition - Lexical Normalization

Lexical normalization is the task of transforming
an utterance into its standard form, word by word,
including both one-to-many (1-n) and many-to-one
(n-1) replacements.

It should be noted that deletions and insertions
of complete words are thus beyond the scope of the
task as defined here.

Although lexical normalization potentially re-
moves social signals (Nguyen et al., 2021), it has
also been shown to boost many downstream NLP
tasks, including named entity recognition (Schulz
et al., 2016; Plank et al., 2020), POS tagging (Der-
czynski et al., 2013; Schulz et al., 2016; van der

https://bitbucket.org/robvanderg/multilexnorm/
https://bitbucket.org/robvanderg/multilexnorm/
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Lang. Language name Normalization example

DA Danish
De skarpe lamper gjorde destromindre ek bedre .
De skarpe lamper gjorde destro mindre ikke bedre .

DE German
ogäj isch hätts auch dwiddern könn
Okay ich hätte es auch twittern können

EN English
u hve to let ppl decide what dey want to do
you have to let people decide what they want to do

ES Spanish
@username cuuxamee sii peroo veen yaa eem
@username escúchame sí pero ven ya eh

HR Croatian
svi frendovi mi nešto rade , veceras san osta sam .
svi frendovi mi nešto rade , večeras sam ostao sam .

ID-EN Indonesian-English
pdhal not fully bcs those ppl jg sih .
padahal not fully because those people juga sih .

IT Italian
a Roma è cosí primavera che sembra gia giov
a Roma è così primavera che sembra già giovedì

NL Dutch
Kga me wss trg rolle vant lachn
Ik ga me waarschijnlijk terug rollen van het lachen

SL Slovenian
jst bi tud najdu kovanec vreden veliko denarja .
jaz bi tudi našel kovanec vreden veliko denarja .

SR Serbian
komunalci kace pocne kaznjavanje ?
komunalci kad počne kažnjavanje ?

TR Turkish
He o dediyin suala cvb verdim
He o dediğin suale cevap verdim

TR-DE Turkish-German
@username Yerimm senii , damkee schatzymm :-*
@username Yerim seni , danke Schatzym :-*

Table 1: Examples from MULTILEXNORM. One utterance per language: original sentence on top, and normaliza-
tion on the bottom.

Goot et al., 2017; Zupan et al., 2019), dependency
and constituency parsing (Baldwin and Li, 2015;
van der Goot et al., 2020; van der Goot and van
Noord, 2017), sentiment analysis (Van Hee et al.,
2017; Sidarenka, 2019, pp. 79, 122), and machine
translation (Bhat et al., 2018). However, existing
work on this topic is largely fragmented, focused
mostly on one language, relies on different evalu-
ation metrics, or makes different assumptions re-
garding the items to be normalized (cf. Yang and
Eisenstein, 2013; Li and Liu, 2015; Xu et al., 2015).
All this makes it extremely hard to compare exist-
ing and new normalization systems.

In an attempt to achieve greater reproducibil-
ity, linguistic variety, and a standardized bench-
mark for multilingual lexical normalization, we
introduce the MULTILEXNORM shared task. The
benchmark for this task comprises datasets for 12
language(-pair)s: Danish, German, English, Span-
ish, Croatian, Indonesian-English, Italian, Dutch,
Slovenian, Serbian, Turkish, and Turkish-German.
All datasets contain sentences from popular social
media platforms, which have been annotated for
lexical normalization (i.e., with word-level replace-

ments). Following our definition, we considered
both intended and unintended spelling deviations,
and included all categories defined by van der Goot
et al. (2018) except phrasal abbreviations. We as-
sume gold tokenization in all datasets, and leave
automation of the tokenization step for future work.
Examples of annotated sentences for all languages
are shown in Table 1.

Furthermore, to precisely measure the effect of
text normalization on downstream tasks, we also in-
cluded a dedicated track on extrinsic evaluation, in
which we estimate how much the results of depen-
dency parsing and part-of-speech (POS) tagging
change after normalization. This track includes
corpora for English, German, Italian, and Turk-
ish, annotated with Universal Dependencies (Nivre
et al., 2020).

More details about intrinsic and extrinsic
datasets are given in §2 and §5, respectively. We
also provide an overview of baselines and submit-
ted systems in §3, discussing their intrinsic and
extrinsic results in §4 and §5, respectively. The
paper concludes with a summary of the findings of
the shared task and suggestions for future work.
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Language and citation Kappa Same cand.

EN (Baldwin et al., 2015) 0.89
EN (Pennell and Liu, 2014) 0.59 98.73
IT (van der Goot et al., 2020) 0.64–0.79 73.91–77.78
NL (Schuur, 2020) 0.77–0.91
DA (Plank et al., 2020) 0.89 96.3

Table 2: Agreement scores for lexical normalization
found in the literature. The “Kappa” column reports
Fleiss/Cohen’s kappa (rounded to 2 decimals) on the de-
cision of whether a word needs to be normalized or not,
whereas “Same cand.” reports the raw percentage of
times annotators agreed. Ranges in Italian include raw
annotation and after some automatic fixes; for Dutch
they are between different domains.

2 Data

Our selection of languages is purely based on
dataset availability. We are aware that the bench-
mark contains mostly Indo-European languages,
and encourage additions to this benchmark in the
future to increase language variety.2 We kindly re-
quest future work to cite the original data sources,
and provide the bib-files on our website.

Lexical normalization is a subjective task, as
in many cases multiple interpretations and annota-
tions are plausible. Furthermore, annotators may
disagree on what is “normal”, and whether nor-
malization is necessary for certain words. We have
summarized all results on studies on inter-annotator
agreement that we are aware of in Table 2.

Two types of agreement are reported in the lit-
erature: (1) Cohen’s/Fleiss’ kappa score on the
choice of whether a word is in need of normaliza-
tion; and (2) “Same candidate”, which reports the
percentage of times annotators agreed on the nor-
malization replacement for words normalized by
multiple annotators. Results in Table 2 show that
the choice of whether to normalize has a medium to
high kappa score, whereas the choice of the correct
normalization candidate is generally high. An ex-
ception is Italian, which has a relatively low score
due to some annotators not correcting capitaliza-
tion (van der Goot et al., 2020).

Besides converting all data to the same format,
we have attempted to converge annotation styles
whenever possible. In particular, we applied the
same normalization annotation in these cases:

2Please contact the first author of this paper if you are
interested in adding a language. If more languages are added,
future versions of MULTILEXNORM will be released via the
repository.

• Interjections and punctuation are kept un-
touched, hahaha 7→ hahaha and not haha;

• Usernames, hashtags and URLs are kept un-
touched; if data is anonymized, usernames
become @username;

• We kept capitalization correction where avail-
able. Unfortunately we did not have the bud-
get to include capitalization correction in all
datasets;

• We removed data that is not in the target lan-
guage (mostly Frisian and Afrikaans in the
Dutch data, and Indonesian and Dutch tweets
in the German dataset);

• We fixed some tokenization issues in multiple
languages.

With regard to data availability and composition,
we note that some of the datasets were published be-
fore the shared task was held.3 All datasets contain
data from the Twitter platform; the Dutch corpus
also includes forum and SMS data, and the Danish
dataset includes texts from Arto, a Danish social
media network. More details about the data col-
lection for each dataset can be found in the dataset
statement (Appendix A).

An overview of our datasets is shown in Table 3.
It is clear that different annotation guidelines have
been used, where some included “one-to-many”
and “many-to-one” replacements, and correction
of capitalization, where others did not. Further-
more, the amount of necessary normalization is
very different, and the training splits of the datasets
vary greatly, with the largest being almost 10 times
larger than the smallest. It should also be noted
that only 7 languages (DE, EN, HR, ID-EN, NL,
SL, SR) have a dedicated development test, due to
data availability.

3 Methods

3.1 Baselines
The organizers provided two naive baselines (i.e.,
LAI and MFR, as introduced below), and an “in-
formed” baseline, based on training the previ-
ous state-of-the-art MoNoise over the respective
datasets (van der Goot, 2019a).

3We removed them where possible. Specifically, 5 out of
12 languages still had their test data online when the competi-
tion started. However, they were not always easy to find, were
in a different format, or the annotation differed from that used
in the shared task.
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Lang Words Sents 1-n n-1 Change Caps Source

DA 16,448 719 0.29 0.04 9.25 + (Plank et al., 2020)
DE 15,006 1,628 1.53 0.19 17.96 + (Sidarenka et al., 2013)
EN 35,216 2,360 0.87 0.04 6.90 − (Baldwin et al., 2015)
ES 7,189 568 0.00 0.00 7.69 − (Alegria et al., 2013)
HR 54,416 4,760 0.01 0.00 8.89 − (Ljubešić et al., 2017a)
ID-EN 13,949 495 1.43 0.19 12.16 − (Barik et al., 2019)
IT 12,645 593 0.28 0.00 7.32 + (van der Goot et al., 2020)
NL 12,381 907 5.98 0.06 28.29 + (Schuur, 2020)
SL 44,944 4,670 0.00 0.00 15.62 − (Erjavec et al., 2017)
SR 56,823 4,138 0.00 0.00 7.65 − (Ljubešić et al., 2017b)
TR 6,443 570 3.00 1.69 37.02 + (Çolakoğlu et al., 2019)
TR-DE 12,773 800 2.51 0.81 24.14 + (van der Goot and Çetinoğlu, 2021)

Table 3: Some statistics on the 12 language(-pair)s within the MULTILEXNORM benchmark. The “1-n” column
indicates the percentage of words which are split into multiple words (one-to-many), “n-1” indicates the proportion
of words that are merged with other words as part of normalization (many-to-one), and “Change” indicates the
percentage of words that are normalized. “Caps” indicates whether standard capitalization is included in the
annotation; for datasets without annotation of capitalization, everything is lowercased.

LAI Leave-As-Is baseline, which simply returns
the input word.

MFR Most-Frequent-Replacement baseline. It
stores for every input word (unigram) its most fre-
quent replacement in the training data. Then at
run-time it simply replaces each word with its most
common replacement. If a word is not seen before,
it is returned as-is.

MoNoise This is based on a two-step approach.
It first generates candidates based on: word em-
beddings, the Aspell spell checker,4 replacements
found in the training data, and some heuristics. In
the second step, features from the generation step
are combined with additional features (including
character n-gram probabilities) and used to train a
random forest classifier, which predicts the prob-
ability that a candidate is the correct candidate.
The only tuned component is the generation of As-
pell candidates, where the --bad-spellers op-
tions can be used to generate more candidates. For
most languages this resulted in a slower but more
effective model (except for HR, ID-EN, and SL).
For the code-switched language pairs, the code-
switched version of MoNoise was used (van der
Goot and Çetinoğlu, 2021). To retrain MoNoise,
new raw data was collected to base its n-gram prob-
abilities and word embeddings on. We downloaded
Twitter data of 2012–2020 from archive.org, fil-
tered it with the fastText language classifier (Joulin

4http://aspell.net/

et al., 2017a), and used the most recent Wikidump
for each language.5

3.2 Submissions

The shared task ran in mid-2021, and attracted
9 participants with 18 submissions. We include
the full list of submissions, but no system descrip-
tion or paper was received from maet, team, thun-
derml, or learnML, so the details of these methods
are not clear. Submissions marked with an aster-
isk (“∗”) involve one or more of the shared task
organizers.

ÚFAL (Samuel and Straka, 2021)
The system is based on ByT5 (Xue et al., 2021),

and is a word-by-word normalization model. In
order for the model to be as close to the original
pre-training task as possible, each input word is nor-
malized independently: it is enclosed in an opening
and ending tag, over which ByT5 is run to produce
the normalization.

The authors fine-tune ByT5 in two steps, first on
synthetic data and then on the MULTILEXNORM

data. To obtain synthetic data, they use Wikipedia
as target data, and create unnormalized input
through character edits, word edits, and dictionary
replacements trained from the MULTILEXNORM

data. During the final fine-tuning, they either: (a)
use only the MULTILEXNORM data; or (b) com-

5Of 01-08-2021. Available at https://robvanderg.
github.io/blog/twit_embeds.htm

http://aspell.net/
https://robvanderg.github.io/blog/twit_embeds.htm
https://robvanderg.github.io/blog/twit_embeds.htm
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bine the MULTILEXNORM with the synthetic data.
They submitted two systems, a single model for
every treebank and an ensemble of 4 models for
every treebank. Both adapting the input to fit the
pre-training step and the use synthetic data proved
to be very beneficial for the system.

HEL-LJU∗ (Scherrer and Ljubešić, 2021)
The system is based on a BERT (Devlin

et al., 2019) token classification preprocessing step,
where for each token the type of the necessary trans-
formation is predicted (none, uppercase, lowercase,
titlecase, modify), and a character-level statisti-
cal machine translation (SMT) model is used to
normalize accordingly. For some languages, de-
pending on the results on the development data,
the training data was extended by back-translating
OpenSubtitles data. The paper evaluates a range
of MT systems and ablations, and shows that a
character-level SMT model is highly competitive.

TrinkaAI (Kubal and Nagvenkar, 2021)
The proposed model is based on a sequence la-

beling approach, where the input tokens are unnor-
malized and the target tokens are normalized. To
reduce the target labels and make predictions faster,
classes are based on those tokens for which normal-
ization is required, and tokens which do not need
to be normalized are labelled with a single target
token. This sequence labeling model is fine-tuned
on a pre-trained multilingual model encompassing
all languages in the shared task. Further, a post-
processing layer concerning word-alignment is ap-
plied, which further improved performance. This
sequence-labeling approach ranked 6th out of 21
models, and scored highest among all competitors
for the Spanish Language.

BLUE (Bucur et al., 2021)
The team tackled the task of lexical normaliza-

tion as a neural machine translation problem, using
the MBart-50 (Tang et al., 2020) multilingual many-
to-many model. They fine-tuned the model for all
the available languages, and used a MFR baseline
for Danish and Serbian. They opted for a sentence-
level approach as opposed to a word-level approach,
using simple linear sum assignment based on Lev-
enshtein distance to align the normalized words
with the raw words.

CL-MoNoise∗ (van der Goot, 2021)
This is the same method as MoNoise, but it is

deployed cross-lingually: it is trained on the source

language, including candidate generation (Aspell,
word embeddings, n-gram probabilities), then at
prediction time, it is applied to the raw data in
the target language. The best source language to
transfer from is chosen based on empirical results
on the training data.

MaChAmp∗ (van der Goot, 2021)
The team of CL-MoNoise also used a sequence

labeling approach, in learning (character) transfor-
mations of each original word to its normalization.
Scores are low on datasets that include capitaliza-
tion correction, as this is not properly included in
the current transformation algorithm (everything is
lower-cased beforehand). The method performed
much better when based on XLM-R (Conneau
et al., 2020) than mBERT. Potential improvements
could be gained by exploiting the multi-task capa-
bilities of MaChAmp (van der Goot et al., 2021).

4 Intrinsic Evaluation

4.1 Intrinsic Metric
A wide variety of evaluation metrics have been
used to evaluate lexical normalization performance,
including accuracy over OOV words, F1 score,
BLEU, word error rate, and character error rate. We
choose to use Error Reduction Rate (ERR) (van der
Goot, 2019b) as our main metric. ERR is the word-
level accuracy normalized for the percentage of
words that are in need of normalization. To calcu-
late ERR, we use the word-level accuracy, and the
percentage of words that are not normalized in the
annotation:

ERR =
%accuracy−%words_not_normed

100−%words_not_normed

We choose to use ERR instead of word-level ac-
curacy to be able to compare (and combine) scores
across datasets, since different numbers of candi-
dates are in need of normalization. An accuracy
of 93% might be a very good score on one dataset,
whereas on another dataset a normalization model
which scores 93% might be completely useless.
The ERR will normally have a value between 0%
and 100%. A negative ERR indicates that the sys-
tem normalizes more words wrongly than correctly.
The Leave-As-Is baseline (Section 3), which sim-
ply returns the input words, will thus by definition
score an ERR of 0.0. For a more in-depth discus-
sion of evaluation metrics for normalization and
ERR, we refer the reader to Section 5.1 of van der
Goot (2019b).
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Team Avg. DA DE EN ES HR ID-EN IT NL SL SR TR TR-DE

ÚFAL-2 67.3 68.7 66.2 75.6 59.3 67.7 67.2 47.5 63.6 80.1 74.6 68.6 68.6

ÚFAL-1 66.2 70.3 65.7 73.8 55.9 67.3 66.2 42.6 62.7 79.9 73.6 68.6 68.2
HEL-LJU-2∗ 53.6 56.7 59.8 62.1 35.6 56.2 55.3 35.6 45.9 67.0 66.4 51.2 51.2
HEL-LJU-1∗ 51.8 56.7 58.0 60.8 33.7 51.8 53.3 35.6 44.0 66.0 60.3 49.5 52.0
MoNoise 49.0 51.3 47.0 74.4 45.5 52.6 59.8 21.8 49.5 61.9 59.6 28.2 36.7
TrinkaAI-2 43.8 45.9 47.3 66.0 61.3 41.3 56.4 15.8 45.7 59.5 44.5 15.5 25.8
TrinkaAI-1 43.6 45.9 47.3 64.5 61.3 41.3 56.4 15.8 45.7 59.5 44.5 15.5 25.8
thunderml-1 43.4 46.5 46.6 64.1 60.3 40.1 59.1 11.9 44.1 59.3 44.5 15.9 29.0
team-2 40.7 48.1 46.1 63.7 21.0 40.4 59.3 13.9 43.7 60.6 46.1 15.9 29.7
learnML-2 40.3 40.5 43.7 61.6 56.6 38.1 56.2 5.9 42.8 58.3 40.0 14.4 25.7
maet-1 40.1 48.1 46.1 63.9 21.0 40.4 59.3 5.9 43.7 60.6 46.1 15.9 29.7
MFR 38.4 49.7 32.1 64.9 25.6 36.5 61.2 16.8 37.7 56.7 42.6 14.5 22.1
thunderml-2 36.5 −4.4 46.0 63.5 21.6 41.0 58.4 12.9 45.0 60.4 46.9 17.4 29.3
team-1 36.5 −4.4 46.0 63.5 21.6 41.0 58.4 12.9 45.0 60.4 46.9 17.4 29.3
CL-MoNoise∗ 12.1 7.3 16.6 4.1 5.0 26.4 2.4 0.0 16.2 8.8 20.1 17.6 20.2
maet-2 7.3 2.2 4.3 21.7 0.0 9.9 19.2 0.0 2.1 18.4 8.1 0.8 1.2
learnML-1 7.3 2.2 4.3 21.7 0.0 9.9 19.2 0.0 2.1 18.4 8.1 0.8 1.2
BLUE-2 6.7 49.7 −1.9 26.8 −9.4−10.1 −7.2 −31.7 −2.1 −1.0 42.6 10.0 15.0
BLUE-1 5.2 49.7 −1.9 26.8−10.2 −9.9 −7.2 −31.7 −2.1 −1.1 42.6 1.0 6.6
LAI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MaChAmp∗ −21.3 −88.9−93.4 51.0 25.4 42.6 39.5−312.9 1.5 56.8 39.4−12.7 −3.4

Table 4: ERR on the test data (%). Negative values indicate that the system normalizes more words wrongly than
correctly. Gray rows indicate baseline systems provided by the organizers. ∗ Teams including an organizer.

The official winner of the shared task is the
highest-scoring team (macro-averaged over all
datasets/languages) with an open-source implemen-
tation.

4.2 Results: Intrinsic Evaluation
The main results of the shared task are shown in
Table 4. All submissions except MaChAmp beat
the LAI baseline, and most of them beat the MFR
baseline, which turned out to be a strong baseline.

The overall winner of the shared task was ÚFAL-
2, which beat the second-best team by a stagger-
ing 13 points. Recall that this method is based on
ByT5, a transformer-based encoder–decoder byte-
level system. Of particular note is that while recent
neural approaches (Lourentzou et al., 2019; Muller
et al., 2019) had not been clearly superior to the
baseline MoNoise on English, ÚFAL-2 surpassed
the baseline method by an appreciable margin.

The second-best team was HEL-LJU, who im-
proved over MoNoise by more than four points.
The authors report that character-level NMT pro-
vided lower results than their SMT approach, even
with backtranslation.

The remaining teams mostly used either token
classification or encoder–decoder approaches.

The results of this shared task showed that for

state-of-the-art results one needs: (1) pre-trained
models; (2) an encoder–decoder architecture over
bytes or characters; and (3) synthetic task-related
data.

One thing in common for the datasets with lower
results in Table 4 (e.g., ES, NL, TR, and TR-DE)
is that they include annotation for capitalization.
Unsurprisingly, smaller datasets also tend to result
in lower scores in general.

5 Extrinsic Evaluation

We perform a main extrinsic evaluation of the im-
pact of normalization on dependency parsing using
Universal Dependency annotations (Nivre et al.,
2020). See Section 5.2 for test set details. We
used version 2.8 of all treebanks, and syntactically-
split multiword tokens and empty nodes (ellipsis)
are undone with ud-conversion-tools.6 We trained
MaChAmp (van der Goot et al., 2021) with de-
fault settings and XLM-R embeddings (Conneau
et al., 2020). We use the largest canonical tree-
bank of each of the respective languages as the
source domain, and attempt to improve perfor-
mance on the target domain by normalizing data

6https://github.com/bplank/
ud-conversion-tools

https://github.com/bplank/ud-conversion-tools
https://github.com/bplank/ud-conversion-tools
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first. In other words, we take the input text, use a
normalization system to get the normalized ver-
sion, and pass this to the parser as input. The
parsers are not trained on social media data, to
evaluate the impact of normalization on parsing
in a domain-shift scenario. Because the normal-
ized version should be closer to the canonical train-
ing data of the parser, performance is expected
to improve compared to using the input directly.
The training treebanks are UD_English-EWT (Sil-
veira et al., 2014), UD_German-GSD (Brants et al.,
2004), UD_Italian-ISDT (Bosco et al., 2014), and
UD_Turkish-IMST (Sulubacak et al., 2016). For
the extrinsic evaluation, we report the average over
three runs with different random seeds (only the
parser is retrained, not the normalization models).

5.1 Alignment-aware Parsing Metrics

Because our definition of the lexical normaliza-
tion task includes the splitting and merging of to-
kens (namely “one-to-many” and “many-to-one”
replacements, cf. Section 1), the standard evalua-
tion for dependency parsing has to be adapted for
our purposes. Specifically, we compute the token-
level labeled attachment score (LAS) and unlabeled
attachment score (UAS) after aligning predicted
tokens to gold tokens. We refer to these alignment-
aware metric variants as aligned LAS and UAS
(i.e., a-LAS and a-UAS), respectively. Because
“many-to-one” replacements are relatively rare, we
cannot check when they are correct (normaliza-
tion annotation is not available for most treebanks)
and they are non-trivial to include in the aligned
evaluation, and hence we decided to undo these
in the system outputs, and use the original input
instead. For the “one-to-many” replacements, we
check whether one of the words in the split is con-
nected correctly. All incorrect words in the ‘many’
are thus simply ignored. It should be noted that
this can give an advantage to systems that split, and
we thus suggest that this metric is always reported
with the number of splits. Furthermore, we assume
none of the teams made use of this shortcoming in
the metric, as they were unaware of these details.

5.2 Test Sets and Metric

We employ a-LAS as the main metric for extrinsic
evaluation, and also report a-UAS for the sake of
completeness. Each system was tested on 7 depen-
dency parsing treebanks consisting of posts from
Twitter in 4 different languages:

• German (DE): TweeDe (Rehbein et al., 2019);

• English (EN): AAE (Blodgett et al., 2018),
MoNoise (van der Goot and van Noord, 2018),
and Tweebank2 (Liu et al., 2018);

• Italian (IT): PoSTWITA (Sanguinetti et al.,
2018) and TWITTIRO (Cignarella et al.,
2019);

• Turkish (TR): IWT151 (Pamay et al., 2015;
Sulubacak and Eryiğit, 2018).

5.3 Results: Impact on Parsing
The main results (a-LAS) are reported in Table 5.
Although most submissions outperform the LAI
baseline, it becomes clear that lexical normaliza-
tion is only a step towards closing the gap in per-
formance on canonical data, as performance is still
far from the average LAS on our training sets (79
LAS). This is confirmed by the scores of using the
manually-annotated (gold) normalization.7 The
best performing model scores 1.72 LAS points
higher than the LAI baseline. Compared to normal-
ization performance (Table 4), the baselines (LAI
and MFR) rank highly, especially for tr-iwt151
and en-tweebank2, which is probably because they
have less risk of over-normalization, and some of
the treebanks might need only very little normaliza-
tion (there is also an abundance of canonical data to
be found on Twitter). The largest gains compared
to the LAI baseline are obtained on the en-monoise
treebank, probably because this treebank contains
data filtered to contain data in need of normaliza-
tion. In the gold-standard annotations, 31.33% of
the words are normalized, compared to 1.04% for
en-tweebank2.

The full a-UAS scores can be found in the ap-
pendix (Table 6). In general, performance is ap-
proximately 7–10 points higher than LAS (abso-
lute), and differences between teams are smaller.
Interestingly, the ranking is slightly different there,
with HEL-LJU and MFR ranking higher, and CL-
MoNoise ranking lower. Overall, the results con-
firm that the best normalization systems (by ÚFAL
and HEL-LJU) also result in the highest observed
parsing improvements on these social media tree-
bank test sets. Once again, these two teams out-
perform the previous state-of-the-art system (i.e.,
MoNoise).

7Note that MoNoise and Tweebank2 are the only treebanks
where a normalization layer is fully annotated, so we report
Gold results for these treebanks only.
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Treebank Avg. de-tweede en-aae en-monoise en-tweebank2 it-postwita it-twittiro tr-iwt151

ÚFAL-2 64.2 37 73.6 5 62.7 53 58.6 33 59.1 66 68.3 13 72.2 5 54.7 90

ÚFAL-1 64.0 37 73.6 3 62.2 50 57.9 33 59.0 65 68.3 14 72.2 5 54.8 95

HEL-LJU-2∗ 63.7 10 73.5 3 60.6 20 56.3 4 60.3 15 68.1 3 72.3 0 55.0 28

HEL-LJU-1∗ 63.7 14 73.5 3 60.5 18 56.3 9 60.3 18 68.2 3 72.5 0 54.9 48

MoNoise 63.4 21 73.2 5 62.3 40 56.8 18 58.9 46 67.6 3 70.7 0 54.6 35

MFR 63.3 16 72.9 5 60.3 32 56.7 15 60.3 37 67.3 3 70.7 0 54.9 25

TrinkaAI-2 63.1 33 72.9 7 60.2 40 56.6 19 59.9 39 67.0 7 71.1 0 54.2 119

TrinkaAI-1 63.1 33 72.9 7 60.2 40 56.6 19 59.9 39 67.0 7 71.1 0 54.2 119

maet-1 63.1 27 72.8 3 59.4 40 56.6 24 59.8 44 67.4 10 71.1 0 54.5 74

team-2 63.0 27 72.8 3 59.4 40 56.6 24 59.8 44 67.2 4 70.9 3 54.5 74

thunderml-2 63.0 33 72.7 3 59.6 42 56.7 28 59.3 44 67.3 4 71.4 1 54.2 112

team-1 63.0 33 72.7 3 59.6 42 56.7 28 59.2 44 67.3 4 71.4 1 54.2 112

thunderml-1 63.0 34 72.5 6 59.3 49 56.7 24 59.9 46 67.1 5 71.0 0 54.1 112

learnML-2 62.9 30 72.3 8 59.0 44 56.2 31 60.0 45 67.0 6 71.2 0 54.5 79

CL-MoNoise∗ 62.7 24 72.7 0 60.9 0 55.3 0 58.5 0 66.5 99 70.1 50 55.0 20

BLUE-2 62.5 0 72.6 0 59.6 0 54.2 0 59.8 0 66.7 0 70.0 0 54.8 0

BLUE-1 62.5 0 72.6 0 59.6 0 54.2 0 59.8 0 66.7 0 70.0 0 54.8 0

LAI 62.5 0 72.7 0 59.2 0 53.7 0 60.0 0 66.5 0 70.1 0 55.0 0

maet-2 62.2 0 72.7 0 58.5 0 52.9 0 60.0 0 66.5 0 70.0 0 55.0 0

learnML-1 62.2 0 72.7 0 58.5 0 52.9 0 60.0 0 66.5 0 70.0 0 55.0 0

MaChAmp∗ 61.9 43 71.3 7 60.8 37 54.6 43 58.0 52 64.7 2 69.8 0 54.1 162

Gold — — — 60.8 60.4 — — —

Table 5: a-LAS scores (%) and the number of splits (in smaller font) for each dataset. Gray rows indicate baseline
systems provided by the organizers. ∗ Teams including an organizer. The final row (“Gold”) indicates performance
with gold-standard normalization.

5.4 Results: Impact on POS tagging

Additionally, we calculated the POS accuracies us-
ing the same heuristic as described in Section 5.1
(i.e., a-POS), and present full results in the ap-
pendix (Table 7). Again, we see some changes in
the ranking of the teams, and performance improve-
ments are slightly more moderate compared to a-
LAS. The baselines score highest on en-tweebank2
(MFR) and tr-iwt151 (LAI), and the highest gains
are again obtained on the en-monoise treebank.

6 Conclusions

With MULTILEXNORM, we have developed a mul-
tilingual benchmark for lexical normalization con-
sisting of previously-created datasets spanning 12
language variants. We proposed a standard evalu-
ation metric, and both intrinsic and extrinsic eval-
uation via dependency parsing and POS tagging.
We hosted a shared task with this new benchmark,
which enabled comparison of performance of 21
models (18 submissions by participants, and 3 in-
house baselines). The results of the shared task
show that the previous state of the art on lexical
normalization is outperformed by a large margin.

The extrinsic evaluation on dependency parsing
and POS tagging shows that lexical normalization
is beneficial (with improvements in a-LAS and a-
UAS of up to +1.72 and +0.85, and improvements
in a-POS of up to +1.54, respectively), but there
is still a performance gap compared to the perfor-
mance levels observed on canonical data. We hope
that the proposed benchmark will lead to more
research in multilingual normalization, and more
transparent and fairer comparisons. All submis-
sions, evaluation scripts, and baseline models are
available in the shared task repository.
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normalization for code-switched data and its effect
on POS tagging. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
2352–2365, Online. Association for Computational
Linguistics.

Rob van der Goot, Barbara Plank, and Malvina Nis-
sim. 2017. To normalize, or not to normalize: The
impact of normalization on part-of-speech tagging.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 31–39, Copenhagen, Den-
mark. Association for Computational Linguistics.

Rob van der Goot, Alan Ramponi, Tommaso Caselli,
Michele Cafagna, and Lorenzo De Mattei. 2020.
Norm it! lexical normalization for Italian and its
downstream effects for dependency parsing. In Pro-
ceedings of the 12th Language Resources and Eval-
uation Conference, pages 6272–6278, Marseille,
France. European Language Resources Association.

Rob van der Goot, Ahmet Üstün, Alan Ramponi,
Ibrahim Sharaf, and Barbara Plank. 2021. Mas-
sive choice, ample tasks (MaChAmp): A toolkit
for multi-task learning in NLP. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 176–197, Online. Associa-
tion for Computational Linguistics.

Rob van der Goot and Gertjan van Noord. 2017. Parser
adaptation for social media by integrating normaliza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 491–497, Vancouver,
Canada. Association for Computational Linguistics.

Rob van der Goot and Gertjan van Noord. 2018. Mod-
eling input uncertainty in neural network depen-
dency parsing. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4984–4991, Brussels, Belgium.
Association for Computational Linguistics.

Rob van der Goot, Rik van Noord, and Gertjan van
Noord. 2018. A taxonomy for in-depth evaluation
of normalization for user generated content. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Cynthia Van Hee, Marjan Van de Kauter, Orphée
De Clercq, Els Lefever, Bart Desmet, and Veronique
Hoste. 2017. Noise or music? investigating the use-
fulness of normalisation for robust sentiment analy-
sis on social media data. Traitement Automatique
Des Langues, 58(1):63–87.

Ke Xu, Yunqing Xia, and Chin-Hui Lee. 2015. Tweet
normalization with syllables. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 920–928, Beijing,
China. Association for Computational Linguistics.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2021. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. arXiv
preprint arXiv:2105.13626.

Yi Yang and Jacob Eisenstein. 2013. A log-linear
model for unsupervised text normalization. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 61–72,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

https://www.aclweb.org/anthology/C16-1325
https://aclanthology.org/C18-1112
https://aclanthology.org/C18-1112
https://aclanthology.org/C18-1112
https://doi.org/10.18653/v1/P19-3032
https://doi.org/10.18653/v1/P19-3032
https://www.rug.nl/research/portal/files/78256480/Complete_thesis.pdf
https://www.rug.nl/research/portal/files/78256480/Complete_thesis.pdf
https://aclanthology.org/2021.eacl-main.200
https://aclanthology.org/2021.eacl-main.200
https://aclanthology.org/2021.eacl-main.200
https://doi.org/10.18653/v1/W17-4404
https://doi.org/10.18653/v1/W17-4404
https://www.aclweb.org/anthology/2020.lrec-1.769
https://www.aclweb.org/anthology/2020.lrec-1.769
https://aclanthology.org/2021.eacl-demos.22
https://aclanthology.org/2021.eacl-demos.22
https://aclanthology.org/2021.eacl-demos.22
https://doi.org/10.18653/v1/P17-2078
https://doi.org/10.18653/v1/P17-2078
https://doi.org/10.18653/v1/P17-2078
https://doi.org/10.18653/v1/D18-1542
https://doi.org/10.18653/v1/D18-1542
https://doi.org/10.18653/v1/D18-1542
https://aclanthology.org/L18-1109
https://aclanthology.org/L18-1109
https://doi.org/10.3115/v1/P15-1089
https://doi.org/10.3115/v1/P15-1089
https://aclanthology.org/D13-1007
https://aclanthology.org/D13-1007


505

Katja Zupan, Nikola Ljubešić, and Tomaž Erjavec.
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A MULTILEXNORM Data Statement

Following Bender and Friedman (2018), we present
statements for MULTILEXNORM data.

A. CURATION RATIONALE

• Danish: We collected data from Twitter
by querying the Twitter API using the fol-
lowing emotion-related keywords: frygt,
glæd, kærlighed, overraskelse, racistisk, sjov,
smerte, tristhed. Tweets were collected
in 2019–2020. We also scraped all Arto
pages from the Internet Wayback machine
(archive.org), and extracted the user-generated
content from the HTML with a script. We
then applied filtering on the combination of
this data, leaving only sentences which were
classified as Danish with a confidence of at
least 0.885 by the FastText language classi-
fier (Joulin et al., 2017b) and contain at least 3
words in the Danish Aspell dictionary (which
are not in the English dictionary), and con-
tain at least 2 words not in the Danish Aspell
dictionary.

• German: To create this corpus, we randomly
sampled 10,000 messages from the German
Twitter Snapshot (GTS; Scheffler, 2014)—a
collection of 24 million tweets, which were
gathered in April 2013 by permanently track-
ing a list of 397 frequent German words via
the Twitter Streaming API and subsequently
filtered with langid.py (Lui and Baldwin,
2012). We analyzed all tokens of the sam-
ple with TreeTagger (Schmid, 1994) and
hunspell. Afterwards, two human experts
annotated all words that any of these tools
considered as out-of-vocabulary (OOV) and
that appeared at least twice in the selected
microblogs or belonged to a set of 1,000
randomly-chosen hapax legomena. Finally,
we only left tweets that contained words an-
notated as spelling deviation by either of the
experts, resulting in a total of 1,492 messages.

• English: Tweets were collected using the
Twitter Streaming API over the period
23–29 May, 2014, and then filtered by
langid.py (Lui and Baldwin, 2012) to re-
move non-English tweets. To ensure that
tweets had a high likelihood of requiring lex-
ical normalization, tweets with less than 2

non-standard words (i.e. words not occurring
in the SCOWL dictionary) were filtered out.

• Spanish: To maximize the chances of getting
tweets in the Spanish language, tweets were
collected through Twitter’s streaming API by
restricting the search to a geographical bound-
ing box within Spain but excluding bilingual
regions. The selected geographic area forms
a rectangle with Guadalajara (coordinates: 41,
-2) as the northeasternmost point and Cadiz
(coordinates: 36.5, -6) as the southwestern-
most point. The resulting collection with over
227K tweets was filtered to keep only tweets
identified by Twitter as having been written
in Spanish (i.e. ‘lang’ field set to ‘es’), and
further sampling was done to make it manage-
able for manual labeling.

• Croatian: The dataset is a subset of the large
Croatian Twitter crawl harvested with Tweet-
Cat (Ljubešić et al., 2014) between 2013 and
2016. It contains a similar amount of stan-
dard and non-standard data, and non-standard
data was oversampled from the original data
collection. The standardness level of the data
was predicted via feature-based machine learn-
ing (Ljubešić et al., 2015). Discrimination
between Croatian and Serbian tweets was per-
formed with a dedicated supervised classi-
fier (Ljubešić and Kranjčić, 2015).

• Indonesian-English: Barik et al. (2019) col-
lected Indonesian-English code-mixed tweets
using the Twitter search API. First, they com-
piled a list of Indonesian and English stop-
words (100 for each language), based on fre-
quent word lists from Wiktionary.8 The stop-
words were then used as search queries. In
order to obtain code-mixed tweets, the “lan-
guage” parameter in the search query was set
to be constrastive to the language of the stop-
word used. For example, the “language” pa-
rameter is set to English when an Indonesian
stopword is used as a query, and vice versa. To
minimize chance that tweets contain any word
from local indigenous or other languages, the
“location” parameter in the search query is re-
stricted to only Jakarta and Bandung (the two
largest cities in Indonesia). In total, 49,647
tweets were collected. Two human annotators

8https://en.wiktionary.org/wiki/
Wiktionary:Frequencylists

https://en.wiktionary.org/wiki/Wiktionary:Frequency lists
https://en.wiktionary.org/wiki/Wiktionary:Frequency lists
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labeled a sample of 825 tweets from the larger
collection. The annotators were instructed to
tokenize tweets into a list of word segments,
and then provide the lowercase normalized
form for each segment. A segment can be
a single or multi-token word, untokenized
proper name, hyperlink, emoticon, or Twit-
ter special term (i.e., hashtag or mention).

• Italian: The dataset is a subset of the data
from Sanguinetti et al. (2018) (v. 2.1), which
in turn is a subset of SENTIPOLC (Barbi-
eri et al., 2016) and SentiTUT (Bosco et al.,
2013). Tweets were mostly collected during
the period 2011–2012, and have been filtered
based on keywords about politics, in addition
to a small subset from the random Twitter
API stream. Tweets that contain ≥ 3 out-of-
vocabulary words (i.e., not in the Aspell dic-
tionary for Italian, or either a URL, hashtag,
username, or text consisting of punctuation-
only) were filtered out to ensure a basic den-
sity of non-standard language for further anno-
tation. Moreover, a small list of proper nouns
was added to the vocabulary, taken from the
most frequent out-of-vocabulary words in the
dataset.

• Dutch: We took the data from the SoNaR
Nieuwe Media Corpus (Oostdijk et al., 2014)
as a starting point, and selected sentences
which contain at least 3 words which are not in
the Aspell dictionary for Dutch. We originally
took 500 sentences from each sub-domain
(SMS, chats, and tweets), and then removed
all sentences which were completely written
in another language (i.e., Frisian, Afrikaans,
English, or Spanish).

• Slovenian: The dataset is a subset of a large
Slovenian Twitter crawl harvested with Tweet-
Cat (Ljubešić et al., 2014) between 2013 and
2016. It contains a similar amount of stan-
dard and non-standard data, and non-standard
data was oversampled from the original data
collection. The standardness level of the data
was predicted via feature-based machine learn-
ing (Ljubešić et al., 2015).

• Serbian: The dataset is a subset of a large
Serbian Twitter crawl harvested with Tweet-
Cat (Ljubešić et al., 2014) between 2013 and
2016. It contains a similar amount of stan-

dard and non-standard data, and non-standard
data was oversampled from the original data
collection. The standardness level of the data
was predicted via feature-based machine learn-
ing (Ljubešić et al., 2015). Discrimination
between Croatian and Serbian tweets was per-
formed with a dedicated supervised classi-
fier (Ljubešić and Kranjčić, 2015).

• Turkish-German: The code-switched
dataset is derived by filtering tweets labeled
as Turkish and German according to Twitter’s
language ID assignment. Turkish tweets
were collected in 2015 and German tweets
during 2009–2011. To identify mixed
German–Turkish tweets, we mainly used
morphological analyzers (Oflazer, 1994;
Schmid et al., 2004) as filters. Manual
filtering followed the automatic filtering,
resulting in the final dataset. The raw tweets
were manually tokenized, normalized and
segmented (Çetinoğlu, 2016). In addition,
usernames and URLs were anonymized
as @username and [url], respectively, and
language IDs for each token were added.
Adapting the dataset to the normalization task
was performed in van der Goot and Çetinoğlu
(2021).

B. LANGUAGE VARIETY All of the datasets
consist of social media variants of the standard
languages, and are not bound by a regional standard
(i.e., no distinction is made between en_us or
en_gb).

C. SPEAKER DEMOGRAPHIC The speaker
demographics are unknown. For some of the col-
lected data this might have been available, but it is
not shared on purpose (for privacy reasons).

D. ANNOTATOR DEMOGRAPHIC

• Danish: Two native speakers of Danish. Both
were higher-education students (male and fe-
male), between the age of 20 and 30.

• German: An undergraduate (native German
speaker studying computational linguistics),
and a PhD student (Belarusian Germanist pur-
suing a degree in computational linguistics).

• English: 12 interns and employees at IBM
Research Australia were involved in the data
annotation. All annotators had a high level of
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Treebank Avg. de-tweede en-aae en-monoise en-tweebank2 it-postwita it-twittiro tr-iwt151

ÚFAL-2 74.0 37 83.2 5 72.5 53 68.4 33 69.3 66 78.0 13 81.0 5 65.5 90

HEL-LJU-2∗ 74.0 10 83.3 3 71.2 20 67.2 4 71.1 15 77.9 3 81.3 0 65.7 28

HEL-LJU-1∗ 73.9 14 83.3 3 70.9 18 67.4 9 71.1 18 78.0 3 81.3 0 65.7 48

ÚFAL-2 73.8 37 83.2 3 71.9 50 68.0 33 69.3 65 78.0 14 80.8 5 65.5 95

MFR 73.6 16 82.9 5 70.7 32 67.4 15 71.0 37 77.2 3 80.1 0 65.7 25

MoNoise 73.4 21 83.1 5 71.9 40 67.0 18 68.6 46 77.3 3 80.0 0 65.5 35

TrinkaAI-2 73.3 33 82.7 7 70.1 40 67.4 19 70.7 39 77.0 7 80.5 0 65.0 119

TrinkaAI-1 73.3 33 82.7 7 70.1 40 67.4 19 70.7 39 77.0 7 80.5 0 65.0 119

thunderml-2 73.3 33 82.3 3 69.9 42 67.3 28 70.0 44 77.5 4 80.9 1 65.2 112

team-1 73.3 33 82.3 3 69.9 42 67.3 28 70.0 44 77.5 4 80.9 1 65.2 112

maet-1 73.2 27 82.6 3 69.3 40 67.2 24 70.5 44 77.4 10 80.3 0 65.4 74

team-2 73.2 27 82.6 3 69.3 40 67.2 24 70.5 44 77.2 4 80.3 3 65.4 74

thunderml-1 73.1 34 82.4 6 68.9 49 67.3 24 70.6 46 77.0 5 80.7 0 65.0 112

LAI 73.1 0 82.6 0 70.6 0 65.3 0 70.9 0 76.7 0 79.8 0 65.8 0

learnML-2 73.0 30 82.2 8 68.7 44 66.5 31 70.7 45 77.0 6 80.6 0 65.3 79

BLUE-2 73.0 0 82.4 0 70.5 0 65.6 0 70.4 0 76.9 0 79.6 0 65.6 0

BLUE-1 73.0 0 82.4 0 70.5 0 65.6 0 70.4 0 76.9 0 79.6 0 65.6 0

maet-2 72.9 0 82.6 0 69.7 0 65.1 0 70.9 0 76.7 0 79.7 0 65.8 0

learnML-1 72.9 0 82.6 0 69.7 0 65.1 0 70.9 0 76.7 0 79.7 0 65.8 0

CL-MoNoise∗ 72.8 24 82.5 0 71.8 0 65.5 0 67.9 0 76.6 99 79.8 50 65.8 20

MaChAmp∗ 72.6 43 81.8 7 71.0 37 65.5 43 68.4 52 76.3 2 80.3 0 65.0 162

Gold — — — 69.1 71.2 — — —

Table 6: a-UAS scores (%) and the number of splits (in smaller font) for each dataset. Gray rows indicate baseline
systems provided by the organizers. ∗ Teams including an organizer. The final row (“Gold”) indicates performance
with gold-standard normalization.

English proficiency (IELTS 6.0+) and were
reasonably familiar with Twitter data.

• Spanish: Nine native speakers of Spanish.
Eight male and one female with ages rang-
ing from 30 to 60. All annotators had a back-
ground in natural language processing and
were familiar with the Twitter platform.

• Croatian: Three native speakers of Croatian,
all linguists with an MA degree, trained in
data annotation.

• Indonesian-English: Two native speakers of
Indonesian, fluent in English. Both annotators
were 22 years old at the time of the annotation.

• Italian: Four native speakers of Italian, all
male, between the age of 20 and 38, from a
variety of Italian regions (i.e., Veneto, Tus-
cany, Liguria, and Apulia). All annotators had
a background in natural language processing
and were familiar with the Twitter platform.

• Dutch: The main annotator was a native
Dutch Information Science master student

(male, age range 20–25). The second annota-
tor (for agreement scores) was a native Dutch
male PhD student in NLP, age 27.

• Slovenian: Five native speakers of Slovenian,
all master-level students of language-related
studies.

• Serbian: Two native speakers of Serbian, all
linguists with an MA degree, trained in data
annotation.

• Turkish-German: The annotators were three
Turkish-German bilinguals born and raised in
Germany. They have studied computational
linguistics and their age ranged from 20 to 25.

E. SPEECH SITUATION The data is not spo-
ken. However, input methods might have changed
over time. A tweet collected from 2012 was less
likely to be produced with a spell checker com-
pared to one collected from 2020.

F. TEXT CHARACTERISTICS The genre is
not bound topic- or content-wise. However, all
inputs are shorter than 280 characters, and most of
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Treebank Avg. de-tweede en-monoise en-tweebank2 it-postwita it-twittiro tr-iwt151

ÚFAL-2 85.5 87.6 84.1 80.5 86.6 88.7 85.5

ÚFAL-1 85.4 87.5 83.7 80.4 86.6 88.8 85.5
HEL-LJU-1∗ 85.1 87.4 81.4 81.6 86.3 88.6 85.6
HEL-LJU-2∗ 85.1 87.4 81.3 81.6 86.2 88.5 85.6
MoNoise 84.9 87.3 82.2 81.6 85.4 87.3 85.5
thunderml-2 84.9 87.1 82.7 81.2 85.7 87.6 85.1
team-1 84.9 87.1 82.7 81.2 85.7 87.6 85.1
team-2 84.8 87.1 82.2 81.3 85.5 87.7 85.3
MFR 84.8 87.1 82.1 81.7 85.3 87.2 85.6
maet-1 84.8 87.1 82.2 81.3 85.5 87.5 85.3
learnML-2 84.8 87.1 82.2 81.5 85.2 87.5 85.3
TrinkaAI-2 84.7 87.2 82.0 81.4 85.4 87.3 85.1
TrinkaAI-1 84.7 87.2 82.0 81.4 85.4 87.3 85.1
thunderml-1 84.7 86.9 82.2 81.4 85.5 87.5 85.0
CL-MoNoise∗ 84.2 86.9 80.1 81.5 84.4 86.6 85.6
BLUE-2 84.2 87.0 79.8 81.5 84.4 86.8 85.6
BLUE-1 84.2 87.0 79.8 81.5 84.4 86.8 85.6
LAI 84.0 87.1 78.8 81.4 84.3 86.5 85.7
maet-2 83.9 87.1 78.7 81.4 84.3 86.5 85.7
learnML-1 83.9 87.1 78.7 81.4 84.3 86.5 85.7
MaChAmp∗ 82.0 84.6 80.2 80.8 80.0 83.0 83.8

Gold — — 85.5 81.6 — — —

Table 7: a-POS accuracy (%) for each dataset. Gray rows indicate baseline systems provided by the organizers. ∗

Teams including an organizer. The final row (“Gold”) indicates performance with gold-standard normalization.

them shorter than 140 characters (Twitter increased
the maximum tweet length in September 2017).

I. PROVENANCE APPENDIX The data is re-
leased under a CC-BY-SA license.

B a-UAS Scores

We report a-UAS scores in Table 6.

C a-POS Accuracies

We report a-POS accuracy values in Table 7. Note
that the en-aae treebank is not included here be-
cause it has no POS annotation.


