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Abstract

Extracting keyphrases that summarize the
main points of a document is a funda-
mental task in natural language processing.
Supervised approaches to keyphrase extrac-
tion(KPE) are largely developed based on the
assumption that the training data is fully an-
notated. However, due to the difficulty of
keyphrase annotating, KPE models severely
suffer from incomplete annotated problem in
many scenarios. To this end, we propose a
more robust training method that learns to mit-
igate the misguidance brought by unlabeled
keyphrases. We introduce negative sampling
to adjust training loss, and conduct experi-
ments under different scenarios. Empirical
studies on synthetic datasets and open domain
dataset show that our model is robust to incom-
plete annotated problem and surpasses prior
baselines. Extensive experiments on five scien-
tific domain datasets of different scales demon-
strate that our model is competitive with the
state-of-the-art method.1

1 Introduction

Keyphrase extraction is the task of automatically
extracting a set of phrases that provide a concise
summary of a document content. An effective
keyphrase extraction (KPE) system can benefit
a wide range of natural language processing and
information retrieval tasks(Hasan and Ng, 2014),
such as text categorization(Hulth and Megyesi),
opinion mining(Berend, 2011) and recommenda-
tion(Pudota et al., 2010). Recent supervised neu-
ral methods typically treat keyphrase extraction as
a classification problem(Augenstein and Søgaard,
2017; Sun et al., 2020; Xiong et al., 2019), where
given phrases are classified as keyphrases or non-
keyphrases. Although supervised methods perform

*Corresponding Author
1Our code and models are available at

https://github.com/fredia/NS-KPE

well in this task, it requires a large amount of la-
beled data which is extremely expensive and time-
consuming to collect in many application scenar-
ios(Liu et al., 2012).

The latest advances in neural KPE are mainly
carried out on data sets in scientific domain
datasets.(Augenstein et al., 2017; Meng et al.,
2017). Because scientific domain has sufficient and
high-quality training data for neural methods: some
training data are annotated by authors, and the au-
thor is the person who is most familiar with their
articles, the keyphrases annotated by author are
high-quality. However, due to the requirements for
professional knowledge in scientific domain, some
keyphrases annotated by readers are incomplete.
Table 1 shows an example case with incomplete
keyphrase annotation. Obviously, "model valida-
tion" is more suitable as a keyphrase than "paper",
"model" and "use", but "model validation" isn’t
annotated as keyphrase.

It has been suggested that keyphrase annota-
tion is highly subjective(Sterckx et al., 2016). In
real world scenarios, most potential applications
of KPE deal with diverse documents originating
from sparse sources that are rather different from
scientific papers(Xiong et al., 2019). They often in-
volve various domains whose contents target much
wider audiences than scientists and require a large
amount of high-quality labeled data which is ex-
tremely expensive to collect(Wang et al., 2018).

There are several prior works focused on data
quality and insufficient labeled data issues, Ster-
ckx et al.(Sterckx et al., 2016) treat supervised
keyphrase extraction as Positive Unlabeled Learn-
ing(Ren et al., 2014) by reweighting importance of
training samples. Wang et al.(Wang et al., 2018)
used the idea of transfer learning and proposed
Topic-based Adversarial Neural Network (TANN).
They exploited unlabeled data in the target domain
and data in the resource-rich source domain to al-
leviate incomplete annotated problem. However,

https://github.com/fredia/NS-KPE
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Table 1: An example case from Kp20K2 with incomplete keyphrase annotations, which "model validation" is more
suitable as a keyphrase than "paper", "model" and "use", but "model validation" isn’t annotated as keyphrase.

title The use of graphical models in model validation

abstract
The use of graphical models for model specification and in
modelling is increasing rapidly. This paper discusses the
use of these graphical models in model validation.

annotated keyphrases paper,model,use,graphic model

transfer learning needs to have a strong correlation
between the source domain and the target domain.

To overcome the impaction of incomplete an-
notated problem in keyphrase extraction, we in-
troduced negative sampling to allow unlabeled
keyphrases to have opportunities to be considered
as keyphrase to participate in the training. Most
previous model treated unlabeled keyphrases as
negative samples, which will mislead the biased
results of model training. In this study, we treat
keyphrase extraction task as classification problem.
First, we apply pre-trained model RoBERTa(Liu
et al., 2019) to get word embeddings, based on
word representations, use sliding CNN to extract
candidate gram features, and then utilize a classifier
layer to divide the candidate grams into keyphrase
and non-keyphrase categories. At the same time,
in order to explore the impact of incomplete anno-
tated problem in different scenarios, we constructed
different synthetic datasets by randomly masking
some keyphrases, and conducted experiments on
scientific domain datasets, synthetic datasets and
open domain dataset. Extensive experiments show
that our model well handles unlabeled keyphrases
and surpasses prior baselines, and our model can
obviously reduce the misguidance brought by unla-
beled keyphrases in training when the incomplete
problem is serious.

2 Related Work

In this section, we briefly review two classes of
closely related works: keyphrase extraction ap-
proaches and learning with noisy data.

2.1 Keyphrase Extraction Approaches

In most traditional existing literature, keyphrase
extraction has been formulated as a two-step pro-
cess(Yuan et al., 2020). First, lexical features
such as part-of-speech tags are used to determine
a list of phrase candidates. Second, a ranking al-
gorithm, such as TextRank(Mihalcea and Tarau,

2This example case is the 278404th sample in Kp20k-train
dataset, which is available at OpenNMT-kpg-release

2004), Multi-Layer perceptron and Support Vector
Machine(Lopez and Romary, 2010), is adopted to
rank the candidate list and the top ranked candi-
dates are selected as keyphrases.

Because of the similarity with Named Entity
Recognition(NER) task, keyphrase extraction is
treated as a sequence labeling problem by using
IOB tagging scheme(Alzaidy et al., 2019). Each
word in the sentence is labeled as B-tag if it is the
beginning of a keyphrase, I-tag if it’s inside but
not the first one within the keyphrase, or O-tag
otherwise. Similarly, span-based models which are
popular in NER task, also are utilized in keyphrase
extraction task(Mu et al., 2020; Sun et al., 2020).
They treat the spans, instead of single words, as the
basic units for labeling.

Sometimes keyphrases are absent from the
source text, the simple extraction methods men-
tioned above can only extract present keyphrase.
Meng et al.(Meng et al., 2017) first proposed the
CopyRNN, a neural generative model that both
generates words from vocabulary and points to
words from the source text with an encoder-decoder
framework.

The supervised methods mentioned above have
an assumption that the labeled data is completely
credible, while the noise in annotated data is ig-
nored. Zhu et al.(ZHU and WU, 2004) suggested
that noise in labels tends to be more harmful than
noise in features. Learning with noisy data will be
introduced in next subsection.

2.2 Learning with Noisy Data

A number of approaches have been proposed to
train DNNs with noisy data. One line of ap-
proaches formulate explicit or implicit noise layers
to characterize the distribution of noisy and true
labels(Hedderich and Klakow, 2018). Another line
of approaches use correction methods to reduce
the influence of noisy data. Sterckx et al.(Sterckx
et al., 2016) reduce the influence of noisy data by
reweighting the importance of unlabeled candidate
phrases in a two-stage Positive Unlabeled Learning
setting. Recently, a few other methods have also

https://github.com/memray/OpenNMT-kpg-release
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been proposed that use noise tolerant loss functions
to achieve robust learning, Li et al.(Li et al., 2021)
use negative sampling to adjust train loss, avoid
training NER models with unlabeled entities. In
our work, we treat KPE as classification problem,
and introduce negative sampling to alleviate incom-
plete annotated problem.

3 Problem Formulation

3.1 Keyphrase Extraction

According to the setting of Meng et al.(Meng et al.,
2017), we denote phrases that do not match any
contiguous subsequence of a document as absent
keyphrases, and the ones that fully match a part of
the document as present keyphrases. In this work,
we only focus on present keyphrase extraction and
treat it as a classification problem.

Given a document d = [w1, w2, · · ·, wn], and the
present annotated keyphrase set y = {y1, y2, · ·
·, ym}, where n is the length of document and m
is the amount of present keyphrases. For each
keyphease yi in the keyphrase set, yi = {wposi , · ·
·, wposi+leni−1}, which posi is the start position of
ith keyphrase, and leni is the number of words in
ith keyphrase. As shown in Fig 1, since the length
of most keyphrases are less than or equal to 5, we
extract all N-grams(1 <= N <= 5) as candidates
firstly, which 1-gram = {{w1}, {w2}, · · ·, {wn}},
2-gram = {{w1, w2}, {w2, w3}, · · ·, {wn−1, wn}},
grams of other lengths are similar, let cNi present
the ith N-gram, and then apply a classifier to clas-
sify grams into keyphrases or non-keyphrases.

kra
piv

in nu
s

sem
ev

al
kp

20
k

ins
pe

c
0.0

0.2

0.4

0.6

0.8

1.0

1-gram

2-gram

3-gram

4-gram

Figure 1: The distribution of the number of words in
keyphrase. Different colors represent the proportion of
different N -grams in the dataset. Green indicates the
proportion of 5-gram, and red represents keyphrases
with more than 5 words.

3.2 Incomplete Annotated problem

As mentioned above, keyphrase annotation is
highly subjective(Sterckx et al., 2016) and requires
the professional knowledge of the annotator, it is
difficult to annotate keyphrases. Due to the com-
plexity of keyphrase annotation or the heedlessness
of human annotators, some ground truth keyphrase
ŷ of document d are not covered by annotated
keyphrase set y, ŷ /∈ y.

4 Methodology

Inspired by the effectiveness of negative sampling
in the field of NER(Li et al., 2021), we introduce
negative sampling to keyphrase extraction field to
solve incomplete annotated problem. CNN-based
keyphrase extraction model will be presented firstly,
and then we will introduce how to use negative
sampling to improve the training process to make
the model more robust.

4.1 CNN-based keyphrase extraction model

As shown in fig 2, our model mainly includes two
components:(1) A feature extractor for candidate
grams via sliding CNN. (2) A binary classifier
which can verify whether a gram is a keyphrase.

4.1.1 Gram feature Extractor via sliding
CNN

Inspired by textCNN proposed by Kim(Kim, 2014),
we apply five filters with different kernel size to
extract gram features. Let hi ∈ Rk be the k-
dimensional word embedding corresponding to
the ith token in the document. In general, let
hi:i+j refer to the concatenation of word vectors
hi, hi+1, · · ·, hi+j . A convolution operation in-
volves a filter wi ∈ RNk, which is applied to a
window of N words to produce a new gram fea-
ture. The representation of the ith N-gram cNi is
calculated as:

gNi = CNN(hi:i+N−1) (1)

Here hi:i+N−1 is the concatenation of ith N-gram
cNi word embeddings. Five filters are applied to
each possible window of words to produce n+(n−
1)+ (n− 2)+ (n− 3)+ (n− 4) candidate grams.

4.1.2 Binary Classifier

After obtaining the candidate gram representations,
we employ a non-linear classify layer to predict
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Figure 2: Illustration of our CNN-based model for keyphrase extraction.

whether a gram is a keyphrase based on it’s repre-
sentation.

p(cNi = yNi ) = softmax(tanh(Wh ∗ gNi + b))
(2)

where gNi is the representation of ith N-gram, yNi
is the label of whether the gram cNi (wi:i+n−1) is a
keyphrase or not, Wh and b are parameters to be
learned.

4.2 Training via Negative Sampling

In this work, keyphrase extraction is viewed as a
classification problem. Existing models optimize
this classification problem by direct cross-entropy
function while ignore incomplete annotated prob-
lem. Meanwhile, according to statistics(table 2),
we can see that the positive and negative samples
are extremely unbalanced, one document only has 3
keyphrases on average, but there are close 500 unla-
beled grams as non-keyphrases. We introduce neg-
ative sampling to adjust training loss. On the one
hand, negative sampling lets unlabeled keyphrases
have opportunities to be considered as keyphrase
to participate in the training. On the other hand,
it makes positive and negative samples more bal-
anced.

Specifically, we randomly sample a small subset
of unlabeled grams as the negative samples. Let C
be the candidate grams set, the negative candidate
grams set C̃ can be denoted as:

C̃ = {cNi |cNi /∈ y, 1 ≤ N ≤ 5, 0 ≤ i ≤ n−N},
(3)

based on C̃, we sample a subset Ĉ from the whole
negative candidate grams set. The number of grams
in set Ĉ is dα∗|C̃|e, the sampling rate {α|0 < α <
1} is optional in practice, where de is the ceiling
function, we guarantee that at least one negative
candidate gram is sampled. Then we compute the
cross-entropy loss with positive labeled keyphrases
and the sampled negative candidate grams as flow:

L = (
∑
cNi ∈y

−log(P (cNi = 1)))+

(
∑
cNi ∈Ĉ

−log(P (cNi = 0)))
(4)

Negative sampling can reduce the risk of training a
KPE model with incomplete annotated problem by
incorporating some randomness into the training
loss.

5 Experiments

5.1 Datasets
We choose scientific domain datasets as well-
annotated datasets, use the dataset Kp20k(Meng
et al., 2017) for training 3, which contains a large
amount of high-quality scientific metadata in the
computer science domain from various online dig-
ital libraries(Meng et al., 2016). Each of which
contains a title and an abstract of a scientific pub-
lication as source text, and author-assigned key-
words as target keyphrases, we follow the original
work’s partition of training, development and test-
ing sets. We further test the model trained with

3https://github.com/memray/OpenNMT-kpg-release

https://github.com/memray/OpenNMT-kpg-release
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Table 2: Statistics of the dataset. #doc, #keyphrase and
#length denote the number of papers, the average num-
ber of keyphrases and the number of word in keyphrase.

Dataset #doc #keyphrase #length

Test

Inspec 500 7.75 2.41
Krapivin 460 3.98 2.11
Nus 211 5.61 1.92
Semeval 100 6.76 2.15
Kp20k 19032 3.48 1.86

Kp20k Validation 19067 3.47 1.87
Kp20k Training 488549 3.48 1.86

OpenKP 148124 1.79 2.02

Kp20k on four widely-adopted keyphrase extrac-
tion data sets including Inspec(Hulth and Megyesi),
NUS(Nguyen and Kan, 2007), SemEval-2010(Kim
et al., 2010) and Krapivin(Krapivin et al., 2009). In
this paper, we focus on keyphrase extraction, there-
fore, only the document of at least one present
keyphrase are used for training and evaluation. The
statistics on the number of documents, the average
number of keyphrases and the average number of
word in keyphrase for each benchmark are summa-
rized in Table 2.

Furthermore, in order to explore the performance
of our model in real world scenario, we also choose
OpenKP(Xiong et al., 2019) as an open domain
dataset, OpenKP includes 134K open domain web
pages of various topics from search engine Bing.
And we randomly remove some keyphrases of
training dataset Kp20k with different masking rate
rmask to construct synthetic datasets, to simulate
poorly-annotated datasets with different degrees of
incomplete annotated problem.

5.2 Baselines and Evaluation Metrics

Because keyphrase generation(KPG) can also
generate present keyphrase, we compare our
model with both extraction and generation ap-
proaches. For extraction approaches, we choose
two well-known unsupervised algorithms for
keyphrase extraction including Tf-Idf(Jones, 1972),
TextRank(Mihalcea and Tarau, 2004), and also
choose SKE-Large-Cls(Mu et al., 2020), RoBERTa-
Chunk(Sun et al., 2020) which published recently.
For generation approaches, we compare our models
with four supervised algorithms: CopyRNN(Meng
et al., 2017), TG-net(Chen et al., 2019), Cat-
Seq(Yuan et al., 2020), and SGG(Zhao et al., 2021).

Note that, the comparison methods mentioned

above are mostly methods for scientific domain.
For open domain dataset OpenKP(Xiong et al.,
2019), we choose CopyRNN(Meng et al., 2017),
BLING-KPE(Xiong et al., 2019) and RoBERTa-
Chunk(Sun et al., 2020) as comparison models.

Following CopyRNN(Meng et al., 2017) and
RoBERTa-Chunk(Sun et al., 2020), we adopt top-K
macro-averaged precision, recall and F1 measures
as our evaluation metrics for the present keyphrases
respectively, K = 5, 10 when evaluating scientific
domain datasets, and K = 1, 3, 5 when evaluating
open domain datasets. Here, precision is defined
as the number of correctly predicted keyphrases
over the number of all predicted keyphrases, we
apply Porter Stemmer(Porter, 1980) to both target
keyphrases and predicted keyphrases when deter-
mining whether the predictions are correct; recall
is computed as the number of correctly predicted
keyphrases over the total number of data records,
and F1 is the harmonic average of precision and
recall.

5.3 Implementation Details

We set maximal length of source sequence as 510
and maximum N-gram length as five (N = 5). The
dimension of word embedding is 768, which ob-
tained by fine-tuning RoBERTa(Liu et al., 2019).
Five sliding CNNs with kernel size between 1 and
5 are used to extract the representation of grams.
The dimension of CNN outputs and hidden state
in classifier are 512. The sampling rate α is set
to α = 0.1 when training Kp20k, and α = 0.05
when training OpenKP. Our model are optimized
using Adam with 5e-5 learning rate, 10% warm-
up proportion, 24 batch size. We implement our
model using PyTorch on a Linux machine with a
GPU device Tesla V100 32GB. Code and models
are available at https://github.com/fredia/NS-KPE.

5.4 Results And Analysis

To reduce the performance randomness, the perfor-
mance of our model is the average of 3 random runs,
we set sampling rate α = 0.1 when training on
Kp20k, and set sampling rate α = 0.05 when train-
ing on OpenKP. The best results are highlighted in
bold.

4Datasets have been slightly updated after (Yuan et al.,
2020). The result of CopyRNN is taken from (Yuan et al.,
2020)
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Table 3: Performance comparison of different models on well-annotated scientific domain benchmark datasets.
Compared baselines include generation approaches4(the first part of table), and models for extraction approaches.
The result of our model are average from 3 runs of experiments with sampling rate α = 0.1.

Kp20k Inspec NUS Krapivin Semeval
F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

CopyRNN 0.328 0.255 0.292 0.336 0.342 0.317 0.302 0.252 0.291 0.296
TG-net 0.372 0.315 0.315 0.381 0.406 0.370 0.349 0.295 0.318 0.322

CatSeqD 0.348 0.298 0.276 0.333 0.374 0.366 0.325 0.285 0.327 0.352
SGG - - 0.306 0.359 0.363 0.358 0.288 0.253 0.338 0.336
Tf-Idf 0.105 0.130 0.223 0.304 0.139 0.181 0.113 0.143 0.120 0.184

TextRank 0.180 0.150 0.229 0.275 0.195 0.190 0.172 0.147 0.171 0.181
SKE-Large-Cls 0.392 0.33 0.294 0.334 0.403 0.364 0.309 0.252 0.361 0.358

RoBERTa-Chunk 0.406 0.336 0.357 0.401 0.465 0.431 0.372 0.314 0.380 0.385
Our Model 0.406 0.338 0.348 0.388 0.472 0.432 0.375 0.320 0.376 0.388

std 0.0006 0.0006 0.0026 0.0015 0.001 0.0024 0.0022 0.0025 0.0021 0.0044

5.4.1 Results on Scientific Domain Datasets

Because most training data of scientific domain
datasets are annotated by authors, and the author is
the person who is most familiar with their articles,
the issue of incomplete keyphrase annotation is not
serious, we treat scientific domain datasets as well-
annotated datasets. Table 3 show the F1@5 and
F1@10 performance of our model and the other
baseline methods across multiple scientific domain
datasets, the results of Tf-Idf, TextRank and Copy-
RNN are taken from (Meng et al., 2017), and other
reported results are from their corresponding origi-
nal paper. We can see that for most cases (expect
Tf-Idf and TextRank), the extraction approaches
outperform all the generation approaches, since ex-
traction is often easier than generation(Wiseman
et al., 2017). As shown in Table 3, the F1@5 and
F1@10 scores of our model are very close to cur-
rent best extraction results, our model even up-
performs RoBERTa-Chunk by even 1% in NUS,
these results indicate that our model is still effective
when applied to high-quality data.

Table 4: Performance comparison of different models
on open domain dataset(OpenKP).

Method
OpenKP

F1@1 F1@3 F1@5
CopyRNN 0.217 0.237 0.210

BLING-KPE 0.267 0.292 0.209
RoBERTa-Chunk 0.355 0.373 0.324

Our Model 0.380 0.383 0.327

5.4.2 Results on Open Domain
Dataset(OpenKP)

Different from scientific papers, open domain
datasets regularly contain diverse documents origi-
nating from sparse sources, and annotators are not
as familiar with the original text as authors, the
incomplete annotated problem is serious in these
datasets. Table 4 show the F1@1, F1@3 and F1@5
score on an open domain dataset(OpenKP(Xiong
et al., 2019)), the results of CopyRNN, BLING-
KPE and RoBERTa-Chunk are token from (Sun
et al., 2020). We can observe that our model
has outperformed prior baselines. Compared with
RoBERTa-Chunk, we achieve the improvements
of 2.5% on F1@1 and 1% on F1@3, and our re-
sults is very close to RoBERTa-Chunk on F1@5,
this is not surprising since the average number of
keyphrases in OpenKP is 1.79. Results on open
domain datasets confirm the effectiveness of our
model.

5.4.3 Results on Synthetic Datasets

Results on synthetic datasets are shown in Fig
3 (a)(b), we compare the performance of our
model and RoBERTa-Chunk under different mask-
ing rates. As shown in Fig 3(a)(b),the F1@5 and
F1@10 score with sampling rate α = 0.1 are al-
ways greater than no sampling, and sampling rate
α = 0.1 drops more slowly than no sampling when
masking rate is increasing. The comparison result
show that our model can reduce the misguidance
brought by unlabeled keyphrases in training, espe-
cially in high masking rates.
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Figure 3: The performance of our model with different sampling rate on synthetic datasets. In sub-figure (a) and
(b), x axis represents the value of masking rate rmask, the larger rmask, the more serious incomplete annotated
problem is. And y axis represents the F1@5 score and F1@10 score. The red line denote the results of sampling
rate α = 0.1 and the blue line denote no sampling. In sub-figure (c), x axis represents the value of sampling rate
α and y axis represents the F1@5 score on synthetic datasets, different styles of line denote different synthetic
datasets with different masking rate.

5.4.4 Sampling Rate α in Negative Sampling

Fig 3 (c) shows the experiments on synthetic
datasets with the different sampling rate α. The
sampling rate α should not as small as possible,
too small sampling rate will reduce the number of
negative samples, leading to underfitting.

6 Conclusion and Future Work

In this work, we introduce negative sampling
to keyphrase extraction model, to alleviate the
misleading of the incomplete annotated problem.
According to the length characteristics of the
keyphrase, we use sliding CNN to extract the repre-
sentation of the candidate gram, turn the keyphrase
extraction problem into binary classification. In
different scenarios and different scales datasets, we
have confirmed the effectiveness of our model.

Our work can be extended in many directions.
To begin with, currently binary classifier in our
model treats each candidate gram individually, but
there is usually a relationship between different
grams. We could leverage attention mechanism to
model the relationship between grams. Moreover,
we would like to further explore utilizing smart
gating units or designing a network layer to filter
unlabeled keyphrases.
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