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Abstract

This paper shows that CIDEr-D, a traditional
evaluation metric for image description, does
not work properly on datasets where the num-
ber of words in the sentence is significantly
greater than those in the MS COCO Cap-
tions dataset. We also show that CIDEr-D
has performance hampered by the lack of
multiple reference sentences and high vari-
ance of sentence length. To bypass this prob-
lem, we introduce CIDEr-R, which improves
CIDEr-D, making it more flexible in dealing
with datasets with high sentence length vari-
ance. We demonstrate that CIDEr-R is more
accurate and closer to human judgment than
CIDEr-D; CIDEr-R is more robust regarding
the number of available references. Our results
reveal that using Self-Critical Sequence Train-
ing to optimize CIDEr-R generates descriptive
captions. In contrast, when CIDEr-D is opti-
mized, the generated captions’ length tends to
be similar to the reference length. However,
the models also repeat several times the same
word to increase the sentence length.

1 Introduction

Automatically describing image content using nat-
ural sentences is an important task to help include
people with visual impairments on the Internet,
making it more inclusive and democratic. This
task is known as image captioning. It is still a big
challenge that requires understanding the objects,
their attributes, and the actions they are involved
in. Thus, linguistic models are also needed to ver-
balize the semantic relations in addition to visual
interpretation methods.

In the last few years, there has been significant
progress in image captioning thanks to the avail-
ability of a large amount of annotated data in rele-
vant datasets (Agrawal et al., 2019; Chen et al.,
2015; Gurari et al., 2020; Hodosh et al., 2013;
Plummer et al., 2015). These datasets have in com-
mon multiple reference captions, which compre-

a) Reference: “Fotografia aérea sobre o pedágio da Terceira
Ponte. A foto contém alguns prédios, um pedaço da Terceira
Ponte e o fluxo de carros.”
CIDEr-D: “foto aérea aérea aérea da cidade de Florianópo-
lis mostrando casas casas, mostrando casas casas. Ao fundo,
algumas casas e casas.”
CIDEr-R: “Foto aérea de uma cidade de Brasília. Ao fundo,
a céu azul.”

Figure 1: We show the reference caption and the de-
scription generated by models trained on #PraCegoVer
to optimize CIDEr-D and CIDEr-R.

hend short sentences with a low length variance.
Also, most of the datasets contain only English
captions, whereas datasets with captions described
in other languages are scarce. Thus, we proposed
the #PraCegoVer dataset (Santos et al., 2021) for
the image captioning task with descriptions1 in
Portuguese. Our dataset consists of images and
captions collected from posts on Instagram tagging
the hashtag #PraCegoVer. PraCegoVer is a move-
ment (Web para Todos, 2018) that aims to spread
the accessibility culture on social media. It has in-
spired many local laws in Brazil that establish that
all posts made by public agencies must tag #PraCe-
goVer and contain a short description of the image.
Also, many business and personal profiles have
joined this initiative. Hence, the amount of data
produced by those users has great growth potential.

In contrast to the other datasets in this literature,
1We use caption and description interchangeably.



352

in #PraCegoVer, each image has only one refer-
ence description, whose length is about four times
longer than the average length, in terms of the num-
ber of words, in datasets such as MS COCO (Chen
et al., 2015). Also, the variance of length in our
dataset is around ten times higher than in the lit-
erature. Thus, #PraCegoVer is more challenging
than others. We demonstrated that training mod-
els using Self-Critical Sequence Training (Rennie
et al., 2017) (SCST) to optimize CIDEr-D is not a
good approach for datasets with the same charac-
teristics as ours, in particular with single reference
and high variance of length. CIDEr-D (Vedantam
et al., 2015) has a severe penalty concerning the
length that punishes at the same intensity any differ-
ence in the number of words between the generated
and the reference captions. Hence, it forces the
model to generate descriptions similar in length
to the ground truth even though it has to repeat
words to reach the reference length. In the end, the
model learns to repeat words impairing the lexical
cohesion of the generated description.

We tackle the problem of penalizing at the same
intensity any difference in length by modeling the
penalty proportionally to the reference length. Also,
we introduced a penalty regarding lexical cohesion
so that the more a word is repeated, relative to
the ground truth, the higher is the penalty. These
two penalties combined aim to give the models the
opportunity of generating more succinct captions
when the ground truth comprehends longer descrip-
tions. We name this new metric CIDEr-R, a robust
alternative to CIDEr-D for datasets with high length
variance. Also, we demonstrated that CIDEr-R is
preferred to CIDEr-D when only one reference is
available. Finally, our results reveal that CIDEr-R
is more suitable for the context of datasets created
from data collected from social media.

Our key contributions are fourfold: (1) we in-
vestigated the impact of evaluation metrics in the
scenario of datasets with high variance of length
(e.g., #PraCegoVer; (2) we showed that optimiz-
ing CIDEr-D on datasets with long references and
high variance of length can make the model learn
to repeat words to increase the sentence length
(Figure 1); (3) we proposed CIDEr-R that better
measures the lexical cohesion and has a flexible
penalty to length variance; (4) we demonstrated
that optimizing CIDEr-R in context of long sen-
tences and high variance of length produce more
descriptive captions.

2 Related Work

The image captioning task has been accelerated
thanks to the availability of a large amount of
annotated data in relevant datasets, for instance,
Flickr8K (Hodosh et al., 2013), Flickr30K (Plum-
mer et al., 2015), and MS COCO (Lin et al., 2014).
These data made it possible to train complex mod-
els such as Deep Neural Networks (LeCun et al.,
2015). In the last few years, a broad collection
of architectures has been proposed in image cap-
tioning (Kulkarni et al., 2011; Vinyals et al., 2015;
Johnson et al., 2016; Pedersoli et al., 2017; An-
derson et al., 2018; Lu et al., 2018; Huang et al.,
2019; Wang et al., 2020; Cornia et al., 2020; Pan
et al., 2020; Li et al., 2020). Notable achievements
have been made with Self-Critical Sequence Train-
ing (Rennie et al., 2017), which is a formulation of
reinforcement learning that enables the use of non-
differentiable functions as optimization objectives,
such as caption metrics.

Evaluating the generated captions is a challeng-
ing task itself because it is based on the evalua-
tor’s subjectivity. Many metrics were proposed
to measure the generated text’s quality to encour-
age progress in this field despite the subjectivity
intrinsic to this process. Typically, these metrics
compare a candidate sentence against a set of refer-
ence sentences (ground truth). Most of the metrics
are rule-based that relies on n-gram to assign a
score to the candidate sentence, e.g. BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004) and ME-
TEOR (Banerjee and Lavie, 2005). However, n-
gram based metrics cannot capture the semantic
relations and negatively correlate with human judg-
ment. Thus, Vedantam et al. proposed CIDEr
(Vedantam et al., 2015), a semantically sensitive
score, which computes the term frequency-inverse
document frequency (TF-IDF) weights to n-grams
in the candidate and reference sentences and then
compare them using cosine similarity. SPICE (An-
derson et al., 2016) uses the similarity of scene
graphs parsed from the reference and candidate
captions to evaluate the generated descriptions. Al-
though SPICE obtains a significantly higher corre-
lation with human judgments compared to n-gram
based metrics, it does not check whether the gram-
mar is correct, and it ignores syntactic quality, as
pointed out in (Liu et al., 2017). Also, SPICE uses
Stanford Scene Graph Parser (Schuster et al., 2015)
which is only available for a limited number of lan-
guages. Recently, word embeddings has also been
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employed for evaluation in BERTScore (Zhang
et al., 2020), MoverScore (Zhao et al., 2019) and
BLEURT (Sellam et al., 2020).

3 #PraCegoVer Dataset

Recently, a social movement called PraCegoVer
(Web para Todos, 2018) arose on the Internet, stand-
ing for people with visual impairments besides hav-
ing an educational purpose. The initiative aims
to call attention to the accessibility question by
stimulating users to post images accompanied by a
short description of their content. This project has
inspired many local laws that establish that pub-
lic agencies’ posts on social media must contain a
description of the image.

Inspired by this movement, we developed a
crawler to collect public posts from Instagram as-
sociated with the tag used by the followers. We
leverage these data, which comprise images and
text captions, to create #PraCegoVer (Santos et al.,
2021) dataset, the first large dataset for image cap-
tioning in Portuguese. Similar to VizWiz-Captions
(Gurari et al., 2020), our dataset’s captions are ad-
dressed to visually impaired people. We are contin-
uously collecting more data, and, thus, our dataset
increases over time. Currently, it comprehends
551,000 instances with images labeled with a sin-
gle caption.

3.1 #PraCegoVer vs. MS COCO Captions

To illustrate the differences between standard
datasets and datasets created from data in the wild,
we plot in Figure 2 a histogram with the distribu-
tion of captions by length, i.e. number of words,
for #PraCegoVer and MS COCO Captions. We
can note that in MS COCO Captions the caption
lengths are concentrated around ten words, while
length distribution in #PraCegoVer is flatter than
MS COCO Captions. More precisely, the refer-
ence descriptions in MS COCO Captions have 10.5
words on average with a standard deviation equal
to 2.2, whereas in #PraCegoVer the mean and stan-
dard deviation the lengths are 37.8 and 26.8, respec-
tively. These characteristics make our dataset more
challenging than MS COCO Captions because the
most used evaluation metric in image captioning
literature, CIDEr-D (Vedantam et al., 2015), is fine-
tuned on standard datasets, then it can not evaluate
the generated captions appropriately.

Figure 2: Histogram with the distribution of captions
by length in terms of number of words for #PraCegoVer
(blue) and MS COCO Captions (red) datasets.

4 Model Architecture

In our experiments, we employ AoANet (Huang
et al., 2019) since it is one of the state-of-art models
for image captioning. This model is based on the
Attention on Attention (AoA) module, which de-
termines the importance of attention results given
queries. AoA module is an extension of Multi-
Head Attention (Vaswani et al., 2017) that intro-
duces an “Attention Gate” and an “Information
Vector” to address the issue of the attention mecha-
nism returning irrelevant results to the query. The
model is an Encoder-Decoder architecture where
the encoder module comprises the Feature Extrac-
tor and a Refining Module to refine feature vectors’
representation. In contrast, the decoder network
comprehends LSTM, Multi-Head Attention, Atten-
tion on Attention, and word prediction layers. The
encoder takes the image features as input and cre-
ates an embedding representation. The decoder, in
turn, uses the embedding and the previous state to
model the context vector that represents the newly
acquired information. The context vector is used to
predict the next word.

We train our models using the method Self-
Critical Sequence Training (Rennie et al., 2017),
which consists of two phases. The first phase opti-
mizes the cross-entropy loss, and then an evaluation
metric is optimized through a Reinforcement Learn-
ing approach. Our experiments trained the models
during two epochs, minimizing the cross-entropy
loss and 15 epochs maximizing the considered eval-
uation metric.
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5 CIDEr-R: Our Proposal

CIDEr-D (Vedantam et al., 2015) is based on vec-
tors gn(s) formed by TF-IDF scores computed
from n-grams of sentence s. CIDEr-D can be
splitted into terms CIDEr-Dn, which are scores
calculated from n-grams of length n. Let Si =
{si1, ..., sim} be the set of reference descriptions
of an image i, and let ci be the generated descrip-
tion for i. Then, CIDEr-Dn is formally defined as
follows:

sim(ci, sij) =
min(gn(ci),g

n(sij)) · gn(sij)

||gn(ci)|| · ||gn(sij)||
, (1)

Penalty = exp{− (l(ci)− l(sij))2

2σ2
}, (2)

CIDEr-Dn(ci, Si) =
10

m

∑
sij∈Si

sim(ci, sij)·Penalty, (3)

where l(ci) and l(sij) denote the length of candi-
date and reference sentences, respectively, and it is
used σ = 6.

Finally, the CIDEr-D score is defined as:

CIDEr-D(ci, Si) =
1

N

N∑
n=1

CIDEr-Dn(ci, Si), (4)

where N is the longest considered n-gram,
in (Vedantam et al., 2015) is told that empirically
is assigned N = 4.

Although Vedantam et al. (Vedantam et al.,
2015) have introduced the Gaussian penalty
exp{− (l(ci)−l(sij))2

2σ2 } to tackle the problem of
higher scores when words with higher confidence
are repeated over long sentences, this factor only
works for datasets with slight variances in the sen-
tence lengths, and where the sentences have few
words. For instance, this is the case of MS COCO,
but it is not the case of the #PraCegoVer. We have
demonstrated in Section 6 that models based on
one of the state-of-art architectures trained on MS
COCO and optimizing CIDEr-D output descrip-
tions with high quality. However, when we trained
these models with the same hyperparameters over
the #PraCegoVer, the result was poor, with output
sentences including many word repetitions. Such
behavior occurs because the Gaussian penalty pun-
ishes at the same intensity any difference in length
|l(ci)− l(sij)|. Hence, the model is forced to gen-
erate captions similar in length to the reference,

learning to repeat words not to be penalized by the
cosine similarity between the TF-IDF vectors.

In light of this problem, we propose CIDEr-D
modified, which we called CIDEr-R, where we
replace the Gaussian penalty with two other penal-
ties: length and repetition. We relax the Gaus-
sian Penalty to be more flexible in the context
of varied sentence length. Therefore, we devel-
oped the length penalty that changes according to
the reference length so that the longer the refer-
ence sentence, the more permitted is the difference
|l(ci) − l(sij)|. Also, to avoid the model to pre-
dict repeated words, we introduce the repetition
penalty that deals specifically with this problem.
This penalty considers the number of occurrences
of a word in the candidate and reference sentences,
assigning an intensified penalty score as that word
frequency in the candidate sentence differs from
the frequency in the reference.

Formally, given the generated description ci and
the reference sij , the length penalty PenL(ci, sij)
is defined as follows:

PenL(ci, sij) = exp{− (l(ci)− l(sij))2

l(sij)2
}. (5)

Repetition penalty PenR(ci, sij) is formally
defined as:

PenR(ci, sij) =
∏
w∈c′i

f(w, ci, sij)
1/l(ci), (6)

f(w, ci, sij) =

{
1

1+|freq(w,ci)−freq(w,sij)|
, if w ∈ c′i ∩ s′ij

1
freq(w,ci)

, if w ∈ c′i \ s
′
ij

where freq(w, s) is the number of occurrences of
the word w in a sentence s, and the notation c′ and
s′ represents the set of words that appear in c and
s, respectively.

Note that the length penalty (Equation 5) is sim-
ilar to the Gaussian penalty in Equation 3, except
for the denominator, which we replace by the term
l(sij)

2. This change makes the metric more flexi-
ble concerning the difference in lengths generated
and reference sentences.

Finally, we define CIDEr-R as follows:

CIDEr-Rn(ci, Si) =
10

m

∑
sij∈Si

sim(ci, sij) · Pen
kr
R · Pen

1−kr
L ,

(7)
kr ∈ [0, 1].

Our formulation of CIDEr-R has replaced the
Gaussian penalty with the weighted geometric av-
erage of length and repetition penalties, where kr
and 1− kr is the weight assigned to repetition and
length penalty, respectively.
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We have executed a random search (Bergstra
and Bengio, 2012) to tune the weights assigned to
each penalty, and we find the best configuration is
kr = 0.8. This configuration forces the model to
avoid repetition. On the other hand, it generates
shorter sentences than when kr = 0.0, which is ex-
pected since we are decreasing the length penalty’s
weight.

6 Experiments

6.1 Caption-Level Human Correlation

In this experiment, we evaluate how much the auto-
mated metrics match human judgment. We use the
PASCAL-50S proposed by Vedantam et al. (Vedan-
tam et al., 2015). This dataset consists of triplets of
sentences A, B, and C, where A is a reference cap-
tion and B and C are candidates. Each triplet has an
annotation with the majority vote for the question,
“Which of the two sentences, B or C, is more simi-
lar to A?”. The dataset comprehends four different
combinations of sentences B and C: human-correct
(HC), human-incorrect (HI), human-model (HM),
and model-model (MM).

To evaluate the metrics, we compute the score
for each triplet, using different metrics, for B and
C having a set of references, and then we calculate
the metric’s accuracy. The accuracy is defined as
the number of times the metric assigns the highest
score to the candidate pair most commonly pre-
ferred by human evaluators divided by the total
number of pairs (B, C). To assess the impact of the
number of available references on metrics perfor-
mance, we compute the accuracy for each metric,
varying the number of available references from 1
to 48. We show the results in Figure 32.

We can see that CIDEr-R has a similar perfor-
mance to CIDEr-D, considering the four types of
pairs. However, CIDEr-R outperforms the other
metrics at distinguishing between two machine-
generated captions (Model-Model Pairs). Espe-
cially when only one reference caption is avail-
able, which is the most common scenario of large
datasets such as ours, CIDEr-R outperforms CIDEr-
D by 1.2% of accuracy. Model-Model Pairs is
a most interesting subtask from a practical point
of view because distinguishing better-performing
algorithms is the primary motivation of the auto-
mated metrics.

2We used the implementation of the evaluation met-
rics available on https://github.com/ruotianluo/
coco-caption

Figure 3: Classification accuracy of metrics at match-
ing human evaluation with 1-48 reference captions.

6.2 Ablation Study

To investigate the impact of mean and variance
of the sentence’s length in the datasets and influ-
ence of availability of multiple references, we se-
lected subsets from #PraCegoVer and MS COCO
datasets. We constructed MS COCO – Subset
(Single Reference) to increase the sentence length
variance. Thus, we selected the longest reference
for each image, and then we removed the exam-
ples whose sentence length is between the first and
third quartiles. Regarding the MS COCO – Sub-
set (Multi-Reference), we kept the same examples
as in MS COCO – Subset (Single Reference) but
considered the 5 references per image. In addi-
tion, we randomly selected a subset of #PraCe-
goVer with about 63 thousand examples, which we
called #PraCegoVer-63K. Also, we constructed the
subsets #PraCegoVer N Words aiming to reduce the
variance of the sentence length, so we selected just
the examples whose reference has at most N-words.
Finally, we used the original datasets MS COCO
and Flickr30k. We presented the statistics about
the datasets used in our experiments in Table 1.

Self-Critical Sequence Training has been largely
used to train the Image Captioning models. It can
optimize non-differentiable functions. Therefore
it is used to optimize CIDEr-D. To compare the
performance of models optimizing CIDEr-D and
CIDEr-R, we train models using AoANet architec-
ture, which is still one of the state-of-the-art archi-
tectures, on the different datasets mentioned above.
For each setting, we execute the training 3 times,
and we present the experimental results in Table 2.
Note that Stanford Scene Graph Parser is not avail-
able for Portuguese, then we could not compute the
SPICE score for subsets of #PraCegoVer.

Overall, the models’ performance decreases as

https://github.com/ruotianluo/coco-caption
https://github.com/ruotianluo/coco-caption
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Table 1: Statistics of each dataset used in our experiment. “Avg. Sentence Length” stands for the average sentence
length, and “Std. Sentence Length” stands for the standard deviation of the sentence length.

Dataset Dataset
Size

Train
Size

Validation
Size

Test
Size

Vocabulary
Size

Avg. Sentence
Length

Std. Sentence
Length

MS COCO 123287 113287 5000 5000 13508 10.5 2.2
MS COCO – Subset
(Multi-Reference)

77719 71428 3145 3146 7985 10.6 2.8

MS COCO – Subset
(Single Reference)

77719 71428 3145 3146 4365 13.7 3.9

Flickr30k 31014 29000 1014 1000 18459 12.3 5.2
#PraCegoVer – 63K 62935 37881 12442 12612 55029 37.8 26.8

#PraCegoVer 10 Words 10616 8531 1007 1078 5220 7.9 1.7
#PraCegoVer 20 Words 42292 33892 3521 4879 18829 13.8 4.3

Table 2: Experimental results obtained with AoANet models trained on different datasets, using Self-Critical Se-
quence Training to optimize CIDEr-D and CIDEr-R. The results are presented as “mean score± standard deviation
of the scores”.

Dataset Optimizing CIDEr-R CIDEr-D SPICE ROUGE-L METEOR BLEU-4

MS COCO
CIDEr-D 121.6 ± 0.3 120.5 ± 0.3 21.1 ± 0.1 57.5 ± 0.2 27.7 ± 0.0 36.5 ± 0.1

CIDEr-R 124.2 ± 0.7 116.2 ± 1.0 20.3 ± 0.0 57.2 ± 0.2 26.8 ± 0.2 35.9 ± 0.3

MS COCO – Subset
(Multi-Reference)

CIDEr-D 117.6 ± 0.2 115.3 ± 0.4 20.3 ± 0.1 56.7 ± 0.1 27.0 ± 0.1 34.9 ± 0.2

CIDEr-R 119.5 ± 0.5 108.5 ± 1.0 19.2 ± 0.2 56.0 ± 0.2 25.6 ± 0.2 33.3 ± 0.4

MS COCO – Subset
(Single Reference)

CIDEr-D 101.0 ± 0.4 97.9 ± 1.0 22.7 ± 0.2 36.8 ± 0.1 16.7 ± 0.1 11.0 ± 0.1

CIDEr-R 110.5 ± 1.4 93.5 ± 1.8 23.5 ± 0.2 36.2 ± 0.1 15.6 ± 0.1 9.5 ± 0.3

Flickr30k
CIDEr-D 51.5 ± 0.3 45.3 ± 0.2 12.2 ± 0.3 44.0 ± 0.2 18.3 ± 0.1 21.7 ± 0.3

CIDEr-R 52.9 ± 0.4 44.2 ± 0.9 11.9 ± 0.4 44.0 ± 0.7 17.8 ± 0.3 21.1 ± 0.4

#PraCegoVer – 63K
CIDEr-D 10.8 ± 1.8 4.7 ± 0.7 - 14.5 ± 0.4 7.1 ± 0.1 1.6 ± 0.2

CIDEr-R 12.6 ± 0.9 3.3 ± 0.2 - 12.6 ± 0.3 5.0 ± 0.3 0.7 ± 0.2

#PraCegoVer 10 Words
CIDEr-D 8.6 ± 0.1 8.8 ± 0.1 - 15.0 ± 0.9 6.4 ± 0.5 1.0 ± 0.1

CIDEr-R 9.6 ± 0.6 9.3 ± 1.1 - 15.1 ± 0.5 6.2 ± 0.3 1.1 ± 0.1

#PraCegoVer 20 Words
CIDEr-D 10.2 ± 0.5 9.5 ± 0.4 - 15.9 ± 0.1 7.9 ± 0.1 1.8 ± 0.2

CIDEr-R 16.1 ± 0.8 10.9 ± 0.6 - 15.4 ± 0.3 6.7 ± 0.0 1.7 ± 0.1

the variance of the reference length rises. Consid-
ering the datasets MS COCO, MS COCO – Subset
(Multi-Reference), and Flickr30K, in which multi-
ple references are available, one can compare the
models’ performance using the SPICE score, since
it has a high human correlation, to avoid a casual
bias. We can observe that as the reference length
variance increases, the performance of the mod-
els optimizing CIDEr-D drops faster than those
that optimize CIDEr-R. In particular, the perfor-
mances, based on the SPICE score, of the mod-
els optimizing CIDEr-D and CIDEr-R are not sta-
tistically different on Flickr30K, whose reference
lengths have the highest standard deviation. More-
over, the models’ performance on MS COCO –
Subset (Single-Reference) is worse than on MS
COCO – Subset (Multi-Reference), which shows
the negative impact of lack of multiple references
for each example. Still, it can be noted that in the
case of MS COCO – Subset (Single-Reference),
the model that optimized CIDEr-R surpassed the
one that optimized CIDEr-D. It means that the op-
timization of CIDEr-R is preferred in the case of a
Single Reference.

Concerning the subsets of #PraCegoVer, the met-
rics ROUGE-L, METEOR, and BLEU-4 have low
correlation with human judgments, and thus the

comparisons must be made in terms of CIDEr-D
and CIDEr-D. That said, one can see that, regard-
ing #PraCegoVer’s subsets, the performance also
improves as the variance of the sentence length
decreases. Still, in #PraCegoVer 20 Words, we
doubled the average sentence length and also rose
the variance of length compared to #PraCegoVer
10 Words. For this subset, optimizing CIDEr-R re-
sulted in better models than using CIDEr-D. In the
case of #PraCegoVer 10 Words and #PraCegoVer
20 Words datasets, even the average CIDEr-D score
improves when we optimize CIDEr-R. It demon-
strates that CIDEr-R is more suitable for this con-
text. Moreover, optimizing CIDEr-R improved
the captions’ quality in comparison with CIDEr-D
for all subsets of #PraCegoVer as detailed in Sec-
tion 6.3.

6.3 Qualitative Analysis
To qualitatively explore the metrics’ weakness, we
created the triplets shown in Table 3. The triplets
are composed of a reference sentence and two can-
didates: Correct Candidate correctly describes the
image and Incorrect Candidate does not describe
the objects in the image. We compute the metrics’
scores for each candidate, and then we compute
the accuracy based on these triplets, as explained
in Section 6.1. We constructed the first example to
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evaluate the performance of the metrics when the
Incorrect Candidate corresponds to a change of the
subject of the reference caption, thus changing its
meaning entirely, whereas the Correct Candidate
consists of small syntactic changes but keeping
the same meaning. In the second example, we ex-
plore different sentences for the Correct Candidate,
while the Incorrect Candidate has some n-grams
matching with the reference but has many word
repetitions and is semantically incomplete. In the
third example, we created the triplets to explore
differences in length between the candidates and
the reference. Thus, we selected a small sentence
for the Correct Candidate, and we constructed the
Incorrect Candidates by removing parts of the refer-
ence caption and replacing the dog with a cat. Still,
in one of the Incorrect Candidates, we repeated the
word distance to increase the length.

SPICE beats all other metrics, assigning a higher
score for the Correct Candidate in 11 out of 15
triplets. However, it is worth noting that it misclas-
sified triplets in which words are repeated. SPICE
can reach this performance because it parses the de-
scriptions according to linguistic rules, limiting its
extension to other languages because it depends on
linguistic experts. Regarding the other metrics, one
can note that BLEU-4 does not classify correctly
any triplets, whereas CIDEr-D and ROUGE-L as-
signed the higher score to the Correct Candidate
when its sentence syntactically equals the Incor-
rect Candidate except by the word “cat”. Simi-
larly, CIDEr-R and METEOR correctly classified
4 triplets. METEOR has better performance when
the candidate and reference sentences are more syn-
tactically similar. In contrast, CIDEr-R correctly
penalizes sentences with word repetition and still
while assigning the Correct Candidate. Also, it is
essential to highlight that CIDEr-R is more invari-
ant to sentence length than CIDEr-D. We saw this
in cases where a higher score is assigned to the
Correct Candidate even though it is shorter than
the Incorrect Candidate. For example, in the pair
“A cow and a dog on the street.” and “A bird sitting
on the on on on cat and a dog and a dog and and
sitting on next”, the first candidate is preferred.

Still, to show the quality of the captions gen-
erated by models trained to optimize CIDEr-D
and CIDEr-R in the context of a single refer-
ence, we present in Figure 4 two examples from
#PraCegoVer-63K test set and two from MS
COCO. In these examples, the images are followed

by the reference caption and the descriptions au-
tomatically generated by the models. Regarding
MS COCO, we train the models on MS COCO
– Subset (Single-Reference), and we generate the
captions for images from MS COCO Karpathy test
set (Karpathy and Li, 2015).

Models trained to optimize CIDEr-D learn to
repeat words in all cases, as highlighted in Fig-
ure 4. This occurs because the length penalty in
CIDEr-R is more flexible than the Gaussian penalty
in CIDEr-D. Hence, the model can generate short
captions without being much penalized. As a re-
sult, the models trained to optimize CIDEr-R tend
to produce summarized descriptions. This become
clear specially when we consider #PraCegoVer-
63K where the references are long, as illustrated in
Figures 1 and 4a. Therefore, CIDEr-R is a better
metric to be optimized in the context of long refer-
ence captions, especially when the variance of the
sentences is high.

7 Conclusion

This work demonstrated that CIDEr-D’s perfor-
mance is hampered by the lack of multiple ref-
erence sentences and sentence lengths variance.
Thus, we proposed CIDEr-R as an alternative to
CIDEr-D in the context of a single reference and
where the sentence length variance matters, such
as large datasets based on social media data. We
modified the Gaussian penalty to make CIDEr-D
invariant to the difference in length between the ref-
erence caption and the generated description. Also,
we introduced a penalty for word repetition to bet-
ter compare captions with a length similar to the
reference but with words repeated several times.
Further, we showed that CIDEr-R is more accurate
and closer to human judgment than CIDEr-D, and
it is also more robust regarding the number of refer-
ences. Still, we showed that CIDEr-R is a preferred
evaluation metric to CIDEr-D for datasets with sin-
gle reference and high variance of sentence length,
such as #PraCegoVer. Additionally, we demon-
strated that using SCST to optimize CIDEr-D is
not a good approach regarding datasets with a high
length variance because the models are more likely
to repeat words to increase the length of the gener-
ated caption. Finally, we demonstrated that training
models to optimize CIDEr-R instead of CIDEr-D
produces more descriptive captions.

For future work, we intend to create a dataset
similar to PASCAL-50S with captions in Portugue-
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Table 3: A small set of triplets created to explore the metrics’ weakness. We constructed 5 triplets for each image,
each one consisting of a reference, Correct Candidate (CC) and Incorrect Candidate (IC). Correct Candidate
correctly describes the image, while Incorrect Candidate is a sentence that do not describes the image.

Reference Correct Candidate (CC) Incorrect Candidate (IC) CIDEr-R CIDEr-D SPICE METEOR ROUGE-L BLEU-4
CC IC CC IC CC IC CC IC CC IC CC IC

1. A young girl is preparing to blow out her
candle.

A young girl is about to blow out her candle.

A young dog is preparing to blow
out her candle.

452.3 537.4 452.3 537.4 80.0 20.0 92.5 47.2 90.0 90.0 65.8 70.7
A young girl is getting ready to blow out
her candle.

389.5 537.4 384.9 537.4 80.0 20.0 53.6 47.2 86.5 90.0 58.8 70.7

A young girl is getting ready to blow
out a candle.

238.1 537.4 248.7 537.4 66.7 20.0 46.6 47.2 76.9 90.0 35.1 70.7

A young girl is getting ready to blow
out a candle on a small dessert.

173.6 537.4 138.0 537.4 50.0 20.0 44.1 47.2 66.4 90.0 24.6 70.7

A kid is to blow out the single candle in a
bowl of birthday goodness.

78.7 537.4 60.8 537.4 15.4 20.0 25.6 47.2 49.8 90.0 0.0 70.7

2. A bird sitting on the back of a cow and a dog
and bird standing on the ground next to the cow.

A mottled brown dog and cow with two
little birds outdoors.

A bird sitting on the on on on cat and a
dog and a dog and and sitting on next to.

32.1 129.6 7.5 201.1 10.5 15.4 8.8 25.9 22.9 60.2 0.0 30.8

A cow standing next to a dog on dirt ground. 89.1 129.6 15.4 201.1 35.3 15.4 21.8 25.9 35.1 60.2 0.0 30.8
A dog with a bird and a large cow on a street. 73.2 129.6 25.9 201.1 22.2 15.4 15.6 25.9 27.9 60.2 0.0 30.8
A dog and a cow with a bird sitting on
its back.

168.7 129.6 54.7 201.1 35.3 15.4 26.7 25.9 33.5 60.2 15.8 30.8

A cow and a dog on a street. 133.2 129.6 12.5 201.1 14.3 15.4 14.4 25.9 36.9 60.2 9.8 30.8

3. Dog laying on couch looking into distance
with remote control by paw

A dog laying with a remote control.

Cat laying on couch looking into distance
with remote control by paw.

160.1 745.3 128.5 745.3 50.0 88.9 22.9 56.1 50.2 91.7 0.0 90.4

Cat looking into distance with remote control. 160.1 415.8 128.5 304.2 50.0 46.2 22.9 30.9 50.2 60.3 0.0 39.6
Cat looking into distance distance distance
with a remote control.

160.1 142.8 128.5 151.6 50.0 53.3 22.9 24.4 50.2 53.7 0.0 0.0

Cat with remote control by paw. 160.1 332.5 128.5 212.0 50.0 40.0 22.9 24.0 50.2 52.4 0.0 28.0
A cat with a remote control. 160.1 77.0 128.5 54.8 50.0 30.8 22.9 12.2 50.2 31.4 0.0 0.0

Accuracy: 4/15 1/15 11/15 4/15 1/15 0/15

a) Reference: “Na foto, Thalita Ge-
lenske e Thaís Silva estão abraçadas com
Luana Génot na livraria Travessa. Ao
fundo, diversos livros coloridos estão na
prateleira. Nas laterais da foto, existem 2
banners: um deles vermelho, com o logo
da, e o outro com a divulgação do livro
da Luana.”
CIDEr-D: “Foto de uma mulher segu-
rando um livro com livros. Ao fundo,
uma estante com livros. Texto: “A sua. É
sua festa. É sua!”.”
CIDEr-R: “Fotografia colorida. Bárbara
está sentada em uma biblioteca. Ela
está com uma menina. Ela veste uma
blusa branca. Ao fundo, uma estante de
livros.”.

b) Reference: “Two kayaks are sitting
on a river bank empty.”
Subset Single Ref. CIDEr-D: “a yellow
and yellow boat sitting on the side of a
beach next to a boat’
Subset Single Ref. CIDEr-R: “a yellow
surfboard sitting on the beach next to the
ocean”

c) Reference: “A cat stares at itself in a
mirror.”
Subset Single Ref. CIDEr-D: “a black
and white cat sitting in a mirror looking
in a mirror’
Subset Single Ref. CIDEr-R: “a cat sit-
ting in front of a mirror”

Figure 4: Figure 4a is an example of image from #PraCegoVer-63K test set and Figures 4b and 4c are from MS
COCO Karpathy test set (Karpathy and Li, 2015). In Figure 4a, we show the reference caption and the description
generated by models trained on #PraCegoVer-63K to optimize CIDEr-D and CIDEr-R. In Figures 4b and 4c, we
show the captions generated by models trained on MS COCO – Subset (Single-Reference) to optimize CIDEr-D
and CIDEr-R, as well as the available reference for that image. “Subset Single Ref.” stands for MS COCO – Subset
(Single-Reference).

se with the same characteristics of #PraCegoVer to
validate the accuracy of the metrics in the context of
long sentences and high variance. Also, we intend
to remove proper names and process synonyms
to reduce the vocabulary size and replace words

with low-frequency with synonyms more common
in subsets of #PraCegoVer to evaluate how this
impacts the models’ performance.
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