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Abstract

Current benchmark tasks for natural language
processing contain text that is qualitatively dif-
ferent from the text used in informal day to
day digital communication. This discrepancy
has led to severe performance degradation of
state-of-the-art NLP models when fine-tuned
on real-world data. One way to resolve this
issue is through lexical normalization, which
is the process of transforming non-standard
text, usually from social media, into a more
standardized form. In this work, we propose
a sentence-level sequence-to-sequence model
based on mBART, which frames the problem
as a machine translation problem. As the
noisy text is a pervasive problem across lan-
guages, not just English, we leverage the multi-
lingual pre-training of mBART to fine-tune it
to our data. While current approaches mainly
operate at the word or subword level, we ar-
gue that this approach is straightforward from
a technical standpoint and builds upon exist-
ing pre-trained transformer networks. Our re-
sults show that while word-level, intrinsic, per-
formance evaluation is behind other methods,
our model improves performance on extrin-
sic, downstream tasks through normalization
compared to models operating on raw, unpro-
cessed, social media text.

1 Introduction

Social media is a pervasive part of our modern
lives and provides us with a rich source of infor-
mation and insight into human behaviour. User-
generated content has been a valuable resource for
the research community, especially in the form of
text, but it is notoriously noisy and non-standard.
Models that operate on social media posts go be-
yond marketing and advertisement applications,
and have the potential to impact real human lives
through, for instance, detecting loneliness (Gun-
tuku et al., 2019), stress (Winata et al., 2018), life
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satisfaction (Yang and Srinivasan, 2016), suicidal
ideation (Matero et al., 2019; Cao et al., 2019), and
mental health problems such as depression (Yates
et al., 2017; Bucur et al., 2021a; Tadesse et al.,
2019) and PTSD (Coppersmith et al., 2014; Amir
et al., 2019).

Outside of a formal setting, users communicate
freely in text form, resorting to abbreviations, slang
or plain spelling mistakes or typos. Eisenstein
(2013) further explored bad language on social me-
dia, in the sense of language that defies our expec-
tation of good spelling, vocabulary and syntax. He
identified several underlying factors for the cause
of non-standard text: user illiteracy, length limits
imposed by social media sites (i.e. Twitter), text
input affordances (i.e. standard mobile keyboards
or predictive entry), pragmatics (emoticons/emoji,
abbreviations and expressive lengthening), and a
social component. Nguyen et al. (2021) further
explored the latter, concluding that some types of
non-standard text have strong social meaning, and
normalization could induce a loss of meaning.

However, it is well known that for most bench-
mark tasks, noisy/non-standard text has proven to
be a real problem to NLP models, such as BERT
(Kumar et al., 2020), trained on clean or curated
data, but fine-tuned on tasks with noisy and incon-
sistent format.

To overcome this predicament, Eisenstein (2013)
proposes two possible approaches: either domain
adaptation or normalization. While domain adap-
tation is not specific to natural language processing,
text normalization and cleaning have always been a
central part of any modern text processing pipeline.
Text normalization is the process of adapting an
input text to a more standard form. It has proven
to be effective in increasing performance on tasks
such as POS tagging (van der Goot and Çetinoğlu,
2021), dependency parsing (van der Goot, 2019a)
and sentiment analysis (Mandal and Nanmaran,
2018). Naturally, most text normalization pipelines
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are based on supervised models, which require care-
fully annotated data. However, annotating a large
corpus of text in multiple languages is often cum-
bersome and expensive, and some approaches rely
on synthetically generating corrupted text (Dekker
and van der Goot, 2020; Ma, 2019).

Commonly, approaches are based on word-level
normalization. One of the most prominent methods
is MoNoise (van der Goot and van Noord, 2017),
in which the text correction pipeline is similar to
a classic ranked retrieval. However, MoNoise op-
erates at the individual word and uses a spelling
correction module and a word embedding module.
While word embeddings can be made to account for
a specific sentence context, it is mostly discarded.

Different from current methods, we aim to per-
form text normalization at a sentence level. This
approach has several advantages, compared to word
or subword methods: i) it can be naturally framed
as a sequence-to-sequence type problem, ii) it is
more straightforward, as it requires only one mod-
ule, as opposed to a multi-stage pipeline (i.e. com-
plex candidate generation and ranking), and iii) the
same model can be trained on multiple languages
at the same time, without increasing in size and
computational processing.

In this edition of The Workshop on Noisy User-
generated Text (W-NUT), organizers propose the
shared task of multilingual lexical normalization1,
in which participants are required to perform
lexical normalization on 12 different languages
(van der Goot et al., 2021a).

As such, we use the state-of-the-art multilingual
sequence-to-sequence transformer model mBART
(Tang et al., 2020) and fine-tune it for our task.
mBART is one of the first models that can be
fine-tuned simultaneously on multiple languages
without performance loss. We show that framing
text normalization as a neural machine translation
problem is a viable method for text normalization,
improving performance on extrinsic, downstream
tasks compared to models that operate on raw, un-
processed social media text. We made the code
publicly available on github.2

2 Related Work

The W-NUT workshop hosted a shared task on lex-
ical normalization of user-generated content from

1http://noisy-text.github.io/2021/
multi-lexnorm.html

2https://github.com/bucuram/
seq2seq-multilingual-normalization

English tweets in its first edition (Baldwin et al.,
2015a). The task received from the competing
teams two categories of submissions, from con-
strained (using only the training data provided by
the organizers) and unconstrained systems (using
other publicly available data or tools).

The best model, from Jin (2015), generated can-
didates from the most similar canonical forms from
the training data evaluated with the Jaccard Index.
A random forest classifier was used to predict the
suitable canonical form from all the candidates us-
ing features such as support and confidence, string
similarity, and part of speech tags. The model was
a constrained system, suggesting that the quality
of the proposed model is more important than us-
ing additional data and tools. Other approaches
were based on conditional random fields (CRF)
(Akhtar et al., 2015; Supranovich and Patsepnia,
2015; Akhtar et al., 2015) and recurrent neural net-
works (RNN) (Min and Mott, 2015; Wagner and
Foster, 2015) among others.

Notably, MoNoise (van der Goot and van Noord,
2017) has long been considered state-of-the-art in
lexical normalization. MoNoise is a normalization
model using spelling correction and word embed-
dings for candidate generation and a feature-based
random forest classifier for candidate ranking. It
is a modular normalization system easily reusable
and adaptable (van der Goot and van Noord, 2017).
The model was at the beginning developed only for
English text. Still, then it was later expanded for
multi-lingual lexical normalization covering lan-
guages such as Dutch, Spanish, Turkish, Slovenian,
Croatian and Serbian (van der Goot, 2019b).

The lexical normalization task can also be formu-
lated as a machine translation (MT) task. The noisy
user-generated content is the source language, and
the canonical form is the target language. Veliz
et al. (2019) compare the MT approaches for lex-
ical normalization, focusing on statistical neural
translation (SMT) and neural machine translation
(NMT) and obtaining better results using the SMT
method. Furthermore, the authors show that the
SMT approach works better in a low-resource set-
ting than an NMT approach which requires a lot of
data.

With the rise in popularity of pre-trained lan-
guage models for natural language understanding
and natural language generation, their ability to
perform lexical normalization was also studied.
By transforming the task into a token prediction

http://noisy-text.github.io/2021/multi-lexnorm.html
http://noisy-text.github.io/2021/multi-lexnorm.html
https://github.com/bucuram/seq2seq-multilingual-normalization
https://github.com/bucuram/seq2seq-multilingual-normalization
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one, Muller et al. (2019) demonstrate that a BERT
model can be used as a lexical normalization model
in low resource settings.

Current methods for lexical normalization at-
tempt to normalize at the character-level (Pennell
and Liu, 2011; Ljubešić et al., 2014), syllable-level
(Xu et al., 2015), word-level (van der Goot, 2019b;
Jin, 2015) or sentence-level (Muller et al., 2019;
Lourentzou et al., 2019). Lusetti et al. (2018) pro-
pose an encoder-decoder approach for text normal-
ization.

We propose to make use of the latest transformer
models that are capable of multilingual translation
in a sequence to sequence manner, namely mBART
(Tang et al., 2020). However, we do not perform
translation between languages, but instead, we use
mBART as a denoising autoencoder, i.e. translating
from bad English to good English. This way, we
take the whole sentence into consideration when
correcting the text. Moreover, this method is more
straightforward and can scale to multiple languages
without increasing computational demands.

3 Data and Evaluation

We further describe the dataset for this task and
evaluation procedures.

MultiLexNorm Dataset The data provided by
the organizers includes texts from 12 languages:
Croatian, Danish, Dutch, English, German, Ital-
ian, Serbian, Slovenian, Spanish, Turkish and code-
switched data for Indonesian-English and Turkish-
German, as seen in Table 1. Some examples from
the training data are shown in Table 2. For some
languages in the dataset, the capitalization (Caps
column) is also corrected, and words are split or
merged (1-N/N-1 column). The dataset comprises
Twitter posts from all languages, but some lan-
guages also have texts from additional sources. For
example, Danish also has texts from Arto, Den-
mark’s first large-scale social media (Plank et al.,
2020) and Dutch texts were also gathered from pub-
lic Internet forums, and SMS messages (Schuur,
2020).

W-NUT Evaluation Methodology The organizers
of the W-NUT workshop propose two types of eval-
uation procedures: intrinsic, word-level and extrin-
sic, downstream task performance (i.e. dependency
parsing).

As intrinsic evaluation, the Error Reduction Rate

Language Words 1-N/N-1 Caps %normed
Croatian 75,276 - + 8.98
Danish 11,816 + + 8.66
Dutch 23,053 + + 26.49
English 73,806 + - 6.90
German 25,157 + + 8.90
Indonesian-English 23,124 + - 12.16
Italian 14,641 + + 7.36
Serbian 91,738 - + 7.73
Slovenian 75,276 - + 15.66
Spanish 13,827 - - 7.69
Turkish 7,949 - + 36.60
Turkish-German 16,546 + + 24.25

Table 1: Available languages in the training set. Each
language has its own annotation guidelines, in which
capitalization can be taken into account (Caps), or
words can be split or merged (1-N/N-1). Moreover,
some languages are code-switched, two different lan-
guages are used in a tweet.

introduced by van der Goot (2019b) is proposed:

ERR =
TP − FP

TP + FN
(1)

Because accuracy is hard to compare across
datasets with different numbers of raw words which
have to be normalized, the ERR proposes an eval-
uation metric that can be used to compare the per-
formance of systems across multiple datasets. It is
computed as accuracy normalized for the number
of raw words normalized in the gold dataset.

A system that always keeps the raw words has
an ERR score of 0.0, while a perfect system will
have ERR precisely 1.0. The ERR has a negative
value when the system normalizes more words with
a wrong form than the correct canonical form.

However, one downside of the ERR is that it fails
to distinguish between FP and FN. Thus, in the case
of FP, the system may provide a correct normaliza-
tion, even if the annotators did not normalize the
raw word.

Further, two baselines are provided: Leave-As-
Is (LAI) - the output is the same as the raw input,
the normalization is not performed - and Most-
frequent-Replacement (MFR) - the output is the
most frequent replacement from the training data.
If the raw word is not found in the training set, no
normalization is performed.

As a secondary evaluation, the organizers pro-
pose an extrinsic evaluation of the effect of nor-
malization on the task of dependency parsing, pre-
vious research showing that lexical normalization
improves the performance for this task (van der
Goot, 2019a). A dependency parser is trained on
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Language Example raw Example gold
Croatian (Ljubešić et al., 2017a) dok je bandic bio clan sdpa tvrdilo se da je idealan dok je bandić bio član sdp-a tvrdilo se da je idealan
Danish (Plank et al., 2020) Maerkeligt, taenker jeg, og gar ind igen. Mærkeligt, tænker jeg, og går ind igen.
Dutch (Schuur, 2020) ja effe slaapverhaal vertelle vo sophieke eh lol Ja even slaapverhaal vertellen voor sophieke eh lol
English (Baldwin et al., 2015b) he obvi doesnt understand that he obviously doesn’t understand that
German (Sidarenka et al., 2013) Ich werd dran denken! Ich werde daran denken!
Indonesian-English (Barik et al., 2019) msh bs disebut sukses? masih bisa disebut sukses?
Italian (van der Goot et al., 2020) ztate prentento in ciro kvelli quelli kol raffrettoren state prendendo in giro quelli col raffreddore
Serbian (Ljubešić et al., 2017b) ja sam ozbiljan covek ja sam ozbiljan čovek
Slovenian (Erjavec et al., 2017) da se naujo zdaj še na planico spravl!? da se ne zdaj še na planico spravili!?
Spanish (Alegria et al., 2013) quiero tranquileo del bueno hoy..!!! quiero tranquilidad del bueno hoy..!!!
Turkish (Çolakoğlu et al., 2019) Avrupa ve amerikada VALENTİNA DAY diye geçer. Avrupa ve Amerika’da Valentina Day diye geçer.
Turkish-German (van der Goot and Çetinoğlu, 2021) artik ablamdan bise yuruturum napim :D Artık ablamdan bir şey yürütürüm ne yapayım :D

Table 2: Noisy examples from each language and the corresponding canonical forms.

both raw and canonical data to evaluate the perfor-
mance improvement of using the normalized versus
the original data.

Moreover, we also evaluate the extrinsic per-
formance of our model on two additional tasks:
sentiment analysis on the SMILE dataset (Wang
et al., 2016) and hate speech detection on OLID
dataset (Zampieri et al., 2019a). Both datasets con-
tain data collected from Twitter, making them good
candidates for evaluating the semantic processing
of noisy text.
SMILE dataset It consists of posts with mentions
of several British museums gathered from Twitter
to classify the emotions expressed by users towards
art and cultural experiences from the museums. It
contains 3,085 posts annotated with five emotions:
anger, disgust, happiness, surprise and sadness;
fear was not found in any Twitter posts.
OLID dataset It was the official dataset of the
SemEval-2019 Task 6: Identifying and Categoriz-
ing Offensive Language in Social Media (OffensE-
val 2019) (Zampieri et al., 2019b) and SemEval-
2020 Task 12: Multilingual Offensive Language
Identification in Social Media (OffensEval 2020)
(Zampieri et al., 2020). The dataset was also used
in misogyny (Pamungkas et al., 2020), cyberbully-
ing (Aind et al., 2020) and depression (Bucur et al.,
2021b) research. It contains 14,100 tweets with a
hierarchical annotation taxonomy with three levels:
Level A - Offensive language identification (offen-
sive vs non-offensive), Level B - categorization of
Offensive language (targeted insults or threats vs
untargeted profanity) and Level C - Offensive lan-
guage target identification (individual vs group vs
other). However, for our evaluation, we focus only
on level A.

For evaluating on sentiment analysis (SMILE)
and offensive language identification (OLID), we
trained a simple word-level TF-IDF model together
with a linear SVM with balanced weights. For

SMILE, we report average macro F1 score across 5
folds, and for OLID, we report macro F1 score on
the test set.

4 Method

Figure 1: Fine-tuning a mBART model for lexical nor-
malization on all available languages. We use the same
model for all languages simultaneously.

Lewis et al. (2019) proposed BART in 2019,
as a way to pre-train large-scale transformers for
sequence-to-sequence tasks. Initially, the authors
pre-trained an encoder-decoder transformer only
for English, obtaining good results on multiple
downstream NLP tasks. Further, mBART (Tang
et al., 2020), follows the same procedure, but for
multiple languages. The pre-training stage for both
BART and mBART is akin to a denoising autoen-
coder, in which the model receives a noisy (in this
case masked) sentence, and it learns to reconstruct
it.

While mBART is fine-tuned on multiple lan-
guage pairs, it is pretrained monolingually, and
is capable of acting as an autoencoder for the same
language. In our case, we make use of a pretrained
mBART on 50 languages3 from the transformers
library (Wolf et al., 2020), and employ a procedure
similar to the pre-training stage: a noisy sentence is

3https://huggingface.co/facebook/
mbart-large-50

https://huggingface.co/facebook/mbart-large-50
https://huggingface.co/facebook/mbart-large-50
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Team Name Avg. da de en es hr iden it nl sl sr tr trde
ÚFAL-2 (Samuel and Straka, 2021) 67.30 68.67 66.22 75.60 59.25 67.74 67.18 47.52 63.58 80.07 74.59 68.58 68.62
HEL-LJU-2 (Scherrer and Ljubešić, 2021) 53.58 56.65 59.80 62.05 35.55 56.24 55.33 35.64 45.88 66.97 66.44 51.18 51.18
MoNoise (van der Goot, 2019b) 49.02 51.27 46.96 74.35 45.53 52.63 59.79 21.78 49.53 61.91 59.58 28.21 36.72
TrinkaAI-2∗ (Kubal and Nagvenkar, 2021) 43.75 45.89 47.30 65.96 61.33 41.28 56.36 15.84 45.74 59.51 44.52 15.54 25.77
thunderml-1∗ 43.44 46.52 46.62 64.07 60.29 40.09 59.11 11.88 44.05 59.33 44.46 15.88 29.01
team-2 40.70 48.10 46.06 63.73 21.00 40.39 59.28 13.86 43.72 60.55 46.11 15.88 29.71
learnML-2 40.30 40.51 43.69 61.57 56.55 38.11 56.19 5.94 42.77 58.25 39.99 14.36 25.68
maet-1 40.05 48.10 46.06 63.90 21.00 40.39 59.28 5.94 43.72 60.55 46.11 15.88 29.71
MFR 38.37 49.68 32.09 64.93 25.57 36.52 61.17 16.83 37.70 56.71 42.62 14.53 22.09
CL-MoNoise (van der Goot, 2021) 12.05 7.28 16.55 4.13 4.99 26.41 2.41 0.00 16.22 8.77 20.09 17.57 20.16
(ours) Fixed Encoder (separate) + post proc. 10.65 49.68 -2.59 29.13 -7.90 26.41 -1.72 -8.91 -1.49 1.27 42.62 0.68 0.70
(ours) Fixed Encoder (separate) 6.73 49.68 -1.91 26.81 -9.36 -10.06 -7.22 -8.91 -2.09 -1.04 42.62 9.97 14.99
(ours) Fixed Encoder (separate) - stripped unicode 5.22 49.68 -1.91 26.81 -10.19 -9.86 -7.22 -31.68 -2.09 -1.13 42.62 1.01 6.57
(ours) ML - Fixed Decoder + post proc. -6.54 49.68 12.50 27.41 -13.10 -111.84 -7.73 -8.91 16.82 -110.57 42.62 11.49 13.06
(ours) ML - Fixed Decoder -11.79 49.68 20.05 22.12 -18.92 -127.60 -14.60 -25.74 16.69 -133.71 42.62 13.18 14.64
(ours) ML - Fixed Encoder + post proc. -21.51 49.68 10.47 12.09 -28.69 -191.33 -9.97 -27.72 9.19 -141.80 42.62 9.63 7.62
(ours) ML - Fixed Encoder -32.90 49.68 19.48 20.78 -40.12 -242.57 -24.23 -70.30 8.72 -180.75 42.62 11.15 10.69
LAI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MaChAmp (van der Goot et al., 2021b) -21.25 -88.92 -93.36 50.99 25.36 42.62 39.52 -312.87 1.49 56.80 39.44 -12.67 -3.42

Table 3: Team standings, based on Error Reduction Rate (ERR). We kept the best result from each team, from
clarity. (∗ denotes late submissions).

fed to the model, and the output ought to be the nor-
malized sentence. We only trained on the provided
languages that are contained in the pre-training set
of languages. As mBART is not pre-trained on
code-switched languages, for IN-EN and TR-DE,
we use the mBART model pre-trained only on the
main language of each pair (e.g. IN for IN-EN and
TR for TR-DE). For Danish and Serbian, we fall
back to the MFR baseline.

Figure 1 showcases our fine-tuning procedure.
We tried two different approaches for fine-tuning:
Frozen Encoder and Frozen Decoder because, with
a fixed encoder, the model suffers from the same
OOV-type problems as a typical transformer. How-
ever, training with a fixed decoder allows the
model to better adapt its representations to each
language’s noisy version while maintaining its gen-
erative properties. For both approaches, we train
a single model for all languages. Moreover, we
also trained a separate mBART for each language,
monolingually.

Training details For all runs, we fine-tune mBART
for 50 epochs, using a batch size of 256 and with a
cyclical learning rate scheduler (Smith, 2015) that
linearly increases the learning rate from 0.00001
to 0.0001 and back across 5 epochs. The work-
shop organizers provided both the training data
and the validation data on most languages. We
omit validation on languages where the validation
data is missing. The training was performed on
an NVIDIA RTX 2070 graphics card. Since the
memory requirements of an mBART model are
quite high, we employed gradient accumulation to
increase the batch size. In addition, we employed
early stopping when the validation loss increased

for more than 3 epochs.
Post-processing Since our model outputs a whole
sentence directly, the word-level evaluation re-
quires the noisy input words to be aligned to their
normalized counterpart. This phase is essential
for sequence-to-sequence text normalization, as
bad alignments will reduce the overall word-level
performance score, especially in the 1-N/N-1 lan-
guages. As such, for the post-processing phase, we
aligned input words with their normalized counter-
parts based on the Levenshtein distance between
them. We used a linear sum assignment on the
distance matrix to perform matching. Additionally,
we matched the capitalization between corrections
and left links, hashtags, and user mentions as they
are.

5 Results

We further showcase the results of the pretrained
mBART models fine-tuned on the available data:
firstly, we kept the transformer encoder fixed and
trained only the decoder, and secondly, we kept the
decoder fixed and trained the encoder. During this
fine-tuning process, we trained a single model for
all languages. Further, for the CodaLab submis-
sion, we fine-tuned multiple models, one for each
language, in the "fixed encoder" regime.
Intrinsic Evaluation Table 3 showcases intrinsic,
word-level evaluation across languages. Our best
model obtained an average ERR across languages
of 10.65, corresponding to a separate mBART
trained for each language, with the additional post-
processing described in Section 4. In our case,
training multilingually did improve performance
on some languages (i.e. DE, EN, NL, TR), but over-
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Team Name Avg. de-tweede en-aae en-monoise en-tweebank2 it-postwita it-twittiro tr-iwt151
ÚFAL-2 64.17 73.58 62.73 58.57 59.08 68.28 72.22 54.74
HEL-LJU-2 63.73 73.49 60.64 56.27 60.30 68.11 72.32 54.95
MoNoise 63.44 73.20 62.27 56.83 58.90 67.55 70.69 54.61
MFR 63.31 72.86 60.32 56.74 60.31 67.34 70.72 54.89
TrinkaAI-2* 63.12 72.86 60.16 56.64 59.87 66.98 71.14 54.20
maet-1 63.09 72.80 59.44 56.64 59.80 67.41 71.07 54.45
team-2 63.03 72.80 59.44 56.64 59.80 67.19 70.86 54.45
thunderml-2* 63.02 72.67 59.57 56.74 59.25 67.34 71.35 54.24
thunderml-1* 62.95 72.52 59.31 56.74 59.86 67.09 71.00 54.09
CL-MoNoise 62.71 72.65 60.90 55.26 58.53 66.53 70.10 54.98
(ours) Fixed Encoder (separate) 62.53 72.57 59.57 54.20 59.81 66.74 69.99 54.84
LAI 62.45 72.71 59.21 53.65 59.99 66.49 70.06 55.00
MaChAmp 61.89 71.28 60.77 54.61 57.97 64.65 69.82 54.08

Table 4: Extrinsic evaluation results on dependency parsing task.

SMILE OLID Task A
Raw Text (Leave-As-Is) 22.65% ± 0.02 57.15%
mBART Fixed Encoder 23.43% ± 0.02 58.08%

Table 5: Extrinsic evaluation on sentiment analysis
(SMILE) and offensive language identification (OLID).
Lexical normalization through fine-tuning mBART
slightly improves performance.

Raw Gold Our Correct?

i see, u can
comeee

i see, you can
come

i see, you can
come

X

ich geb heut
einen aus

ich gebe heute
einen aus

ich gebe heute
einen aus

X

Juhuuuuu Juhu Juhu X

fakt ap gaan. eig
nu al mr kanniet

fakt op gaan.
Eigenlijk nu al
maar kan niet

echt ap gaan.
eig nu al mijn
kanniet

7

"Why Germany
says "nein"

"Why Germany
says "nein"

"Warum
Deutschland
sagt "nein"

7

i coulda swore
.... lol nvm

i could have
swore .... lol
never mind

i could swore ....
lol never

7

todos lo sabe-
mos jajajaja-
jaja

todos lo sabe-
mos jajajaja-
jaja

todos lo sabe-
mos ja

?

discussing w/
friend

discussing w/
friend

discussing with
friend

?

n puedo
ni volver a
dormirme

n puedo
ni volver a
dormirme

no puedo
ni volver a
dormirme

?

Table 6: Qualitative results on different languages with
mBART Fixed Encoder. We present examples of cor-
rect normalization (X), mistakes (7), and questionable
normalizations (?), in which the model correctly nor-
malizes, but annotators do not.

all achieved lower scores, especially in the case
for HR and SL. For those languages, the model
severely diverged, and its output consisted only of
repeating the first word in the sentence. As per our
intuition, fixing the decoder results in better perfor-

mance when compared to fixing the encoder: the
model learns to adapt its representations to account
for the noisy text.

However, since our method is sentence-based,
perfect alignment between words is cumbersome,
with many cases of mismatch between punctua-
tion. Moreover, merging or splitting words for
normalization is also not taken into account in the
post-processing phase.
Extrinsic Evaluation For extrinsic evaluation, we
showcase the results for our best model in Table 4
on the dependency parsing downstream task from
the workshop challenge. Even though our model
is not in the top-performing models, the absolute
difference in performance is minimal.

Moreover, we also evaluated the effect of lexical
normalization on two other tasks - sentiment analy-
sis on the SMILE dataset and offensive language
identification on OLID (Table 5). We trained a
word-level TF-IDF and a linear SVM with balanced
weights for both datasets and reported a macro F1

score. Our lexical normalization improves results
on both these tasks, compared to modelling the raw,
unprocessed social media posts. This is because
lexical normalization results in a smaller vocabu-
lary for the documents, allowing the SVM model
to operate on smaller dimensional data. Moreover,
this evaluation procedure is arguably more realistic,
as it does not require accurate post-processing to
precisely align noisy words with their corrected
version and match punctuation.
Discussion In Table 6 we showcase some exam-
ples for correct, incorrect and questionable text
normalizations. The model is able to easily grasp
contractions such as u→ you and expressive length-
ening such as Juhuuuuu→ Juhu. However, more
complex word abbreviations such as nvm are quite
challenging to generate, as the model only outputs
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the first part (i.e. never). Moreover, code-switched
languages are an inherent problem to our approach,
as mBART is only trained to receive input from
a single language and not code-switched. Inter-
estingly, even though we specified the langauge
code for German in the phrase "Why Germany says
"nein", the model actually translates the English
part into German: Warum Deutschland sagt "nein".

However, as the organizers have pointed out,
there are inconsistencies in the training and testing
data annotations. In some cases, some words are
not normalized (i.e. jajajajaj / w/ / n) even though
they were clearly lengthenings or contractions. De-
spite this, in some of these cases, our model was
able to provide correct normalizations.

There also appears to be no correlation between
training dataset size and final normalization perfor-
mance. For example, in the case of Croatian, even
though the dataset is the second largest, the per-
formance is lower than for other languages. Thus,
the lower performance in some languages may be
a cause of the complexity of the language; for En-
glish, our model obtained the best results.

6 Conclusions

In this work, we presented a method to perform
lexical normalization by fine-tuning a multilingual
machine translation model on pairs of noisy and
normalized sentences from various languages. We
employed mBART, as it is currently the state-of-
the-art in transformer-based multilingual machine
translation, allowing us to fine-tune on all available
languages simultaneously. Furthermore, we used
mBART as a denoising autoencoder and tuned it in
a supervised fashion.

As opposed to current two-stage methods for
word candidate generation and ranking, our ap-
proach is more straightforward. Moreover, it scales
to multiple languages without increasing computa-
tional demand (i.e. not increasing vocabulary size,
increasing search space and others). Evaluation
results show that our method, even though it lacks
behind current methods on intrinsic, word-level
evaluation, improves performance on downstream
tasks.

For future work, we aim to develop our method
for better post-processing of the output and increas-
ing augmentation levels - i.e. injecting more noise
in the form of spelling mistakes, backwards trans-
lations etc. Moreover, since our method is super-
vised, the quality and quantity of training data play

an essential role in the final performance. In this
regard, we aim to explore ways to take into account
inconsistent annotations.
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Nikola Ljubešić, Tomaž Erjavec, Maja Miličević, and
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